Algorithms and Data Structures (INF1) Lecture 14/15 Hua Lu

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Algorithms and Data Structures (INF1) Lecture 14/15 Hua Lu"

Transcription

1 Algorithms and Data Structures (INF1) Lecture 14/15 Hua Lu Department of Computer Science Aalborg University Fall 2007

2 This Lecture Shortest paths Problem preliminary Shortest paths in DAG Bellman-Moore algorithm Dijkstra s algorithm 2

3 Motivation Example What is the shortest path from Århus to Skagen? Århus -> Aalborg -> Frederikshavn -> Skagen Total cost: 4 hours This example is not so hard to figure out Only 4 possibilities Consider cases with Large number of nodes Multiple edge or path choices between the same pair of cities 1.5 Hjørring Viborg Skagen Aalborg 2 1 Frederikshavn 1 1 Århus 3

4 Shortest Path Problem Given a digraph whose edges are attached with costs, two of its vertices are specified as a and b Find a shortest path from a to b (if there exists one) s.t. the total cost of that path is the minimal This cost is called distance, denoted as d(a, b) Assumptions Edges may have negative costs Cycles with negative cost are not allowed If such a cycle is found, report it and stop the shortest path finding 4

5 Triangle Inequality If v is reachable from u, and w is reachable from v, we have d(u, w) d(u, v) + d(v, w) Proof d(u, v) indicates the shortest path from u to v d(v, w) indicates the shortest path from v to w d(u, v) + d(v, w) indicates one path from u to w A shortest path from u to w must exist, with cost d(u, w) d(u, w) d(u, v) + d(v, w) holds as d(u, w) indicates the shortest path! If = holds, v is on the shortest path from u to w In particular, if there is an edge between v and w, then d(u, w) d(u, v) + c(v, w) 5

6 Shortest Path Spanning Tree Given a digraph G with edge costs, each vertex is reachable from some start vertex a. Then, either G contains a negative cycle, or else it contains a spanning tree T, rooted at a, such that for each vertex v in G, the total cost of the path through T from a to v is equal to d(a, v) T reserves shortest path information Skagen 1 Such a tree is called a shortest path spanning tree E.g., start from Århus Hjørring 1 Aalborg Frederikshavn 1 Vibor g 1 2 Århus 6

7 Single Source Shortest Paths A single start vertex has been specified We call it a single source shortest path problem Three main algorithms exist for such problems Nodes # n, edge # m Topological sorting Dijkstra algorithm Bellman-Moore algorithm 7

8 A Simple Recurrence The input digraph can have negative costs, but no negative cycles Still positive cycles possibly! Recurrence like the one we used in critical path d(a, a) = 0 d(a, v) = min{d(a, u) + c(u,v)}, u Pred(v) Pred(v) denotes the set of direct predecessors of v i.e. <u, v> is an edge The recurrence cannot be used due to possible cycles! For d(a, v), v can be involved in a cycle, recursion on v can be forever If G is a DAG, then this recurrence works as the basis for the topological sorting based algorithm of O(n+m) 8

9 Bellman-Moore Algorithm d k (a, v) = the cost of a shortest path from a to v among all paths of length at most k Number of edges involved k If no such a path from a to v of length at most k, d k (a, v)= New recurrence d 0 (a, a) = 0 d 0 (a, v) = d k (a, v) = min{d k-1 (a, v), min u Pred(v) {d k-1 (a, u) + c(u, v)}} Bellman-Moore algorithm Repeatedly compute d k (a, v) for k = 0, 1, 2, For a digraph with n nodes, the largest k to consider is n-1 9

10 Complexity of Bellman-Moore Alg k=0 k=1 k=n-1 a=v 1 0 v 2 v n We need to compute this table column by column Dynamic programming! Cost to compute one d k (a, v) is O( Pred(v) ) Cost to compute one column is O(n+m) We have O(n) columns Total cost is O(n (n+m)) in the worst case 10

11 Negative Cycle Detection How to decide whether a digraph has a negative cycle or not? Use Bellman-Moore algorithm and calculate also the column k=n The graph has a negative cycle if and only if d n (a, v) < d n-1 (a, v) for some vertex v 11

12 Dijkstra s Algorithm Preliminaries Assumption No edge has negative cost Priority queue Like a symbol table, a set of entries Each entry has form of <key, value> Special operations find_min:entry_type Returns the entry in the priority queue whose key is minimum delete_min:entry_type Deletes and returns the entry that would be returned by find_min We use a priority queue when we are more concerned about items with extreme keys than the total order among all keys In shortest path finding, we care about the shortest path so far, not the order of all possible paths w.r.t. their lengths 12

13 Dijkstra s Algorithm Each vertex has fields v.visited, v.parent, v.distance A priority queue q When one vertex v is inserted into q, we regard v.distance as the key and v itself as the value, i.e., <v.distance, v> dijkstra(g:digraph, a:vertex_type) 1. for each vertex v, set v.visited:=false, v.distance:= 2. a.distance:=0; a.visited:=true; a.parent:=nil; q.insert(a) 3. while NOT q.empty do v:=q.delete_min for each edge (v, w) do if NOT w.visited then w.visited:=true; w.parent:=v; w.distance:=v.distance+c(v, w); q.insert(w) else if v.distance+c(v, w) < w.distance then w.distance:=v.distance+c(v, w); w.parent:=v 13

14 Correctness of Dijkstra s Algorithm v a x L: vertices Q: vertices R: removed from Q Loop Invariant z L: z.distance=d(a, z) still in Q z L: each successor of z is either in L or in Q z Q: z.distance is the length of one shortest path from node a to node z via vertices in L Prove it by induction on k, loop iteration vertices not visited yet 14

15 Complexity of Dijkstra s Algorithm Cost of step 1 is O(n) Cost of step 2 is O(1) Cost of step 3 is O(n+m) + time cost on the priority queue delete_min: n times insert: n times distance update: m times Total cost O(n + m + n (T(delete_min)) + n (T(insert)) + m (T(dist_update))) Priority queue implementation Linked list Fibonacci heap delete_min O(n) O(log n) insert O(1) O(1) distance update O(1) O(1) Total time cost O(n 2 ) O(n log n + m) 15

16 Shortest Paths Summary Arbitrary digraphs Use Bellman-Moore algorithm O(n (n+m)) O(n 3 ) if m=θ(n 2 ) Digraphs with non-negative costs Use Dijkstra s algorithm O(n log n+m) O(n 2 ) if m=θ(n 2 ) DAGs Use topological sorting based algorithm O(n+m) Better than Dijkstra s algorithm, but still O(n 2 ) if m=θ(n 2 ) 16

17 Next Lecture Minimum spanning trees Definitions Kruskal s algorithm Prim s algorithm Course conclusion 17

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92. Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure

More information

Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

More information

Binary Heaps. CSE 373 Data Structures

Binary Heaps. CSE 373 Data Structures Binary Heaps CSE Data Structures Readings Chapter Section. Binary Heaps BST implementation of a Priority Queue Worst case (degenerate tree) FindMin, DeleteMin and Insert (k) are all O(n) Best case (completely

More information

The A* Search Algorithm. Siyang Chen

The A* Search Algorithm. Siyang Chen The A* Search Algorithm Siyang Chen Introduction A* (pronounced A-star ) is a search algorithm that finds the shortest path between some nodes S and T in a graph. Heuristic Functions Suppose we want to

More information

Graph. Consider a graph, G in Fig Then the vertex V and edge E can be represented as:

Graph. Consider a graph, G in Fig Then the vertex V and edge E can be represented as: Graph A graph G consist of 1. Set of vertices V (called nodes), (V = {v1, v2, v3, v4...}) and 2. Set of edges E (i.e., E {e1, e2, e3...cm} A graph can be represents as G = (V, E), where V is a finite and

More information

Exam study sheet for CS2711. List of topics

Exam study sheet for CS2711. List of topics Exam study sheet for CS2711 Here is the list of topics you need to know for the final exam. For each data structure listed below, make sure you can do the following: 1. Give an example of this data structure

More information

The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge,

The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints

More information

CMSC 451: Graph Properties, DFS, BFS, etc.

CMSC 451: Graph Properties, DFS, BFS, etc. CMSC 451: Graph Properties, DFS, BFS, etc. Slides By: Carl Kingsford Department of Computer Science University of Maryland, College Park Based on Chapter 3 of Algorithm Design by Kleinberg & Tardos. Graphs

More information

Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path.

Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path. Chapter 3 Trees Section 3. Fundamental Properties of Trees Suppose your city is planning to construct a rapid rail system. They want to construct the most economical system possible that will meet the

More information

COT5405 Analysis of Algorithms Homework 3 Solutions

COT5405 Analysis of Algorithms Homework 3 Solutions COT0 Analysis of Algorithms Homework 3 Solutions. Prove or give a counter example: (a) In the textbook, we have two routines for graph traversal - DFS(G) and BFS(G,s) - where G is a graph and s is any

More information

Graph Algorithms. Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

Graph Algorithms. Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar Graph Algorithms Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text Introduction to Parallel Computing, Addison Wesley, 3. Topic Overview Definitions and Representation Minimum

More information

Chapter 2 Paths and Searching

Chapter 2 Paths and Searching Chapter 2 Paths and Searching Section 2.1 Distance Almost every day you face a problem: You must leave your home and go to school. If you are like me, you are usually a little late, so you want to take

More information

Warshall s Algorithm: Transitive Closure

Warshall s Algorithm: Transitive Closure CS 0 Theory of Algorithms / CS 68 Algorithms in Bioinformaticsi Dynamic Programming Part II. Warshall s Algorithm: Transitive Closure Computes the transitive closure of a relation (Alternatively: all paths

More information

1. What s wrong with the following proofs by induction?

1. What s wrong with the following proofs by induction? ArsDigita University Month : Discrete Mathematics - Professor Shai Simonson Problem Set 4 Induction and Recurrence Equations Thanks to Jeffrey Radcliffe and Joe Rizzo for many of the solutions. Pasted

More information

Cpt S 223. School of EECS, WSU

Cpt S 223. School of EECS, WSU The Shortest Path Problem 1 Shortest-Path Algorithms Find the shortest path from point A to point B Shortest in time, distance, cost, Numerous applications Map navigation Flight itineraries Circuit wiring

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 7 Binary heap, binomial heap, and Fibonacci heap 1 Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 The slides were

More information

Minimum cost maximum flow, Minimum cost circulation, Cost/Capacity scaling

Minimum cost maximum flow, Minimum cost circulation, Cost/Capacity scaling 6.854 Advanced Algorithms Lecture 16: 10/11/2006 Lecturer: David Karger Scribe: Kermin Fleming and Chris Crutchfield, based on notes by Wendy Chu and Tudor Leu Minimum cost maximum flow, Minimum cost circulation,

More information

Trees and Fundamental Circuits

Trees and Fundamental Circuits Trees and Fundamental Circuits Tree A connected graph without any circuits. o must have at least one vertex. o definition implies that it must be a simple graph. o only finite trees are being considered

More information

Mathematical Induction. Lecture 10-11

Mathematical Induction. Lecture 10-11 Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach

More information

GRAPH THEORY and APPLICATIONS. Trees

GRAPH THEORY and APPLICATIONS. Trees GRAPH THEORY and APPLICATIONS Trees Properties Tree: a connected graph with no cycle (acyclic) Forest: a graph with no cycle Paths are trees. Star: A tree consisting of one vertex adjacent to all the others.

More information

Loop Invariants and Binary Search

Loop Invariants and Binary Search Loop Invariants and Binary Search Chapter 4.3.3 and 9.3.1-1 - Outline Ø Iterative Algorithms, Assertions and Proofs of Correctness Ø Binary Search: A Case Study - 2 - Outline Ø Iterative Algorithms, Assertions

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees Algorithms and 18.304 Presentation Outline 1 Graph Terminology Minimum Spanning Trees 2 3 Outline Graph Terminology Minimum Spanning Trees 1 Graph Terminology Minimum Spanning Trees

More information

Math 443/543 Graph Theory Notes 4: Connector Problems

Math 443/543 Graph Theory Notes 4: Connector Problems Math 443/543 Graph Theory Notes 4: Connector Problems David Glickenstein September 19, 2012 1 Trees and the Minimal Connector Problem Here is the problem: Suppose we have a collection of cities which we

More information

CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992

CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992 CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992 Original Lecture #6: 28 January 1991 Topics: Triangulating Simple Polygons

More information

CMPS 102 Solutions to Homework 1

CMPS 102 Solutions to Homework 1 CMPS 0 Solutions to Homework Lindsay Brown, lbrown@soe.ucsc.edu September 9, 005 Problem..- p. 3 For inputs of size n insertion sort runs in 8n steps, while merge sort runs in 64n lg n steps. For which

More information

Sample Problems in Discrete Mathematics

Sample Problems in Discrete Mathematics Sample Problems in Discrete Mathematics This handout lists some sample problems that you should be able to solve as a pre-requisite to Computer Algorithms Try to solve all of them You should also read

More information

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti

More information

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests 4 Basics of Trees Trees, actually acyclic connected simple graphs, are among the simplest graph classes. Despite their simplicity, they still have rich structure and many useful application, such as in

More information

Data Structures in Java. Session 16 Instructor: Bert Huang

Data Structures in Java. Session 16 Instructor: Bert Huang Data Structures in Java Session 16 Instructor: Bert Huang http://www.cs.columbia.edu/~bert/courses/3134 Announcements Homework 4 due next class Remaining grades: hw4, hw5, hw6 25% Final exam 30% Midterm

More information

Example 5.5. The heuristics are demonstrated with this example of n=5 vertices and distances in the following matrix:

Example 5.5. The heuristics are demonstrated with this example of n=5 vertices and distances in the following matrix: 39 5.3. HEURISTICS FOR THE TSP Notation: f = length of the tour given by the algortihm a f = length of the optimal tour min Most of the following heuristics are designed to solve symmetric instances of

More information

Long questions answer Advanced Mathematics for Computer Application If P= , find BT. 19. If B = 1 0, find 2B and -3B.

Long questions answer Advanced Mathematics for Computer Application If P= , find BT. 19. If B = 1 0, find 2B and -3B. Unit-1: Matrix Algebra Short questions answer 1. What is Matrix? 2. Define the following terms : a) Elements matrix b) Row matrix c) Column matrix d) Diagonal matrix e) Scalar matrix f) Unit matrix OR

More information

Dynamic programming. Doctoral course Optimization on graphs - Lecture 4.1. Giovanni Righini. January 17 th, 2013

Dynamic programming. Doctoral course Optimization on graphs - Lecture 4.1. Giovanni Righini. January 17 th, 2013 Dynamic programming Doctoral course Optimization on graphs - Lecture.1 Giovanni Righini January 1 th, 201 Implicit enumeration Combinatorial optimization problems are in general NP-hard and we usually

More information

Home Page. Data Structures. Title Page. Page 1 of 24. Go Back. Full Screen. Close. Quit

Home Page. Data Structures. Title Page. Page 1 of 24. Go Back. Full Screen. Close. Quit Data Structures Page 1 of 24 A.1. Arrays (Vectors) n-element vector start address + ielementsize 0 +1 +2 +3 +4... +n-1 start address continuous memory block static, if size is known at compile time dynamic,

More information

Lecture Note 05 EECS 4101/5101 Instructor: Andy Mirzaian. SKEW HEAPS: Self-Adjusting Heaps

Lecture Note 05 EECS 4101/5101 Instructor: Andy Mirzaian. SKEW HEAPS: Self-Adjusting Heaps Lecture Note 05 EECS 40/50 Instructor: Andy Mirzaian SKEW HEAPS: Self-Adjusting Heaps In this handout we describe the skew heap data structure, a self-adjusting form of heap related to the leftist heap

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

A tree can be defined in a variety of ways as is shown in the following theorem: 2. There exists a unique path between every two vertices of G.

A tree can be defined in a variety of ways as is shown in the following theorem: 2. There exists a unique path between every two vertices of G. 7 Basic Properties 24 TREES 7 Basic Properties Definition 7.1: A connected graph G is called a tree if the removal of any of its edges makes G disconnected. A tree can be defined in a variety of ways as

More information

Data Structures Fibonacci Heaps, Amortized Analysis

Data Structures Fibonacci Heaps, Amortized Analysis Chapter 4 Data Structures Fibonacci Heaps, Amortized Analysis Algorithm Theory WS 2012/13 Fabian Kuhn Fibonacci Heaps Lacy merge variant of binomial heaps: Do not merge trees as long as possible Structure:

More information

A. V. Gerbessiotis CS Spring 2014 PS 3 Mar 24, 2014 No points

A. V. Gerbessiotis CS Spring 2014 PS 3 Mar 24, 2014 No points A. V. Gerbessiotis CS 610-102 Spring 2014 PS 3 Mar 24, 2014 No points Problem 1. Suppose that we insert n keys into a hash table of size m using open addressing and uniform hashing. Let p(n, m) be the

More information

6 March 2007 1. Array Implementation of Binary Trees

6 March 2007 1. Array Implementation of Binary Trees Heaps CSE 0 Winter 00 March 00 1 Array Implementation of Binary Trees Each node v is stored at index i defined as follows: If v is the root, i = 1 The left child of v is in position i The right child of

More information

The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

More information

Network File Storage with Graceful Performance Degradation

Network File Storage with Graceful Performance Degradation Network File Storage with Graceful Performance Degradation ANXIAO (ANDREW) JIANG California Institute of Technology and JEHOSHUA BRUCK California Institute of Technology A file storage scheme is proposed

More information

Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees. Binary Search Trees. Lecturer: Georgy Gimel farb

Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees. Binary Search Trees. Lecturer: Georgy Gimel farb Binary Search Trees Lecturer: Georgy Gimel farb COMPSCI 220 Algorithms and Data Structures 1 / 27 1 Properties of Binary Search Trees 2 Basic BST operations The worst-case time complexity of BST operations

More information

COS 226 Algorithms and Data Structures Fall Final

COS 226 Algorithms and Data Structures Fall Final COS 22 Algorithms and Data Structures Fall 200 Final This test has 4 questions worth a total of 00 points. You have 80 minutes. The exam is closed book, except that you are allowed to use a one page cheatsheet

More information

Scheduling Shop Scheduling. Tim Nieberg

Scheduling Shop Scheduling. Tim Nieberg Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations

More information

Graphs. Graph G=(V,E): representation

Graphs. Graph G=(V,E): representation Graphs G = (V,E) V the vertices of the graph {v 1, v 2,..., v n } E the edges; E a subset of V x V A cost function cij is the cost/ weight of the edge (v i, v j ) Graph G=(V,E): representation 1. Adjacency

More information

Why? A central concept in Computer Science. Algorithms are ubiquitous.

Why? A central concept in Computer Science. Algorithms are ubiquitous. Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

More information

Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion. Ernie Croot. February 3, 2010 Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

More information

Social Media Mining. Graph Essentials

Social Media Mining. Graph Essentials Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

More information

Solutions to Exercises 8

Solutions to Exercises 8 Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 8 (1) Suppose that G is a graph in which every vertex has degree at least k, where k 1, and in which every cycle contains at least 4 vertices.

More information

CIS 700: algorithms for Big Data

CIS 700: algorithms for Big Data CIS 700: algorithms for Big Data Lecture 6: Graph Sketching Slides at http://grigory.us/big-data-class.html Grigory Yaroslavtsev http://grigory.us Sketching Graphs? We know how to sketch vectors: v Mv

More information

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005 V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

More information

Diversity Coloring for Distributed Data Storage in Networks 1

Diversity Coloring for Distributed Data Storage in Networks 1 Diversity Coloring for Distributed Data Storage in Networks 1 Anxiao (Andrew) Jiang and Jehoshua Bruck California Institute of Technology Pasadena, CA 9115, U.S.A. {jax, bruck}@paradise.caltech.edu Abstract

More information

Section IV.1: Recursive Algorithms and Recursion Trees

Section IV.1: Recursive Algorithms and Recursion Trees Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller

More information

Binary Heap Algorithms

Binary Heap Algorithms CS Data Structures and Algorithms Lecture Slides Wednesday, April 5, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks CHAPPELLG@member.ams.org 2005 2009 Glenn G. Chappell

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures CMPSC 465 LECTURES 20-21 Priority Queues and Binary Heaps Adam Smith S. Raskhodnikova and A. Smith. Based on slides by C. Leiserson and E. Demaine. 1 Trees Rooted Tree: collection

More information

Memoization/Dynamic Programming. The String reconstruction problem. CS125 Lecture 5 Fall 2016

Memoization/Dynamic Programming. The String reconstruction problem. CS125 Lecture 5 Fall 2016 CS125 Lecture 5 Fall 2016 Memoization/Dynamic Programming Today s lecture discusses memoization, which is a method for speeding up algorithms based on recursion, by using additional memory to remember

More information

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,

More information

CSL851: Algorithmic Graph Theory Semester I Lecture 4: August 5

CSL851: Algorithmic Graph Theory Semester I Lecture 4: August 5 CSL851: Algorithmic Graph Theory Semester I 2013-14 Lecture 4: August 5 Lecturer: Naveen Garg Scribes: Utkarsh Ohm Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

COURSE: B.TECH-ECE. IV Sem. Data structure Using C. b) Deletion of element in an array

COURSE: B.TECH-ECE. IV Sem. Data structure Using C. b) Deletion of element in an array COURSE: B.TECH-ECE. IV Sem Data structure Using C 1. Determine the formula to find the address location of an element in three dimensions array, suppose each element takes four bytes of space & elements

More information

5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes.

5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes. 1. The advantage of.. is that they solve the problem if sequential storage representation. But disadvantage in that is they are sequential lists. [A] Lists [B] Linked Lists [A] Trees [A] Queues 2. The

More information

Matrix Product. Matrix-Multiply (A, B) Cost of multiplying these matrices is p q r.

Matrix Product. Matrix-Multiply (A, B) Cost of multiplying these matrices is p q r. Dynamic Programming A powerful paradigm for algorithm design. Often leads to elegant and efficient algorithms when greedy or diide-and-conquer don t work. DP also breaks a problem into subproblems, but

More information

Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li. Advised by: Dave Mount. May 22, 2014

Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li. Advised by: Dave Mount. May 22, 2014 Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li Advised by: Dave Mount May 22, 2014 1 INTRODUCTION In this report we consider the implementation of an efficient

More information

Big O and Limits Abstract Data Types Data Structure Grand Tour. http://gcc.gnu.org/onlinedocs/libstdc++/images/pbds_different_underlying_dss_1.

Big O and Limits Abstract Data Types Data Structure Grand Tour. http://gcc.gnu.org/onlinedocs/libstdc++/images/pbds_different_underlying_dss_1. Big O and Limits Abstract Data Types Data Structure Grand Tour http://gcc.gnu.org/onlinedocs/libstdc++/images/pbds_different_underlying_dss_1.png Consider the limit lim n f ( n) g ( n ) What does it

More information

Cpt S 223. School of EECS, WSU

Cpt S 223. School of EECS, WSU Priority Queues (Heaps) 1 Motivation Queues are a standard mechanism for ordering tasks on a first-come, first-served basis However, some tasks may be more important or timely than others (higher priority)

More information

SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH

SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH CHAPTER 3 SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH ABSTRACT This chapter begins with the notion of block distances in graphs. Using block distance we defined the central tendencies of a block, like B-radius

More information

Trees. Tree Definitions: Let T = (V, E, r) be a tree. The size of a tree denotes the number of nodes of the tree.

Trees. Tree Definitions: Let T = (V, E, r) be a tree. The size of a tree denotes the number of nodes of the tree. Trees After lists (including stacks and queues) and hash tables, trees represent one of the most widely used data structures. On one hand trees can be used to represent objects that are recursive in nature

More information

Discrete Mathematics (2009 Spring) Induction and Recursion (Chapter 4, 3 hours)

Discrete Mathematics (2009 Spring) Induction and Recursion (Chapter 4, 3 hours) Discrete Mathematics (2009 Spring) Induction and Recursion (Chapter 4, 3 hours) Chih-Wei Yi Dept. of Computer Science National Chiao Tung University April 17, 2009 4.1 Mathematical Induction 4.1 Mathematical

More information

GRAPH THEORY LECTURE 4: TREES

GRAPH THEORY LECTURE 4: TREES GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection

More information

OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION

OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION Sérgio Pequito, Stephen Kruzick, Soummya Kar, José M. F. Moura, A. Pedro Aguiar Department of Electrical and Computer Engineering

More information

Quiz 2 Solutions. Solution: False. Need stable sort.

Quiz 2 Solutions. Solution: False. Need stable sort. Introduction to Algorithms April 13, 2011 Massachusetts Institute of Technology 6.006 Spring 2011 Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Quiz 2 Solutions Problem 1. True or false [24

More information

Dynamic Programming. Applies when the following Principle of Optimality

Dynamic Programming. Applies when the following Principle of Optimality Dynamic Programming Applies when the following Principle of Optimality holds: In an optimal sequence of decisions or choices, each subsequence must be optimal. Translation: There s a recursive solution.

More information

Planar Tree Transformation: Results and Counterexample

Planar Tree Transformation: Results and Counterexample Planar Tree Transformation: Results and Counterexample Selim G Akl, Kamrul Islam, and Henk Meijer School of Computing, Queen s University Kingston, Ontario, Canada K7L 3N6 Abstract We consider the problem

More information

Strategic Deployment in Graphs. 1 Introduction. v 1 = v s. v 2. v 4. e 1. e 5 25. e 3. e 2. e 4

Strategic Deployment in Graphs. 1 Introduction. v 1 = v s. v 2. v 4. e 1. e 5 25. e 3. e 2. e 4 Informatica 39 (25) 237 247 237 Strategic Deployment in Graphs Elmar Langetepe and Andreas Lenerz University of Bonn, Department of Computer Science I, Germany Bernd Brüggemann FKIE, Fraunhofer-Institute,

More information

Any two nodes which are connected by an edge in a graph are called adjacent node.

Any two nodes which are connected by an edge in a graph are called adjacent node. . iscuss following. Graph graph G consist of a non empty set V called the set of nodes (points, vertices) of the graph, a set which is the set of edges and a mapping from the set of edges to a set of pairs

More information

- Easy to insert & delete in O(1) time - Don t need to estimate total memory needed. - Hard to search in less than O(n) time

- Easy to insert & delete in O(1) time - Don t need to estimate total memory needed. - Hard to search in less than O(n) time Skip Lists CMSC 420 Linked Lists Benefits & Drawbacks Benefits: - Easy to insert & delete in O(1) time - Don t need to estimate total memory needed Drawbacks: - Hard to search in less than O(n) time (binary

More information

2.3 Scheduling jobs on identical parallel machines

2.3 Scheduling jobs on identical parallel machines 2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed

More information

6.263 Data Communication Networks

6.263 Data Communication Networks 6.6 Data Communication Networks Lecture : Internet Routing (some slides are taken from I. Stoica and N. Mckewon & T. Griffin) Dina Katabi dk@mit.edu www.nms.csail.mit.edu/~dina Books Text Book Data Communication

More information

Unicyclic Graphs with Given Number of Cut Vertices and the Maximal Merrifield - Simmons Index

Unicyclic Graphs with Given Number of Cut Vertices and the Maximal Merrifield - Simmons Index Filomat 28:3 (2014), 451 461 DOI 10.2298/FIL1403451H Published by Faculty of Sciences Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Unicyclic Graphs with Given Number

More information

Rotation Operation for Binary Search Trees Idea:

Rotation Operation for Binary Search Trees Idea: Rotation Operation for Binary Search Trees Idea: Change a few pointers at a particular place in the tree so that one subtree becomes less deep in exchange for another one becoming deeper. A sequence of

More information

Pseudocode Analysis. COMP3600/6466 Algorithms Lecture 5. Recursive Algorithms. Asymptotic Bounds for Recursions

Pseudocode Analysis. COMP3600/6466 Algorithms Lecture 5. Recursive Algorithms. Asymptotic Bounds for Recursions COMP600/6466 Algorithms Lecture 5 Pseudocode Analysis Iterative Recursive S 0 Dr. Hassan Hijazi Prof. Weifa Liang Recursive Algorithms Asymptotic Bounds for Recursions Total running time = Sum of times

More information

Algorithms Chapter 12 Binary Search Trees

Algorithms Chapter 12 Binary Search Trees Algorithms Chapter 1 Binary Search Trees Outline Assistant Professor: Ching Chi Lin 林 清 池 助 理 教 授 chingchi.lin@gmail.com Department of Computer Science and Engineering National Taiwan Ocean University

More information

Analysis of Algorithms I: Binary Search Trees

Analysis of Algorithms I: Binary Search Trees Analysis of Algorithms I: Binary Search Trees Xi Chen Columbia University Hash table: A data structure that maintains a subset of keys from a universe set U = {0, 1,..., p 1} and supports all three dictionary

More information

Lecture Notes on Spanning Trees

Lecture Notes on Spanning Trees Lecture Notes on Spanning Trees 15-122: Principles of Imperative Computation Frank Pfenning Lecture 26 April 26, 2011 1 Introduction In this lecture we introduce graphs. Graphs provide a uniform model

More information

Problem Set 7 Solutions

Problem Set 7 Solutions 8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in

More information

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set

More information

Discrete Mathematics, Chapter 5: Induction and Recursion

Discrete Mathematics, Chapter 5: Induction and Recursion Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Well-founded

More information

Binary Heaps * * * * * * * / / \ / \ / \ / \ / \ * * * * * * * * * * * / / \ / \ / / \ / \ * * * * * * * * * *

Binary Heaps * * * * * * * / / \ / \ / \ / \ / \ * * * * * * * * * * * / / \ / \ / / \ / \ * * * * * * * * * * Binary Heaps A binary heap is another data structure. It implements a priority queue. Priority Queue has the following operations: isempty add (with priority) remove (highest priority) peek (at highest

More information

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8] Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

CS2 Algorithms and Data Structures Note 11. Breadth-First Search and Shortest Paths

CS2 Algorithms and Data Structures Note 11. Breadth-First Search and Shortest Paths CS2 Algorithms and Data Structures Note 11 Breadth-First Search and Shortest Paths In this last lecture of the CS2 Algorithms and Data Structures thread we will consider the problem of computing distances

More information

Solutions to Homework 6

Solutions to Homework 6 Solutions to Homework 6 Debasish Das EECS Department, Northwestern University ddas@northwestern.edu 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example

More information

Two General Methods to Reduce Delay and Change of Enumeration Algorithms

Two General Methods to Reduce Delay and Change of Enumeration Algorithms ISSN 1346-5597 NII Technical Report Two General Methods to Reduce Delay and Change of Enumeration Algorithms Takeaki Uno NII-2003-004E Apr.2003 Two General Methods to Reduce Delay and Change of Enumeration

More information

Graph Theory Problems and Solutions

Graph Theory Problems and Solutions raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

More information

International Journal of Software and Web Sciences (IJSWS) www.iasir.net

International Journal of Software and Web Sciences (IJSWS) www.iasir.net International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 2279-0063 ISSN (Online): 2279-0071 International

More information

6.042/18.062J Mathematics for Computer Science October 3, 2006 Tom Leighton and Ronitt Rubinfeld. Graph Theory III

6.042/18.062J Mathematics for Computer Science October 3, 2006 Tom Leighton and Ronitt Rubinfeld. Graph Theory III 6.04/8.06J Mathematics for Computer Science October 3, 006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Graph Theory III Draft: please check back in a couple of days for a modified version of these

More information

Now is the time. For all good men PERMUTATION GENERATION. Princeton University. Robert Sedgewick METHODS

Now is the time. For all good men PERMUTATION GENERATION. Princeton University. Robert Sedgewick METHODS Now is the time For all good men PERMUTATION GENERATION METHODS To come to the aid Of their party Robert Sedgewick Princeton University Motivation PROBLEM Generate all N! permutations of N elements Q:

More information

1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT

1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT DECISION 1 Revision Notes 1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT Make sure you show comparisons clearly and label each pass First Pass 8 4 3 6 1 4 8 3 6 1 4 3 8 6 1 4 3 6 8 1

More information

6.852: Distributed Algorithms Fall, 2009. Class 2

6.852: Distributed Algorithms Fall, 2009. Class 2 .8: Distributed Algorithms Fall, 009 Class Today s plan Leader election in a synchronous ring: Lower bound for comparison-based algorithms. Basic computation in general synchronous networks: Leader election

More information

Unit 4: Layout Compaction

Unit 4: Layout Compaction Unit 4: Layout Compaction Course contents Design rules Symbolic layout Constraint-graph compaction Readings: Chapter 6 Unit 4 1 Design rules: restrictions on the mask patterns to increase the probability

More information

Homework MA 725 Spring, 2012 C. Huneke SELECTED ANSWERS

Homework MA 725 Spring, 2012 C. Huneke SELECTED ANSWERS Homework MA 725 Spring, 2012 C. Huneke SELECTED ANSWERS 1.1.25 Prove that the Petersen graph has no cycle of length 7. Solution: There are 10 vertices in the Petersen graph G. Assume there is a cycle C

More information