Electricity and Magnetism Physics Farmington High School Science Department

Size: px
Start display at page:

Download "Electricity and Magnetism Physics Farmington High School Science Department"

Transcription

1 Electricity and Magnetism Physics Farmington High School Science Department Farmington Public Schools Science Department Physics Author(s) Joanne White DRAFT: Farmington Public Schools 1

2 Table of Contents Unit Summary....page 3 Stage One: Standards Stage One identifies the desired results of the unit including the broad understandings, the unit outcome statement and essential questions that focus the unit, and the necessary knowledge and skills. The Understanding by Design Handbook, pages 4-7 Stage Two: Assessment Package Stage Two determines the acceptable evidence that students have acquired the understandings, knowledge and skills identified in Stage One. pages 8-12 Appendices A & B.... page 13 Author(s) Joanne White DRAFT: Farmington Public Schools 2

3 Unit Summary This unit, entitled Electricity and Magnetism, is a six week unit designed to be used in all introductory Level 2 and Level 3 physics courses at Farmington High School. Students in these classes include all freshmen and some juniors and seniors. This unit will be taught in the second semester of the academic year, either before or after a unit on Waves, Sound and Light. The unit focuses on static electricity and electric force; current electricity and circuits; and magnetism and its practical applications. Stage One: Standards Author(s) Joanne White DRAFT: Farmington Public Schools 3

4 Essential Understandings and Content Standards List the essential understandings and content standards which the unit or course addresses. Asterisk the content standards that are addressed by the performance task. These can be found in the K-12 standards document for your discipline. ESU #4 The behavior of the physical world can be interpreted, understood and predicted in terms of a few fundamental principals. The student will: 4.16 Interpret and make predictions about the physical world by utilizing the conservation principles. A. describe various forms of energy including mechanical, heat, light, electrical, and chemical energy, and identify them in various physical settings. E. illustrate the principle of conservation of charge Interpret and make predictions about the physical world by understanding the properties and behaviors of electric charge. A. explain that the electric force which exists between every two charges is either attractive or repulsive, and its strength is proportional to the product of the charges and inversely proportional to the square of the distance between the charges. B. recognize that charge is a property of all matter, and describe the charge characteristics of protons, neutrons and electrons. C. describe the effects of voltage and resistance on the flow of electric charges in series and parallel circuits. D. explain that magnetism and all magnetic effects arise from the relative motions of electric charges. E. describe how the interplay of electric currents and magnetic forces are the basis for motors, generators and modern electronic technologies. ESU #1 Scientific inquiry is an ongoing process building knowledge about events and phenomena. The student will: 1.23 distinguish between scientific statements, which can be tested, and non-scientific activities distinguish different reasons for conducting experiments, including exploration of new phenomena, checking previous results, and testing how well a theory predicts the behavior of nature frame, hypothesize, design, conduct, analyze and communicate and defend the results of a controlled experiment understand that all measurements are uncertain to some extent discuss the validity of experimental results evaluate a theory by how well it explains observations and how effective it is in predicting new findings. ESU #2 Science is a human endeavor which has lasting impact on civilization. Author(s) Joanne White DRAFT: Farmington Public Schools 4

5 The student will: 2.19 recognize that science is a community activity in which results are shared and evaluated amongst peers explain that curiosity, honesty, openness and skepticism are highly regarded in science and those they are incorporated into the way science is conducted recognize that progress in all fields of science is built upon knowledge and understandings attained through the work of previous scientists analyze how scientific advances have resulted in new benefits and new risks. ESU #9 Constancy, patterns, change and evolution permeate all systems. The student will: 9-14 use equations to describe how one quantity changes when another changes interpret trends and evaluate patterns of change using tables, graphs, and equations formulate predictions based upon identified patterns analyze changes that are so fast that they are difficult to detect. Math ESU #1 Students will understand that people use numbers to count, measure, compare, order, scale, locate and label, and that they use a variety of numerical representations to present, interpret, communicate, and connect various kinds of numerical information. The student will: 1c. develop and use an intuitive sense of number magnitude of numbers (including very large and very small numbers) and relate them to place value and exponential form. Technology Standard #3 Technology can assist with the statistical analysis of data as a powerful means for explaining, understanding, and predicting issues of the human condition or physical world. The student will: A. formulate sophisticated questions, extract data from surveys, research materials, or experiments and present it in well organized tables. B. present complex data in appropriate charts and graphs in a meaningful way. C. analyze data sources, identify relationships, select and apply appropriate statistical operations or transformations and draw conclusions. Author(s) Joanne White DRAFT: Farmington Public Schools 5

6 Unit Outcome Statement As a result of this unit on Electricity and Magnetism, students will know and understand that charge is a fundamental property of all matter, which produces electric forces. Students will also understand that moving charges can produce currents and magnetic fields. They will construct and analyze simple series and parallel circuits and understand the practical applications of electromagnetic technology in their own lives. Essential Questions How does the basic structure of the atom explain the electric and magnetic properties of matter? What is electric energy? If energy is always conserved, then how can electric energy be produced and destroyed? Author(s) Joanne White DRAFT: Farmington Public Schools 6

7 Knowledge and Skills Knowledge The Knowledge and Skills section includes the key facts, concepts, principles, skills, and processes called for by the content standards and needed by students to reach desired understandings. The Understanding by Design Handbook, 1999 Locate the electrons, protons and neutrons in the atom Calculate the electric force between charges using Coulombs Law Specify the direction of the force acting between charges Explain charging by friction, contact and induction Draw conceptual pictures of electric fields surrounding charges and groups of charges Use of Ohm s law in calculations Solve series and parallel circuits for resistance, voltage and currents Use of power formula for electrical components Analyze energy costs associated with electrical appliances Explain the cause of magnetism for permanent magnets and around electric currents Draw conceptual pictures of magnetic fields about permanent magnets and magnetic currents Use the left or right hand rule for determining the direction of the magnetic field Use the equation F=qvB to find the amount of magnetic force Explain how motors, generators and transformers work Skills/Processes Use of electric metric units. Measurement skills using ammeters and voltmeters. Connecting electrical items to form a complete circuit Recognition and reporting of the limits of precision and accuracy of measurements. Appropriate statistical analysis of data. Basic calculator use and use of scientific notation Problem solving skills and strategies. Creating appropriate data tables and graphs. Thinking Skills Making predictions Application of formulas and skills to unique problems. Interpret line graphs of motion Making inferences in lab inquiries Identifying valid experiments Draw valid conclusions Reflection and analysis of experimental data and experimental errors. Author(s) Joanne White DRAFT: Farmington Public Schools 7

8 Stage Two: Assessment Package Stage Two determines the acceptable evidence that students have acquired the understandings, knowledge and skills identified in Stage One. Authentic Performance Task Let s Conserve Energy! Goal The goal is to emphasize to students that energy is conserved. In this case from light to electricity to useful forms in their lives. They will transfer their knowledge of connecting resistors in series and parallel to connecting solar cells in series and parallel. They will also show that they have mastered setting up a circuit including meters and can accurately read and interpret the meters. Lastly, students will demonstrate their understanding of power and energy in order to perform a cost analysis. Role The students will be in the role of a typical home owner that would like to research the feasibility of using solar energy to supplement the electrical energy purchased from the power company. Audience The audience will be a bank loan officer. They need to convince the loan officer that this technology will eventually save them money and is a worthy investment for a home owner s loan or it will be too costly to use in Connecticut. Situation This task is designed to give students the opportunity to design and perform an experiment to gather data on photovoltaic cells (solar cells) connected in series and parallel, and then use the data collected to perform a cost analysis for using this technology in a typical Connecticut home. The students will then produce a report with their recommendations. There is an additional component of the cost analysis for level 2 classes to complete. Product/Performance and Purpose They will use their knowledge they have gained in connecting resistors in series and parallel and in reading ammeters and voltmeters to analyze the current and voltage when photovoltaic cells are connected in series and parallel. They will use their knowledge of how houses are wired and the power equation to figure out energy consumed by an average Connecticut home and then perform a cost analysis for installing and using solar technology in Connecticut. Each lab group will be given an ammeter, voltmeter, light bulbs, two PV cells and wires. They will also be given some preliminary information on PV cells and a worksheet to help them figure out the typical Connecticut household energy usage. They will be given information on the solar insolation for Connecticut, the cost of each PV cell. Students must research the typical cost of electric energy if purchased from the power company at present and make a reasonable assumption of the cost 10 years into the future. To successfully complete the task, the students must: a. realize that the PV cells must be connected to each other in groups of series and parallel arrays to meet the household requirement. b. Find the average daily household energy requirement in watt-hours. c. Determine the hours per day of available sunlight at the site. d. Determine the PV array size needed. e. Calculate the cost of the array. f. Write a loan request report that includes all information investigated. Additional Level 2 Tasks: a. calculate the cost of the same energy usage if purchased through the power company. b. find how long it will take the homeowner to break even using this technology over being connected to the utility grid. c. In the economic analysis, include the cost an inverter to change d.c. to a.c. current. d. The report should make a determination about whether this technology is economically feasible in Connecticut. Let s Conserve Energy Author(s) Joanne White DRAFT: Farmington Public Schools 8

9 Introduction We already learned that energy is always conserved. But can we conserve fossil fuels such as oil and coal and still have all of our modern conveniences such as heat, air conditioning, microwaves, stereos and computers? Is there another way that we can supply our energy needs in Connecticut without high utility bills? There is a free source of energy the Sun! It produces light, another form of energy. Even though the energy is free, the technology is not! Is it economically feasible to use sunlight to produce electrical energy in Connecticut? The Task It is 10 years from now and you are a homeowner that is tired of the high utility bills that you pay every month to the electric company. While browsing the web, you notice a pop-up add for a renewable energy source-solar energy. You decide to pursue this idea and research the requirements, how it is used and if it is cost efficient here in Farmington. You download many resources and have them attached. You need to read through the documents, calculate your household electricity requirement, set up and test to see how many photovoltaic cells (solar cells) that you need to meet your household requirement and if they should be connected in series or parallel or a combination of both. You will then conduct a cost analysis for purchasing solar cells. Finally, you will write up a report which you will use to convince a bank loan manager to finance this project The Report You report should include: Your household energy requirement and any backup evidence to prove your claim. Your results of tests on the PV cells in series and parallel and how many cells would be needed. Estimation of the PV system needed and the cost of the system. The size and location of your system at your home Your request to the loan officer. Additionally for level 2: Actual cost of purchasing electricity through the power company and the break even point in terms of years. A determination of whether the technology is economically feasible. If the project is not feasible or cost efficient, you must include your findings in a report to the loan officer and decline the financing. Author(s) Joanne White DRAFT: Farmington Public Schools 9

10 Connecticut Insolation Values by Month Month Insolation Value (KWH/m2) January 2.4 February 2.9 March 3.2 April 3.6 May 3.9 June 4.3 July 4.2 August 3.9 September 3.6 October 2.9 November 2.1 December 1.9 Author(s) Joanne White DRAFT: Farmington Public Schools 10

11 Testing PV Cells Constructing the Photovoltaic Energy system for Light Source Changes 1. Attach an ammeter and voltmeter to one of the PV cells. Use sun or shine a bright light on the PV cell to see if you are getting current and voltage readings. Record. 2. Keeping the light source and the distance to the light source constant, shade parts of the PV cell with a piece of cardboard. Record your results each time. 3. Point the PV cell directly at the sun or light source, and then vary the angle. Record you results. Connecting Multiple PV cells 1. Join the first PV cell to another PV cell in series under the same light source as before. Record your results. 2. Connect the two PV cells in parallel and record you results. Thought Questions 1. What happens to the amount of electricity generated when the PV cells are installed in the shade? 2. What happens to the amount of electricity generated when the angle of the PV cells to the sun changes daily or yearly? 3. How would you connect the PV cells so that your household requirement of 110 volts and 10 amps is supplied? 4. Where would you place these PV cells on your home for maximum electricity generation and safety? Student Name: Date: Author(s) Joanne White DRAFT: Farmington Public Schools 11

12 Physics Performance Assessment Scoring Rubric Title: Let s Conserve Energy Opening Sentence: The statement is (Maximum: 3 pts) 0 1 prominently stated 0 1 clear 0 1 succinct Display of Data: The data is (Maximum: 3 pts) 0 1 properly expressed (clarity, units, headings, significant figures ) 0 1 complete (all the necessary data) 0 1 relevantly chosen (data pertains to task) Calculations: The calculations (Maximum: 3 pts) 0 1 are accurately performed 0 1 are easy to follow 0 1 have answer(s) with proper units and significant figures Prediction: The prediction is (Maximum: 9 pts) easy to follow supported by thorough logic (contains everything the reader needs to know) appropriately accurate (within acceptable range of experimental error) Reflection: The conclusion or discussion section includes (Maximum: 8 pts) a final justified request for the loan identification of appropriate sources of error and assumptions Limitations of PV cell technology discussed Conclusion matches data Overall Presentation: The overall presentation of the report was (Maximum: 4 pts) neat, well organized, and easy to follow convincing Overall Rating: 30 Above Standard (26 30) At Standard (20 25) Near Standard (15 19) Below Standard (0 14) Author(s) Joanne White DRAFT: Farmington Public Schools 12

13 Additional Assessments Tests (See Appendix A) Test on Static Electricity Test on Current Electricity Test on Magnetism and Electromagnetism Labs and Projects: (See Appendix B) Internet Lab on Static Electricity Ohms Law Lab Series and parallel Lab Cost of Electricity Worksheet Build your own motor Author(s) Joanne White DRAFT: Farmington Public Schools 13

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

More information

Unit: Charge Differentiated Task Light it Up!

Unit: Charge Differentiated Task Light it Up! The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Solar Matters III Teacher Page

Solar Matters III Teacher Page Solar Matters III Teacher Page Solar Powered System - 2 Student Objective Given a photovoltaic system will be able to name the component parts and describe their function in the PV system. will be able

More information

H.S. Solar Energy: Solar Powered Cars

H.S. Solar Energy: Solar Powered Cars D R I G r e e n P o w e r P r o g r a m G r e e n B o x H.S. Solar Energy: Solar Powered Cars Created by: Learning Cycle 5E Lesson Based upon and modified from Roger Bybee* (1990) *Bybee, R & Landes, N.

More information

ACTIVITY 6: Series and Parallel Wiring

ACTIVITY 6: Series and Parallel Wiring Section 2 Activities Activity 6: Series and Parallel Wiring ACTIVITY TYPE: Worksheet Overview: Students understand the effects of building electrical circuits to increase voltage and amperage. Goal: Students

More information

Activity 9: Solar-Electric System PUZZLE

Activity 9: Solar-Electric System PUZZLE Section 4 Activities Activity 9: Solar-Electric System Puzzle ACTIVITY TYPE: Worksheet Overview: Introduces the basic components of the Solar 4R Schools (S4RS) solar-electric system and identifies the

More information

COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.

COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry. North Carolina Standard Course of Study and Grade Level Competencies, Physics I Revised 2004 139 Physics PHYSICS - Grades 9-12 Strands: The strands are: Nature of Science, Science as Inquiry, Science and

More information

Introduction to Chemistry. Course Description

Introduction to Chemistry. Course Description CHM 1025 & CHM 1025L Introduction to Chemistry Course Description CHM 1025 Introduction to Chemistry (3) P CHM 1025L Introduction to Chemistry Laboratory (1) P This introductory course is intended to introduce

More information

Student Exploration: Circuits

Student Exploration: Circuits Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these

More information

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

More information

One Stop Shop For Teachers

One Stop Shop For Teachers Physical Science Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy

More information

Series and Parallel Circuits

Series and Parallel Circuits Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)

More information

Solar Energy Discovery Lab

Solar Energy Discovery Lab Solar Energy Discovery Lab Objective Set up circuits with solar cells in series and parallel and analyze the resulting characteristics. Introduction A photovoltaic solar cell converts radiant (solar) energy

More information

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals

More information

Science Grade 06 Unit 05 Exemplar Lesson 01: Advantages and Disadvantages of Energy Resources

Science Grade 06 Unit 05 Exemplar Lesson 01: Advantages and Disadvantages of Energy Resources Grade 06 Unit 05 Exemplar Lesson 01: Advantages and Disadvantages of Energy Resources This lesson is one approach to teaching the State Standards associated with this unit. Districts are encouraged to

More information

Appendix A: Science Practices for AP Physics 1 and 2

Appendix A: Science Practices for AP Physics 1 and 2 Appendix A: Science Practices for AP Physics 1 and 2 Science Practice 1: The student can use representations and models to communicate scientific phenomena and solve scientific problems. The real world

More information

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What

More information

This Performance Standards include four major components. They are

This Performance Standards include four major components. They are Eighth Grade Science Curriculum Approved July 12, 2004 The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science at the eighth grade level.

More information

Circuit symbol. Each of the cells has a potential difference of 1.5 volts. Figure 1. Use the correct answer from the box to complete the sentence.

Circuit symbol. Each of the cells has a potential difference of 1.5 volts. Figure 1. Use the correct answer from the box to complete the sentence. Q.(a) Draw one line from each circuit symbol to its correct name. Circuit symbol Name Diode Light-dependent resistor (LDR) Lamp Light-emitting diode (LED) (3) Figure shows three circuits. The resistors

More information

Chapter 13: Electric Circuits

Chapter 13: Electric Circuits Chapter 13: Electric Circuits 1. A household circuit rated at 120 Volts is protected by a fuse rated at 15 amps. What is the maximum number of 100 watt light bulbs which can be lit simultaneously in parallel

More information

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory Introduction to Electricity & Magnetism Dr Lisa Jardine-Wright Cavendish Laboratory Examples of uses of electricity Christmas lights Cars Electronic devices Human body Electricity? Electricity is the presence

More information

Chapter Test B. Chapter: Measurements and Calculations

Chapter Test B. Chapter: Measurements and Calculations Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.

More information

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Electronics. Basic Concepts. Yrd. Doç. Dr. Aytaç GÖREN Yrd. Doç. Dr. Levent ÇETİN

Electronics. Basic Concepts. Yrd. Doç. Dr. Aytaç GÖREN Yrd. Doç. Dr. Levent ÇETİN Electronics Basic Concepts Electric charge Ordinary matter is made up of atoms which have positively charged nuclei and negatively charged electrons surrounding them. Charge is quantized as the subtraction

More information

Measuring Electric Phenomena: the Ammeter and Voltmeter

Measuring Electric Phenomena: the Ammeter and Voltmeter Measuring Electric Phenomena: the Ammeter and Voltmeter 1 Objectives 1. To understand the use and operation of the Ammeter and Voltmeter in a simple direct current circuit, and 2. To verify Ohm s Law for

More information

People s Physics Book

People s Physics Book The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

More information

Lab 3 - DC Circuits and Ohm s Law

Lab 3 - DC Circuits and Ohm s Law Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

Magnets. Electromagnets. and. Thomas Jefferson National Accelerator Facility - Office of Science Education http://education.jlab.

Magnets. Electromagnets. and. Thomas Jefferson National Accelerator Facility - Office of Science Education http://education.jlab. Magnets and Electromagnets Magnets and Electromagnets Can you make a magnet from a nail, some batteries and some wire? Problems Can the strength of an electromagnet be changed by changing the voltage of

More information

Time allowed: 1 hour 45 minutes

Time allowed: 1 hour 45 minutes GCSE PHYSICS Foundation Tier Paper 1F F Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the Physics Equation Sheet (enclosed). Instructions Answer

More information

Complete tests for CO 2 and H 2 Link observations of acid reactions to species

Complete tests for CO 2 and H 2 Link observations of acid reactions to species Acids and Bases 1. Name common acids and bases found at home and at school 2. Use formulae for common acids and bases 3. Give examples of the uses of acids and bases 4. State that all solutions are acidic,

More information

Series and Parallel Resistive Circuits Physics Lab VIII

Series and Parallel Resistive Circuits Physics Lab VIII Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested

More information

Photovoltaic Cell: Converting Light to Electricity

Photovoltaic Cell: Converting Light to Electricity Photovoltaic Cell: Converting Light to Electricity Outcomes: 1. Understand that a photovoltaic cell produces DC voltage when light shines on its surface. 2. Understand that the electrical voltage produced

More information

Understanding Solar Energy Teacher Page

Understanding Solar Energy Teacher Page Understanding Solar Energy Teacher Page Solar Powered System Student Objective The student understands that light energy from the sun can be turned into electricity with a photovoltaic (solar) cell knows

More information

ASSESSMENT OF SCIENCE AND TECHNOLOGY ACHIEVEMENT PROJECT (ASAP) Science and Technology Exemplars. Grade 6: Energy and Control Electricity

ASSESSMENT OF SCIENCE AND TECHNOLOGY ACHIEVEMENT PROJECT (ASAP) Science and Technology Exemplars. Grade 6: Energy and Control Electricity ASSESSMENT OF SCIENCE AND TECHNOLOGY ACHIEVEMENT PROJECT (ASAP) Science and Technology Exemplars Grade 6: Energy and Control Electricity Exemplar Task (6ECPT01/Dec 2000) ELECTRIFYING York University, Dec

More information

101 BASICS SERIES LEARNING MODULE 2: FUNDAMENTALS OF ELECTRICITY. Cutler-Hammer

101 BASICS SERIES LEARNING MODULE 2: FUNDAMENTALS OF ELECTRICITY. Cutler-Hammer 101 BASICS SERIES LEARNING MODULE 2: FUNDAMENTALS OF ELECTRICITY Cutler-Hammer WELCOME Welcome to Module 2, Fundamentals of Electricity. This module will cover the fundamentals of electricity in a practical

More information

Indiana Content Standards for Educators

Indiana Content Standards for Educators Indiana Content for Educators SCIENCE PHYSICAL SCIENCE teachers are expected to have a broad understanding of the knowledge and skills needed for this educator license, and to use that knowledge to help

More information

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A 1. Compared to the number of free electrons in a conductor, the number of free electrons in an insulator of the same volume is less the same greater 2. Most metals are good electrical conductors because

More information

EST.03. An Introduction to Parametric Estimating

EST.03. An Introduction to Parametric Estimating EST.03 An Introduction to Parametric Estimating Mr. Larry R. Dysert, CCC A ACE International describes cost estimating as the predictive process used to quantify, cost, and price the resources required

More information

Draft Graduation Requirements:

Draft Graduation Requirements: Draft Graduation Requirements: English/Language Arts Prepared graduates in English/Language Arts: Collaborate effectively as group members or leaders who listen actively and respectfully pose thoughtful

More information

Associate Degree of Applied Engineering (Renewable Energy Technologies) OVERVIEW OF SUBJECT REQUIREMENTS

Associate Degree of Applied Engineering (Renewable Energy Technologies) OVERVIEW OF SUBJECT REQUIREMENTS Course Associate Degree of Applied Engineering (Renewable Energy Technologies) Course Number HE20502 Location Newcastle, Ultimo, Mt Druitt OVERVIEW OF SUBJECT REQUIREMENTS Note: This document is intended

More information

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

More information

SOLAR ENERGY. Solar Energy, Kit #6A: Efficiency of Solar Cells. Solar Energy, Kit #6B: Solar Extension Activities INSTITUTE FOR SCHOOL PARTNERSHIP

SOLAR ENERGY. Solar Energy, Kit #6A: Efficiency of Solar Cells. Solar Energy, Kit #6B: Solar Extension Activities INSTITUTE FOR SCHOOL PARTNERSHIP SOLAR ENERGY Solar Energy, Kit #6A: Efficiency of Solar Cells Solar Energy, Kit #6B: Solar Extension Activities INSTITUTE FOR SCHOOL PARTNERSHIP PARC Contents: Topic Template 3 Introduction: Photovoltaic

More information

Chapter 11. Inductors ISU EE. C.Y. Lee

Chapter 11. Inductors ISU EE. C.Y. Lee Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

More information

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

More information

Interpretation of Data (IOD) Score Range

Interpretation of Data (IOD) Score Range These Standards describe what students who score in specific score ranges on the Science Test of ACT Explore, ACT Plan, and the ACT college readiness assessment are likely to know and be able to do. 13

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

Force and Motion: Ramp It Up

Force and Motion: Ramp It Up Force and Motion: Grade Level: 4-5 Time: 3 class periods By: Carrie D. Perry (Bedford County Public Schools) Overview After watching an engaging video on Olympic alpine skiers, students then participate

More information

Parallel DC circuits

Parallel DC circuits Parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards.

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards. Literacy Advantage Physical Science Physical Science Literacy Advantage offers a tightly focused curriculum designed to address fundamental concepts such as the nature and structure of matter, the characteristics

More information

STUDY GUIDE: ELECTRICITY AND MAGNETISM

STUDY GUIDE: ELECTRICITY AND MAGNETISM 319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 Dear Student: The AP physics course you have signed up for is designed to prepare you for a superior performance on the AP test. To complete material

More information

Student Writing Guide. Fall 2009. Lab Reports

Student Writing Guide. Fall 2009. Lab Reports Student Writing Guide Fall 2009 Lab Reports The manuscript has been written three times, and each rewriting has discovered errors. Many must still remain; the improvement of the part is sacrificed to the

More information

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

More information

Concept for a DC low voltage house

Concept for a DC low voltage house Concept for a DC low voltage house Maaike M. Friedeman 1 Elisa C. Boelman Dr. Eng., MBA 1 Arjan van Timmeren, Ir. 1 Joop Schoonman, Prof. Dr. 2 1 TU Delft, Faculty of Architecture, dept. of building technology,

More information

Online Courses for High School Students 1-888-972-6237

Online Courses for High School Students 1-888-972-6237 Online Courses for High School Students 1-888-972-6237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,

More information

Plants and Photosynthesis

Plants and Photosynthesis Plants and Photosynthesis Original Authors: Jennifer Michnowicz and Lois Kiraly Revision June 2006: Jennifer Michnowicz and Rebecca Shomo Farmington Public Schools 11 th Grade Biology Rebecca Shomo/Jennifer

More information

Lesson Plan for Electric Circuits

Lesson Plan for Electric Circuits Lesson Plan for Electric Circuits Last Updated: 11/6/2009 Updated by: Sci4Kids Electric Circuits Lesson 1 Lesson Summary Lesson name Audience Focus Standards (4 th grade) Fourth Grade AZ standard(s) applied

More information

The electrical field produces a force that acts

The electrical field produces a force that acts Physics Equipotential Lines and Electric Fields Plotting the Electric Field MATERIALS AND RESOURCES ABOUT THIS LESSON EACH GROUP 5 alligator clip leads 2 batteries, 9 V 2 binder clips, large computer LabQuest

More information

Seventh Grade Science Content Standards and Objectives

Seventh Grade Science Content Standards and Objectives Seventh Grade Science Content Standards and Objectives Standard 2: Nature of Science Students will demonstrate an understanding of the history of science and the evolvement of scientific knowledge. SC.S.7.1

More information

ARIZONA Science Standards High School Chemistry: Matter and Change 2005

ARIZONA Science Standards High School Chemistry: Matter and Change 2005 ARIZONA Science Standards High School Chemistry: Matter and Change 2005 OBJECTIVES Strand 1: Inquiry Process Concept 1: Observations, Questions, and Hypotheses Formulate predictions, questions, or hypotheses

More information

Biology: Foundation Edition Miller/Levine 2010

Biology: Foundation Edition Miller/Levine 2010 A Correlation of Biology: Foundation Edition Miller/Levine 2010 to the IDAHO CONTENT STANDARDS Science - Biology Grades 9-10 INTRODUCTION This document demonstrates how Prentice Hall s Biology: Foundation

More information

Earth Science & Environmental Science SOL

Earth Science & Environmental Science SOL Earth Science & Environmental Science SOL THE SOL FOR GRADE 6 The Virginia Science SOL for Grades K 6 are organized according to a set of strands, with the SOL in each strand developed progressively through

More information

Georgia Performance Standards Framework for Physical Science 8 th Grade. Powering Satellites

Georgia Performance Standards Framework for Physical Science 8 th Grade. Powering Satellites The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

ELECTRICAL CIRCUITS. Electrical Circuits

ELECTRICAL CIRCUITS. Electrical Circuits Electrical Circuits A complete path, or circuit, is needed before voltage can cause a current flow through resistances to perform work. There are several types of circuits, but all require the same basic

More information

Georgia Performance Standards for Science Grade 6. This Performance Standards document includes four major components. They are

Georgia Performance Standards for Science Grade 6. This Performance Standards document includes four major components. They are Sixth Grade Science Curriculum One Stop Shop For Educators The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science at the sixth grade

More information

Basic circuit troubleshooting

Basic circuit troubleshooting Basic circuit troubleshooting This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Acid Base Chemistry. Farmington Public Schools Grade Level: 10 Discipline:Chemistry

Acid Base Chemistry. Farmington Public Schools Grade Level: 10 Discipline:Chemistry Acid Base Chemistry Farmington Public Schools Grade Level: 10 Discipline:Chemistry Author(s) Gary Crisanti Heather Rauf DRAFT: 06/30/06 Farmington Public Schools Table of Contents Unit Summary.3...page(s)

More information

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9 Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

More information

Energy, Work, and Power

Energy, Work, and Power Energy, Work, and Power This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Consider How can you collect solar energy for use in your school? What are other alternatives?

Consider How can you collect solar energy for use in your school? What are other alternatives? 5 a 5 Energy Sources a - Energy from the sun Purpose To explore sourcing our energy from the sun Key concepts Solar energy is a natural and renewable resource Heat energy from the sun can be used to heat

More information

Depth-of-Knowledge Levels for Four Content Areas Norman L. Webb March 28, 2002. Reading (based on Wixson, 1999)

Depth-of-Knowledge Levels for Four Content Areas Norman L. Webb March 28, 2002. Reading (based on Wixson, 1999) Depth-of-Knowledge Levels for Four Content Areas Norman L. Webb March 28, 2002 Language Arts Levels of Depth of Knowledge Interpreting and assigning depth-of-knowledge levels to both objectives within

More information

Solar Photovoltaic Frequently Asked Questions

Solar Photovoltaic Frequently Asked Questions Table of Contents 1. What is Solar Energy?... 2 2. What are the basic component of a Solar PV system?.2 3. What are the different types of PV systems ATL offers?...2 4. What is the difference between mono-crystalline

More information

Introduction to Netlogo: A Newton s Law of Gravity Simulation

Introduction to Netlogo: A Newton s Law of Gravity Simulation Introduction to Netlogo: A Newton s Law of Gravity Simulation Purpose Netlogo is an agent-based programming language that provides an all-inclusive platform for writing code, having graphics, and leaving

More information

Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

More information

ELECTRICAL FUNDAMENTALS

ELECTRICAL FUNDAMENTALS General Electricity is a form of energy called electrical energy. It is sometimes called an "unseen" force because the energy itself cannot be seen, heard, touched, or smelled. However, the effects of

More information

Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface.

Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface. Series and Parallel Circuits Computer 23 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are

More information

Running on Renewables (Lesson Plan) (Utilizing HOMER: Modeling Software for Hybrid Electric Power Systems)

Running on Renewables (Lesson Plan) (Utilizing HOMER: Modeling Software for Hybrid Electric Power Systems) Running on Renewables (Lesson Plan) (Utilizing HOMER: Modeling Software for Hybrid Electric Power Systems) Suggested Grade Level 9-12 Overview Students utilize software developed by the National Renewable

More information

Ohm's Law and Circuits

Ohm's Law and Circuits 2. Conductance, Insulators and Resistance A. A conductor in electricity is a material that allows electrons to flow through it easily. Metals, in general, are good conductors. Why? The property of conductance

More information

Kindergarten to Grade 4 Manitoba Foundations for Scientific Literacy

Kindergarten to Grade 4 Manitoba Foundations for Scientific Literacy Kindergarten to Grade 4 Manitoba Foundations for Scientific Literacy The Five Foundations Manitoba Foundations for Scientific Literacy To develop scientifically literate students, science learning experiences

More information

CUTES Solar Power System

CUTES Solar Power System Solar Power System Solar power systems provide a continuous, reliable power solution that's easily deployed, cost-effective and requires little maintenance. Solar Power Systems are complete, fully integrated

More information

Resistors in Series and Parallel

Resistors in Series and Parallel Resistors in Series and Parallel Bởi: OpenStaxCollege Most circuits have more than one component, called a resistor that limits the flow of charge in the circuit. A measure of this limit on charge flow

More information

Course description: Introduces the student to basic electricity with an emphasis on Ohms Law.

Course description: Introduces the student to basic electricity with an emphasis on Ohms Law. The following is presented for information purposes only and comes with no warranty. See http://www.bristolwatch.com/ Course Title: Basic Electricity and Ohms Law Course description: Introduces the student

More information

INTERNATIONAL FRAMEWORK FOR ASSURANCE ENGAGEMENTS CONTENTS

INTERNATIONAL FRAMEWORK FOR ASSURANCE ENGAGEMENTS CONTENTS INTERNATIONAL FOR ASSURANCE ENGAGEMENTS (Effective for assurance reports issued on or after January 1, 2005) CONTENTS Paragraph Introduction... 1 6 Definition and Objective of an Assurance Engagement...

More information

Objectives 200 CHAPTER 4 RESISTANCE

Objectives 200 CHAPTER 4 RESISTANCE Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

More information

MEASURING INSTRUMENTS. By: Nafees Ahmed, Asstt, Prof, EE Deptt, DIT, Dehradun

MEASURING INSTRUMENTS. By: Nafees Ahmed, Asstt, Prof, EE Deptt, DIT, Dehradun MEASURING INSTRUMENTS By: Nafees Ahmed, Asstt, Prof, EE Deptt, DIT, Dehradun MEASURING INSTRUMENTS The device used for comparing the unknown quantity with the unit of measurement or standard quantity is

More information

Green Education through Green Power: Photovoltaics as a Conduit to Interdisciplinary Learning

Green Education through Green Power: Photovoltaics as a Conduit to Interdisciplinary Learning Green Education through Green Power: Photovoltaics as a Conduit to Interdisciplinary Learning The proposed project will enable ABC University to: 1) develop an interdisciplinary educational program to

More information

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

More information

Forms of Energy: Multiple Transformations : Teacher Notes

Forms of Energy: Multiple Transformations : Teacher Notes Forms of Energy: Multiple Transformations : Teacher Notes Introduction The focus of the investigation is to further define energy and realize that chains of energy transformations can occur. The VoltageCurrent,

More information

Performance Assessment of 100 kw Solar Power Plant Installed at Mar Baselios College of Engineering and Technology

Performance Assessment of 100 kw Solar Power Plant Installed at Mar Baselios College of Engineering and Technology Performance Assessment of 100 kw Solar Power Plant Installed at Mar Baselios College of Engineering and Technology Prakash Thomas Francis, Aida Anna Oommen, Abhijith A.A, Ruby Rajan and Varun S. Muraleedharan

More information

Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW

Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW The p-n junction is the fundamental building block of the electronic

More information

The investigation is an individual project undertaken by you with support from your teacher/lecturer to show that you can:

The investigation is an individual project undertaken by you with support from your teacher/lecturer to show that you can: Biology (revised) Advanced Higher Biology Investigation Candidate Guidance (for use from Session 2012 2013) Introduction The investigation is an individual project undertaken by you with support from your

More information

Sources of electricity

Sources of electricity Sources of electricity This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Sources of electricity

Sources of electricity Sources of electricity This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Voltage, Current, and Resistance

Voltage, Current, and Resistance Voltage, Current, and Resistance This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Science Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy

Science Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy This lesson is one approach to teaching the State Standards associated with this unit. Districts are encouraged to customize this lesson by supplementing

More information

2015-2016 North Dakota Advanced Placement (AP) Course Codes. Computer Science Education Course Code 23580 Advanced Placement Computer Science A

2015-2016 North Dakota Advanced Placement (AP) Course Codes. Computer Science Education Course Code 23580 Advanced Placement Computer Science A 2015-2016 North Dakota Advanced Placement (AP) Course Codes Computer Science Education Course Course Name Code 23580 Advanced Placement Computer Science A 23581 Advanced Placement Computer Science AB English/Language

More information