Feature Matching and RANSAC

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Feature Matching and RANSAC"

Transcription

1 Feature Matching and RANSAC Krister Parmstrand with a lot of slides stolen from Steve Seitz and Rick Szeliski : Computational Photography Alexei Efros, CMU, Fall 2005

2 Feature matching?

3 SIFT keypoints On the previous slide, the red points are all of the SIFT keypoints.

4 Feature matching?

5 RANSAC

6 Color coding of points on previous slide Red points points without a good match in the other image In this image, the goodness of the match is decided by looking at the ratio of the distances to the second nearest neighbor and first nearest neighbor. If this ration is high (above some threshold), it is considered a good match. Blue points These are points with a good match in which the match was wrong, meaning it connected two points that did not actually correspond in the world. Yellow points These are correct matches. We need to run RANSAC until it randomly picked 4 yellow points from among the blue and yellow points (the matches estimated to be good ).

7 Feature matching Exhaustive search for each feature in one image, look at all the other features in the other image(s) Hashing compute a short descriptor from each feature vector, or hash longer descriptors (randomly) Nearest neighbor techniques kd-trees and their variants

8 What about outliers??

9 Feature-space outlier rejection Let s not match all features, but only these that have similar enough matches? How can we do it? SSD(patch1,patch2) < threshold How to set threshold?

10 Feature-space outlier rejection A better way [Lowe, 1999]: 1-NN: SSD of the closest match 2-NN: SSD of the second-closest match Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN That is, is our best match so much better than the rest?

11 Feature-space outliner rejection Can we now compute H from the blue points? No! Still too many outliers What can we do?

12 Matching features What do we do about the bad matches?

13 RAndom SAmple Consensus Select one match, count inliers

14 RAndom SAmple Consensus Select one match, count inliers

15 Least squares fit Find average translation vector

16 RANSAC for estimating homography RANSAC loop: 1. Select four feature pairs (at random) 2. Compute homography H (exact) 3. Compute inliers where SSD(p i, H p i) < ε 4. Keep largest set of inliers 5. Re-compute least-squares H estimate on all of the inliers

17 RANSAC

18 Under what conditions can you know where to translate each point of image A to where it would appear in camera B (with calibrated cameras), knowing nothing about image depths? Camera A Camera B 18

19 (a) camera rotation 19

20 20 and (b) imaging a planar surface

21 Aligning images: translation? left on top right on top Translations are not enough to align the images

22 Homography example

23 UMass Lab for Perceptual Robotics

24 Example: Recognising Panoramas M. Brown and D. Lowe, University of British Columbia

25 Why Recognising Panoramas?

26 Why Recognising Panoramas? 1D Rotations (θ) Ordering matching images

27 Why Recognising Panoramas? 1D Rotations (θ) Ordering matching images

28 Why Recognising Panoramas? 1D Rotations (θ) Ordering matching images

29 Why Recognising Panoramas? 1D Rotations (θ) Ordering matching images 2D Rotations (θ, φ) Ordering matching images

30 Why Recognising Panoramas? 1D Rotations (θ) Ordering matching images 2D Rotations (θ, φ) Ordering matching images

31 Why Recognising Panoramas? 1D Rotations (θ) Ordering matching images 2D Rotations (θ, φ) Ordering matching images

32 Why Recognising Panoramas?

33 Overview Feature Matching Image Matching Bundle Adjustment Multi-band Blending Results Conclusions

34 RANSAC for Homography

35 RANSAC for Homography

36 RANSAC for Homography

37 Finding the panoramas

38 Finding the panoramas

39 Finding the panoramas

40 Finding the panoramas

41 Bundle Adjustment New images initialised with rotation, focal length of best matching image

42 Multi-band Blending Burt & Adelson 1983 Blend frequency bands over range λ

43 Results

Image Stitching using Harris Feature Detection and Random Sampling

Image Stitching using Harris Feature Detection and Random Sampling Image Stitching using Harris Feature Detection and Random Sampling Rupali Chandratre Research Scholar, Department of Computer Science, Government College of Engineering, Aurangabad, India. ABSTRACT In

More information

Robust Panoramic Image Stitching

Robust Panoramic Image Stitching Robust Panoramic Image Stitching CS231A Final Report Harrison Chau Department of Aeronautics and Astronautics Stanford University Stanford, CA, USA hwchau@stanford.edu Robert Karol Department of Aeronautics

More information

Camera geometry and image alignment

Camera geometry and image alignment Computer Vision and Machine Learning Winter School ENS Lyon 2010 Camera geometry and image alignment Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique,

More information

Geometric Transformations and Image Warping: Mosaicing

Geometric Transformations and Image Warping: Mosaicing Geometric Transformations and Image Warping: Mosaicing CS 6640 Ross Whitaker, Guido Gerig SCI Institute, School of Computing University of Utah (with slides from: Jinxiang Chai, TAMU) faculty.cs.tamu.edu/jchai/cpsc641_spring10/lectures/lecture8.ppt

More information

Efficient visual search of local features. Cordelia Schmid

Efficient visual search of local features. Cordelia Schmid Efficient visual search of local features Cordelia Schmid Visual search change in viewing angle Matches 22 correct matches Image search system for large datasets Large image dataset (one million images

More information

Build Panoramas on Android Phones

Build Panoramas on Android Phones Build Panoramas on Android Phones Tao Chu, Bowen Meng, Zixuan Wang Stanford University, Stanford CA Abstract The purpose of this work is to implement panorama stitching from a sequence of photos taken

More information

Computer Vision - part II

Computer Vision - part II Computer Vision - part II Review of main parts of Section B of the course School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture Name Course Name 1 1 2

More information

::pcl::registration Registering point clouds using the Point Cloud Library.

::pcl::registration Registering point clouds using the Point Cloud Library. ntroduction Correspondences Rejection Transformation Registration Examples Outlook ::pcl::registration Registering point clouds using the Point Cloud Library., University of Bonn January 27, 2011 ntroduction

More information

Epipolar Geometry. Readings: See Sections 10.1 and 15.6 of Forsyth and Ponce. Right Image. Left Image. e(p ) Epipolar Lines. e(q ) q R.

Epipolar Geometry. Readings: See Sections 10.1 and 15.6 of Forsyth and Ponce. Right Image. Left Image. e(p ) Epipolar Lines. e(q ) q R. Epipolar Geometry We consider two perspective images of a scene as taken from a stereo pair of cameras (or equivalently, assume the scene is rigid and imaged with a single camera from two different locations).

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision 04/12/11 Epipolar Geometry and Stereo Vision Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Many slides adapted from Lana Lazebnik, Silvio Saverese, Steve Seitz, many figures from

More information

SWIGS: A Swift Guided Sampling Method

SWIGS: A Swift Guided Sampling Method IGS: A Swift Guided Sampling Method Victor Fragoso Matthew Turk University of California, Santa Barbara 1 Introduction This supplement provides more details about the homography experiments in Section.

More information

SCREEN-CAMERA CALIBRATION USING A THREAD. Songnan Li, King Ngi Ngan, Lu Sheng

SCREEN-CAMERA CALIBRATION USING A THREAD. Songnan Li, King Ngi Ngan, Lu Sheng SCREEN-CAMERA CALIBRATION USING A THREAD Songnan Li, King Ngi Ngan, Lu Sheng Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR ABSTRACT In this paper, we propose

More information

Recognition. Sanja Fidler CSC420: Intro to Image Understanding 1 / 28

Recognition. Sanja Fidler CSC420: Intro to Image Understanding 1 / 28 Recognition Topics that we will try to cover: Indexing for fast retrieval (we still owe this one) History of recognition techniques Object classification Bag-of-words Spatial pyramids Neural Networks Object

More information

Make and Model Recognition of Cars

Make and Model Recognition of Cars Make and Model Recognition of Cars Sparta Cheung Department of Electrical and Computer Engineering University of California, San Diego 9500 Gilman Dr., La Jolla, CA 92093 sparta@ucsd.edu Alice Chu Department

More information

Introduction Feature Estimation Keypoint Detection Keypoints + Features. PCL :: Features. Michael Dixon and Radu B. Rusu

Introduction Feature Estimation Keypoint Detection Keypoints + Features. PCL :: Features. Michael Dixon and Radu B. Rusu PCL :: Features Michael Dixon and Radu B. Rusu July 1, 2011 Outline 1. Introduction 2. Feature Estimation 3. Keypoint Detection 4. Keypoints + Features Outline 1. Introduction 2. Feature Estimation 3.

More information

Epipolar Geometry Prof. D. Stricker

Epipolar Geometry Prof. D. Stricker Outline 1. Short introduction: points and lines Epipolar Geometry Prof. D. Stricker 2. Two views geometry: Epipolar geometry Relation point/line in two views The geometry of two cameras Definition of the

More information

CS 534: Computer Vision 3D Model-based recognition

CS 534: Computer Vision 3D Model-based recognition CS 534: Computer Vision 3D Model-based recognition Ahmed Elgammal Dept of Computer Science CS 534 3D Model-based Vision - 1 High Level Vision Object Recognition: What it means? Two main recognition tasks:!

More information

Depth from a single camera

Depth from a single camera Depth from a single camera Fundamental Matrix Essential Matrix Active Sensing Methods School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie 1 1 Geometry of two

More information

C4 Computer Vision. 4 Lectures Michaelmas Term Tutorial Sheet Prof A. Zisserman. fundamental matrix, recovering ego-motion, applications.

C4 Computer Vision. 4 Lectures Michaelmas Term Tutorial Sheet Prof A. Zisserman. fundamental matrix, recovering ego-motion, applications. C4 Computer Vision 4 Lectures Michaelmas Term 2004 1 Tutorial Sheet Prof A. Zisserman Overview Lecture 1: Stereo Reconstruction I: epipolar geometry, fundamental matrix. Lecture 2: Stereo Reconstruction

More information

Building Rome in a Day

Building Rome in a Day Building Rome in a Day Agarwal, Sameer, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, and Richard Szeliski. Presented by Ruohan Zhang Source: Agarwal et al., Building Rome

More information

Retina Mosaicing Using Local Features

Retina Mosaicing Using Local Features Retina Mosaicing Using Local Features hilippe C. Cattin, Herbert Bay, Luc Van Gool, and Gábor Székely ETH Zurich - Computer Vision Laboratory Sternwartstrasse 7, CH - 8092 Zurich {cattin,bay,vangool,szekely}@vision.ee.ethz.ch

More information

Interactive 3D Scanning Without Tracking

Interactive 3D Scanning Without Tracking Interactive 3D Scanning Without Tracking Matthew J. Leotta, Austin Vandergon, Gabriel Taubin Brown University Division of Engineering Providence, RI 02912, USA {matthew leotta, aev, taubin}@brown.edu Abstract

More information

Segmentation of building models from dense 3D point-clouds

Segmentation of building models from dense 3D point-clouds Segmentation of building models from dense 3D point-clouds Joachim Bauer, Konrad Karner, Konrad Schindler, Andreas Klaus, Christopher Zach VRVis Research Center for Virtual Reality and Visualization, Institute

More information

Probabilistic Latent Semantic Analysis (plsa)

Probabilistic Latent Semantic Analysis (plsa) Probabilistic Latent Semantic Analysis (plsa) SS 2008 Bayesian Networks Multimedia Computing, Universität Augsburg Rainer.Lienhart@informatik.uni-augsburg.de www.multimedia-computing.{de,org} References

More information

RGB-D Mapping: Using Kinect-Style Depth Cameras for Dense 3D Modeling of Indoor Environments

RGB-D Mapping: Using Kinect-Style Depth Cameras for Dense 3D Modeling of Indoor Environments RGB-D Mapping: Using Kinect-Style Depth Cameras for Dense 3D Modeling of Indoor Environments Peter Henry 1, Michael Krainin 1, Evan Herbst 1, Xiaofeng Ren 2, Dieter Fox 1 Abstract RGB-D cameras (such as

More information

Camera calibration and epipolar geometry. Odilon Redon, Cyclops, 1914

Camera calibration and epipolar geometry. Odilon Redon, Cyclops, 1914 Camera calibration and epipolar geometry Odilon Redon, Cyclops, 94 Review: Alignment What is the geometric relationship between pictures taken by cameras that share the same center? How many points do

More information

Vision Based Traffic Light Triggering for Motorbikes

Vision Based Traffic Light Triggering for Motorbikes Vision Based Traffic Light Triggering for Motorbikes Tommy Chheng Department of Computer Science and Engineering University of California, San Diego tcchheng@ucsd.edu Abstract Current traffic light triggering

More information

Fourier Descriptors For Shape Recognition. Applied to Tree Leaf Identification By Tyler Karrels

Fourier Descriptors For Shape Recognition. Applied to Tree Leaf Identification By Tyler Karrels Fourier Descriptors For Shape Recognition Applied to Tree Leaf Identification By Tyler Karrels Why investigate shape description? Hard drives keep getting bigger. Digital cameras allow us to capture, store,

More information

Homography. Dr. Gerhard Roth

Homography. Dr. Gerhard Roth Homography Dr. Gerhard Roth Epipolar Geometry P P l P r Epipolar Plane p l Epipolar Lines p r O l e l e r O r Epipoles P r = R(P l T) Homography Consider a point x = (u,v,1) in one image and x =(u,v,1)

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow 02/09/12 Feature Tracking and Optical Flow Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Many slides adapted from Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve

More information

PCL Tutorial: The Point Cloud Library By Example. Jeff Delmerico. Vision and Perceptual Machines Lab 106 Davis Hall UB North Campus. jad12@buffalo.

PCL Tutorial: The Point Cloud Library By Example. Jeff Delmerico. Vision and Perceptual Machines Lab 106 Davis Hall UB North Campus. jad12@buffalo. PCL Tutorial: The Point Cloud Library By Example Jeff Delmerico Vision and Perceptual Machines Lab 106 Davis Hall UB North Campus jad12@buffalo.edu February 11, 2013 Jeff Delmerico February 11, 2013 1/38

More information

PARALLAX EFFECT FREE MOSAICING OF UNDERWATER VIDEO SEQUENCE BASED ON TEXTURE FEATURES

PARALLAX EFFECT FREE MOSAICING OF UNDERWATER VIDEO SEQUENCE BASED ON TEXTURE FEATURES PARALLAX EFFECT FREE MOSAICING OF UNDERWATER VIDEO SEQUENCE BASED ON TEXTURE FEATURES Nagaraja S., Prabhakar C.J. and Praveen Kumar P.U. Department of P.G. Studies and Research in Computer Science Kuvempu

More information

GPS-aided Recognition-based User Tracking System with Augmented Reality in Extreme Large-scale Areas

GPS-aided Recognition-based User Tracking System with Augmented Reality in Extreme Large-scale Areas GPS-aided Recognition-based User Tracking System with Augmented Reality in Extreme Large-scale Areas Wei Guan Computer Graphics and Immersive Technologies Computer Science, USC wguan@usc.edu Suya You Computer

More information

Control Block diagram

Control Block diagram Basic Introduction The FANUC robot is a LRMate 6 axis robotic arm with R- 30iA Mate controller. The robot can be controlled using a teaching pendant. THe teaching pendant is used to increment each joint

More information

Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

More information

Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

More information

EXPERIMENTAL EVALUATION OF RELATIVE POSE ESTIMATION ALGORITHMS

EXPERIMENTAL EVALUATION OF RELATIVE POSE ESTIMATION ALGORITHMS EXPERIMENTAL EVALUATION OF RELATIVE POSE ESTIMATION ALGORITHMS Marcel Brückner, Ferid Bajramovic, Joachim Denzler Chair for Computer Vision, Friedrich-Schiller-University Jena, Ernst-Abbe-Platz, 7743 Jena,

More information

2-View Geometry. Mark Fiala Ryerson University Mark.fiala@ryerson.ca

2-View Geometry. Mark Fiala Ryerson University Mark.fiala@ryerson.ca CRV 2010 Tutorial Day 2-View Geometry Mark Fiala Ryerson University Mark.fiala@ryerson.ca 3-Vectors for image points and lines Mark Fiala 2010 2D Homogeneous Points Add 3 rd number to a 2D point on image

More information

The Trimmed Iterative Closest Point Algorithm

The Trimmed Iterative Closest Point Algorithm Image and Pattern Analysis (IPAN) Group Computer and Automation Research Institute, HAS Budapest, Hungary The Trimmed Iterative Closest Point Algorithm Dmitry Chetverikov and Dmitry Stepanov http://visual.ipan.sztaki.hu

More information

Image Stitching based on Feature Extraction Techniques: A Survey

Image Stitching based on Feature Extraction Techniques: A Survey Image Stitching based on Feature Extraction Techniques: A Survey Ebtsam Adel Information System Dept. Faculty of Computers and Information, Mansoura University, Egypt Mohammed Elmogy Information Technology

More information

ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING)

ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING) ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING) Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Preliminaries Classification and Clustering Applications

More information

Fast Matching of Binary Features

Fast Matching of Binary Features Fast Matching of Binary Features Marius Muja and David G. Lowe Laboratory for Computational Intelligence University of British Columbia, Vancouver, Canada {mariusm,lowe}@cs.ubc.ca Abstract There has been

More information

Food brand image (Logos) recognition

Food brand image (Logos) recognition Food brand image (Logos) recognition Ritobrata Sur(rsur@stanford.edu), Shengkai Wang (sk.wang@stanford.edu) Mentor: Hui Chao (huichao@qti.qualcomm.com) Final Report, March 19, 2014. 1. Introduction Food

More information

What is an Edge? Computer Vision Week 4. How to detect edges? What is an Edge? Edge Detection techniques. Edge Detection techniques.

What is an Edge? Computer Vision Week 4. How to detect edges? What is an Edge? Edge Detection techniques. Edge Detection techniques. What is an Edge? Computer Vision Week 4 Edge Detection Linear filtering; pyramids, wavelets Interest Operators surface normal discontinuity depth discontinuity surface color discontinuity illumination

More information

FAST APPROXIMATE NEAREST NEIGHBORS WITH AUTOMATIC ALGORITHM CONFIGURATION

FAST APPROXIMATE NEAREST NEIGHBORS WITH AUTOMATIC ALGORITHM CONFIGURATION FAST APPROXIMATE NEAREST NEIGHBORS WITH AUTOMATIC ALGORITHM CONFIGURATION Marius Muja, David G. Lowe Computer Science Department, University of British Columbia, Vancouver, B.C., Canada mariusm@cs.ubc.ca,

More information

Calibration for High-Definition Camera Rigs with Marker Chessboard

Calibration for High-Definition Camera Rigs with Marker Chessboard Calibration for High-Definition Camera Rigs with Marker Chessboard Jianhui Chen Student ID: 2496650 CSE6400: Computer Engineering Research Project Final Paper jianhui@cse.yorku.ca Abstract The geometrical

More information

Introduction Epipolar Geometry Calibration Methods Further Readings. Stereo Camera Calibration

Introduction Epipolar Geometry Calibration Methods Further Readings. Stereo Camera Calibration Stereo Camera Calibration Stereo Camera Calibration Stereo Camera Calibration Stereo Camera Calibration 12.10.2004 Overview Introduction Summary / Motivation Depth Perception Ambiguity of Correspondence

More information

The calibration problem was discussed in details during lecture 3.

The calibration problem was discussed in details during lecture 3. 1 2 The calibration problem was discussed in details during lecture 3. 3 Once the camera is calibrated (intrinsics are known) and the transformation from the world reference system to the camera reference

More information

TouchPaper - An Augmented Reality Application with Cloud-Based Image Recognition Service

TouchPaper - An Augmented Reality Application with Cloud-Based Image Recognition Service TouchPaper - An Augmented Reality Application with Cloud-Based Image Recognition Service Feng Tang, Daniel R. Tretter, Qian Lin HP Laboratories HPL-2012-131R1 Keyword(s): image recognition; cloud service;

More information

Vision-based Mapping with Backward Correction

Vision-based Mapping with Backward Correction Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems EPFL, Lausanne, Switzerland October 2002 Vision-based Mapping with Backward Correction Stephen Se David Lowe, Jim Little

More information

Artificial Intelligence Methods (G52AIM)

Artificial Intelligence Methods (G52AIM) Artificial Intelligence Methods (G52AIM) Dr Rong Qu rxq@cs.nott.ac.uk Constructive Heuristic Methods Constructive Heuristics method Start from an empty solution Repeatedly, extend the current solution

More information

Interactive Dense 3D Modeling of Indoor Environments

Interactive Dense 3D Modeling of Indoor Environments Interactive Dense 3D Modeling of Indoor Environments Hao Du 1 Peter Henry 1 Xiaofeng Ren 2 Dieter Fox 1,2 Dan B Goldman 3 Steven M. Seitz 1 {duhao,peter,fox,seitz}@cs.washinton.edu xiaofeng.ren@intel.com

More information

Unit 29 Chi-Square Goodness-of-Fit Test

Unit 29 Chi-Square Goodness-of-Fit Test Unit 29 Chi-Square Goodness-of-Fit Test Objectives: To perform the chi-square hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni

More information

RANDOM PROJECTIONS FOR SEARCH AND MACHINE LEARNING

RANDOM PROJECTIONS FOR SEARCH AND MACHINE LEARNING = + RANDOM PROJECTIONS FOR SEARCH AND MACHINE LEARNING Stefan Savev Berlin Buzzwords June 2015 KEYWORD-BASED SEARCH Document Data 300 unique words per document 300 000 words in vocabulary Data sparsity:

More information

Distinctive Image Features from Scale-Invariant Keypoints

Distinctive Image Features from Scale-Invariant Keypoints Distinctive Image Features from Scale-Invariant Keypoints David G. Lowe Computer Science Department University of British Columbia Vancouver, B.C., Canada lowe@cs.ubc.ca January 5, 2004 Abstract This paper

More information

Clustering & Association

Clustering & Association Clustering - Overview What is cluster analysis? Grouping data objects based only on information found in the data describing these objects and their relationships Maximize the similarity within objects

More information

Linear Filtering Part II

Linear Filtering Part II Linear Filtering Part II Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Fourier theory Jean Baptiste Joseph Fourier had a crazy idea: Any periodic function can

More information

MAT 1000. Mathematics in Today's World

MAT 1000. Mathematics in Today's World MAT 1000 Mathematics in Today's World We talked about Cryptography Last Time We will talk about probability. Today There are four rules that govern probabilities. One good way to analyze simple probabilities

More information

Integer Programming: Algorithms - 3

Integer Programming: Algorithms - 3 Week 9 Integer Programming: Algorithms - 3 OPR 992 Applied Mathematical Programming OPR 992 - Applied Mathematical Programming - p. 1/12 Dantzig-Wolfe Reformulation Example Strength of the Linear Programming

More information

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow , pp.233-237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow Giwoo Kim 1, Hye-Youn Lim 1 and Dae-Seong Kang 1, 1 Department of electronices

More information

Quality Report Generated with Pro version 2.2.5

Quality Report Generated with Pro version 2.2.5 Quality Report Generated with Pro version 2.2.5 Important: Click on the different icons for: Help to analyze the results in the Quality Report Additional information about the sections Click here for additional

More information

Augmented Reality Tic-Tac-Toe

Augmented Reality Tic-Tac-Toe Augmented Reality Tic-Tac-Toe Joe Maguire, David Saltzman Department of Electrical Engineering jmaguire@stanford.edu, dsaltz@stanford.edu Abstract: This project implements an augmented reality version

More information

Arrowsmith: Automatic Archery Scorer Chanh Nguyen and Irving Lin

Arrowsmith: Automatic Archery Scorer Chanh Nguyen and Irving Lin Arrowsmith: Automatic Archery Scorer Chanh Nguyen and Irving Lin Department of Computer Science, Stanford University ABSTRACT We present a method for automatically determining the score of a round of arrows

More information

A Jigsaw Puzzle Solving Guide on Mobile Devices

A Jigsaw Puzzle Solving Guide on Mobile Devices A Jigsaw Puzzle Solving Guide on Mobile Devices Liang Liang Department of Applied Physics, Stanford University Stanford, CA 94305, USA Zhongkai Liu Department of Physics Stanford University Stanford, CA

More information

Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections Chapter 9: Hypothesis Testing Sections 9.1 Problems of Testing Hypotheses Skip: 9.2 Testing Simple Hypotheses Skip: 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.5 The t Test 9.6

More information

Tracking a Depth Camera: Parameter Exploration for Fast ICP

Tracking a Depth Camera: Parameter Exploration for Fast ICP Tracking a Depth Camera: Parameter Exploration for Fast ICP François Pomerleau 1 and Stéphane Magnenat 1 and Francis Colas 1 and Ming Liu 1 and Roland Siegwart 1 Abstract The increasing number of ICP variants

More information

Parallel Tracking and Mapping for Small AR Workspaces

Parallel Tracking and Mapping for Small AR Workspaces Parallel Tracking and Mapping for Small AR Workspaces Georg Klein and David Murray Active Vision Lab, Oxford This is a PDF of the slides of the talk given at ISMAR 2007 Aim AR with a hand-held camera Visual

More information

Computational Re-Photography

Computational Re-Photography Computational Re-Photography SOONMIN BAE MIT Computer Science and Artificial Intelligence Laboratory ASEEM AGARWALA Adobe Systems, Inc. and FRÉDO DURAND MIT Computer Science and Artificial Intelligence

More information

Semi-structured document image matching and recognition

Semi-structured document image matching and recognition Semi-structured document image matching and recognition Olivier Augereau a, Nicholas Journet a and Jean-Philippe Domenger a a Université de Bordeaux, 351 Cours de la Libération, Talence, France ABSTRACT

More information

Classification of Fingerprints. Sarat C. Dass Department of Statistics & Probability

Classification of Fingerprints. Sarat C. Dass Department of Statistics & Probability Classification of Fingerprints Sarat C. Dass Department of Statistics & Probability Fingerprint Classification Fingerprint classification is a coarse level partitioning of a fingerprint database into smaller

More information

Automatic Building Facade Detection in Mobile Laser Scanner point Clouds

Automatic Building Facade Detection in Mobile Laser Scanner point Clouds Automatic Building Facade Detection in Mobile Laser Scanner point Clouds NALANI HETTI ARACHCHIGE 1 & HANS-GERD MAAS 1 Abstract: Mobile Laser Scanner (MLS) has been increasingly used in the modeling of

More information

Digital Image Processing. Prof. P.K. Biswas. Department of Electronics & Electrical Communication Engineering

Digital Image Processing. Prof. P.K. Biswas. Department of Electronics & Electrical Communication Engineering Digital Image Processing Prof. P.K. Biswas Department of Electronics & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 27 Colour Image Processing II Hello, welcome

More information

Globally Optimal Inlier Set Maximization With Unknown Rotation and Focal Length

Globally Optimal Inlier Set Maximization With Unknown Rotation and Focal Length Globally Optimal Inlier Set Maximization With Unknown Rotation and Focal Length Jean-Charles Bazin 1, Yongduek Seo, Richard Hartley 3, Marc Polleeys 1 1 Department o Computer Science, ETH Zurich, Switzerland

More information

What Makes a Great Picture?

What Makes a Great Picture? What Makes a Great Picture? Robert Doisneau, 1955 With many slides from Yan Ke, as annotated by Tamara Berg 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Photography 101 Composition Framing

More information

N O T E S. A Reed Solomon Code Magic Trick. The magic trick T O D D D. M A T E E R

N O T E S. A Reed Solomon Code Magic Trick. The magic trick T O D D D. M A T E E R N O T E S A Reed Solomon Code Magic Trick T O D D D. M A T E E R Howard Community College Columbia, Maryland 21044 tmateer@howardcc.edu Richard Ehrenborg [1] has provided a nice magic trick that can be

More information

On the Order of Search for Personal Identification with Biometric Images

On the Order of Search for Personal Identification with Biometric Images On the Order of Search for Personal Identification with Biometric Images Kensuke Baba Library, Kyushu University 10-1, Hakozaki 6, Higashi-ku Fukuoka, 812-8581, Japan baba.kensuke.060@m.kyushu-u.ac.jp

More information

Motion. Complete Table 1. Record all data to three decimal places (e.g., 4.000 or 6.325 or 0.000). Do not include units in your answer.

Motion. Complete Table 1. Record all data to three decimal places (e.g., 4.000 or 6.325 or 0.000). Do not include units in your answer. Labs for College Physics: Mechanics Worksheet Experiment 2-1 Motion As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact

More information

Brightness and geometric transformations

Brightness and geometric transformations Brightness and geometric transformations Václav Hlaváč Czech Technical University in Prague Center for Machine Perception (bridging groups of the) Czech Institute of Informatics, Robotics and Cybernetics

More information

ANALYTIC HIERARCHY PROCESS (AHP) TUTORIAL

ANALYTIC HIERARCHY PROCESS (AHP) TUTORIAL Kardi Teknomo ANALYTIC HIERARCHY PROCESS (AHP) TUTORIAL Revoledu.com Table of Contents Analytic Hierarchy Process (AHP) Tutorial... 1 Multi Criteria Decision Making... 1 Cross Tabulation... 2 Evaluation

More information

ACCURACY ASSESSMENT OF BUILDING POINT CLOUDS AUTOMATICALLY GENERATED FROM IPHONE IMAGES

ACCURACY ASSESSMENT OF BUILDING POINT CLOUDS AUTOMATICALLY GENERATED FROM IPHONE IMAGES ACCURACY ASSESSMENT OF BUILDING POINT CLOUDS AUTOMATICALLY GENERATED FROM IPHONE IMAGES B. Sirmacek, R. Lindenbergh Delft University of Technology, Department of Geoscience and Remote Sensing, Stevinweg

More information

Mathematics Success Grade 8

Mathematics Success Grade 8 T92 Mathematics Success Grade 8 [OBJECTIVE] The student will create rational approximations of irrational numbers in order to compare and order them on a number line. [PREREQUISITE SKILLS] rational numbers,

More information

Tessellations. Practice 1 Identifying Tessellations. In each tessellation, color the repeated shape. Example

Tessellations. Practice 1 Identifying Tessellations. In each tessellation, color the repeated shape. Example Name: Chapter Date: Practice 1 Identifying In each tessellation, color the repeated shape. Example 1. 2. 3. Lesson 14.1 Identifying 133 Is each pattern a tessellation of a single repeated shape? Write

More information

Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts

Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts Neill Campbell 1 George Vogiatzis 2 Carlos Hernández 2 Roberto Cipolla 1 1 Department of Engineering, University of Cambridge,

More information

K-nearest-neighbor: an introduction to machine learning

K-nearest-neighbor: an introduction to machine learning K-nearest-neighbor: an introduction to machine learning Xiaojin Zhu jerryzhu@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison slide 1 Outline Types of learning Classification:

More information

Calculus for Middle School Teachers. Problems and Notes for MTHT 466

Calculus for Middle School Teachers. Problems and Notes for MTHT 466 Calculus for Middle School Teachers Problems and Notes for MTHT 466 Bonnie Saunders Fall 2010 1 I Infinity Week 1 How big is Infinity? Problem of the Week: The Chess Board Problem There once was a humble

More information

Segmentation & Clustering

Segmentation & Clustering EECS 442 Computer vision Segmentation & Clustering Segmentation in human vision K-mean clustering Mean-shift Graph-cut Reading: Chapters 14 [FP] Some slides of this lectures are courtesy of prof F. Li,

More information

Flat Clustering K-Means Algorithm

Flat Clustering K-Means Algorithm Flat Clustering K-Means Algorithm 1. Purpose. Clustering algorithms group a set of documents into subsets or clusters. The cluster algorithms goal is to create clusters that are coherent internally, but

More information

Making High Dynamic Range (HDR) Panoramas with Hugin

Making High Dynamic Range (HDR) Panoramas with Hugin Making High Dynamic Range (HDR) Panoramas with Hugin Dr Ryan Southall - School of Architecture & Design, University of Brighton. Introduction This document details how to use the free software programme

More information

Flow Separation for Fast and Robust Stereo Odometry

Flow Separation for Fast and Robust Stereo Odometry Flow Separation for Fast and Robust Stereo Odometry Michael Kaess, Kai Ni and Frank Dellaert Abstract Separating sparse flow provides fast and robust stereo visual odometry that deals with nearly degenerate

More information

Data Structure for Real-Time Processing in 3-D

Data Structure for Real-Time Processing in 3-D Data Structure for Real-Time Processing in 3-D Jean-François Lalonde, Nicolas Vandapel and Martial Hebert Carnegie Mellon University Problem Dynamic processing of large 3-D point cloud data from ladar

More information

Unit 1: INTRODUCTION TO ADVANCED ROBOTIC DESIGN & ENGINEERING

Unit 1: INTRODUCTION TO ADVANCED ROBOTIC DESIGN & ENGINEERING Unit 1: INTRODUCTION TO ADVANCED ROBOTIC DESIGN & ENGINEERING Technological Literacy Review of Robotics I Topics and understand and be able to implement the "design 8.1, 8.2 Technology Through the Ages

More information

Lecture Topic: Low-Rank Approximations

Lecture Topic: Low-Rank Approximations Lecture Topic: Low-Rank Approximations Low-Rank Approximations We have seen principal component analysis. The extraction of the first principle eigenvalue could be seen as an approximation of the original

More information

Clustering Big Data. Efficient Data Mining Technologies. J Singh and Teresa Brooks. June 4, 2015

Clustering Big Data. Efficient Data Mining Technologies. J Singh and Teresa Brooks. June 4, 2015 Clustering Big Data Efficient Data Mining Technologies J Singh and Teresa Brooks June 4, 2015 Hello Bulgaria (http://hello.bg/) A website with thousands of pages... Some pages identical to other pages

More information

CS 585 Computer Vision Final Report Puzzle Solving Mobile App

CS 585 Computer Vision Final Report Puzzle Solving Mobile App CS 585 Computer Vision Final Report Puzzle Solving Mobile App Developed by Timothy Chong and Patrick W. Crawford December 9, 2014 Introduction and Motivation This project s aim is to create a mobile application

More information

Advanced Techniques for Mobile Robotics Camera Calibration. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz

Advanced Techniques for Mobile Robotics Camera Calibration. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Advanced Techniques for Mobile Robotics Camera Calibration Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz What is Camera Calibration? A camera projects 3D world points onto the 2D image

More information

An Introduction to Machine Learning

An Introduction to Machine Learning An Introduction to Machine Learning L5: Novelty Detection and Regression Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au Tata Institute, Pune,

More information

Lecture 20: Clustering

Lecture 20: Clustering Lecture 20: Clustering Wrap-up of neural nets (from last lecture Introduction to unsupervised learning K-means clustering COMP-424, Lecture 20 - April 3, 2013 1 Unsupervised learning In supervised learning,

More information

Data Mining Cluster Analysis: Advanced Concepts and Algorithms. ref. Chapter 9. Introduction to Data Mining

Data Mining Cluster Analysis: Advanced Concepts and Algorithms. ref. Chapter 9. Introduction to Data Mining Data Mining Cluster Analysis: Advanced Concepts and Algorithms ref. Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar 1 Outline Prototype-based Fuzzy c-means Mixture Model Clustering Density-based

More information

Robotics and Autonomous Systems. Towards 3D Point cloud based object maps for household environments

Robotics and Autonomous Systems. Towards 3D Point cloud based object maps for household environments Robotics and Autonomous Systems 56 (2008) 927 941 Contents lists available at ScienceDirect Robotics and Autonomous Systems journal homepage: www.elsevier.com/locate/robot Towards 3D Point cloud based

More information