Example. n = 4, p = ¼, q = 1 ¼ = ¾. Binomial Distribution Application

Size: px
Start display at page:

Download "Example. n = 4, p = ¼, q = 1 ¼ = ¾. Binomial Distribution Application"

Transcription

1 Example The probability of successful start of a certain engine is ¼ and four trials are to be made. Evaluate the individual and cumulative probabilities of success in this case. n = 4, p = ¼, q = 1 ¼ = ¾ (p+q) 4 = p 4 + 4p 3 q + 6p 2 q 2 + 4pq 3 + q 4 Number of Cumulative successes failures Individual probability probability 0 4 q 4 = (3/4) 4 = 81/256 81/ pq 3 = 4(1/4)(3/4) 3 = 108/ / p 2 q 2 = 6(1/4) 2 (3/4) 2 = 54/ / p 3 q = 4(1/4) 3 (3/4) = 12/ / p 4 = (1/4) 4 = 1/ /256 Σ = 1 Binomial Distribution Application Example: It is known that, in a certain manufacturing process, 1% of the products are defective. If the a customer purchases 200 of these products selected at random, what is the expected value and standard deviation of the number of defects? n = 50 q = 0.01 p = = 0.99 E(defects) = n.q = 200 x 0.01 = 2 σ(defects) = npq = 200 x 0.01 x 0.99 =

2 Example: The manufacturing company has a policy of replacing, free-of-charge, all defective products that are purchased. If the product manufacturing cost is $10 per unit and each product is sold for $15, how much profit is made from a sale of 1000 products? q = 0.01 For 1000 products, n = 1000 Expected # of defects, E(defects) = n.q = 10 Therefore, 1010 products must be manufactured to sell 1000 products. Manufacturing cost = $10 x 1010 = $10,100 Income = $15 x 1000 = $15,000 Profit = $15,000 - $10,100 = $4900 Profit per unit = $4900/1000 = $4.90 Example: If the company decides to increase the manufacturing cost to $10.05 per unit in order to decrease the probability of defects to 0.1%, q = For 1000 products, n = 1000 Expected # of defects, E(defects) = n.q = 1 Therefore, 1001 products must be manufactured to sell 1000 products. Manufacturing cost = $10.05 x 1001 = $10, Income = $15 x 1000 = $15,000 Profit = $15,000 - $10, = $ Profit per unit = $ /1000 = $4.94 2

3 Effect of Redundancy Consider a system consisting of 4 identical components, each having a failure probability of 0.1. q = 0.1 (p = 0.9) n = 4 (p+q) 4 = p 4 + 4p 3 q + 6p 2 q 2 + 4pq 3 + q 4 System state Individual probability all components working p 4 = (0.9) 4 = working, 1 failed 4p 3 q = 4(0.9) 3 (0.1) = working, 2 failed 6p 2 q 2 = 6(0.9) 2 (0.1) 2 = working, 3 failed 4pq 3 = 4(0.9)( 0.1) 3 = all components failed q 4 = (0.1) 4 = Σ = 1 Consider 4 criteria all components required for success (no redundancy) components required for success (partial redundancy) 2 components required for success (partial redundancy) 1 component required for success (full redundancy) System reliability, R = = = System with Derated States Consider a generation plant with two 10 MW units, each having a probability of failure (forced outage rate) of 10%. q = 0.1, p = 0.9, n = 2 Binomial Distribution: Capacity Outage Probability Table: (p + q) 2 = p 2 + 2pq + q 2 Units Out Cap Out (MW) Cap In (MW) Probability Cum. Prob If the generation plant operates to supply a 15 MW load, what is the probability of load loss (system failure)? Probability of load loss = Loss of Load Probability (LOLP) = 0.19 Expected # of days of load loss = 0.19 x 365 = days/yr Loss of Load Expectation (LOLE) 3

4 System with Derated States If the generation plant operates to supply a 15 MW load, what is the Expected Load Loss (ELL)? Capacity Outage Probability Table: Units Out Cap Out (MW) Cap In (MW) Probability Cum. Prob Units Out Cap Out (MW) Cap In (MW) Load Loss (MW) Probability Col.4 x Col Expected Load Loss (ELL) = 1.05 MW Example A generating plant is to be designed to satisfy a constant 10 MW load. Four alternatives are being considered: a) 1 x 10 MW unit b) 2 x 10 MW units c) 3 x 5 MW units d) 4 x 3.33 MW units The probability of unit failure is assumed to be For each unit, q = forced outage rate (FOR) = unavailability, U = 0.02 p = availability, A =

5 Capacity Outage Probability Tables units capacity (MW) Binom. Individual cum. out out in Distr. prob prob (a) 1 x 10 MW A U (b) 2 x 10 MW A AU U (c) 3 x 5 MW A A 2 U AU U (d) 4 x 3.33 MW A A 3 U A 2 U AU U LOLP = 0.01 LOLE = 365 x 0.02 = 7.3 d/yr LOLP = LOLE = 0.15 d/yr LOLP = LOLE = 0.43 d/yr LOLP = LOLE = 0.85 d/yr Expected Load Loss Capacity (MW) Load Loss Prob L i x p i Out In L i (MW) p i (MW) (a) 1 x 10 MW (b) 2 x 10 MW (c) 3 x 5 MW (d) 4 x 3.33 MW ELL = 0.2 MW = 200 kw ELL = MW = 4.00 kw ELL = MW = 5.96 kw ELL = MW = 7.89 kw 5

6 Comparative Analysis Effect of unit unavailability: System ELL (kw) at Different Unit FOR s 2% 4% 6%) (a) 1 x 10 MW (b) 2 x 10 MW (c) 3 x 5 MW (d) 4 x 3.33 MW System with Non-identical Components All components must be identical to apply the Binomial Distribution. If components of a system have non-identical capacities: - Units with identical capacities are grouped together - COPT is developed for each group - COPT for different groups are combined, one at a time - Final COPT for the system is used for reliability evaluation A pumping station has 2 x 20 t/hr units, each having an unavailability of 0.1, and 1 x 30 t/hr unit with an unavailability of Calculate the capacity outage probability table for this plant. COPT for 2 x 20 t/hr units: COPT for 1 x 30 t/hr unit: Units Out Cap Out (t/hr) Cap In (t/hr) Prob Units Out Cap Out (t/hr) Cap In (t/hr) Prob

7 System with Non-identical Components Combining COPTs: 1 x 30 t/hr unit 2 x 20 t/hr units 40 / / / / / / / / / / / Each cell contains: Capacity In / probability Overall System COPT: Cap In (t/hr) Cap Out (t/hr) Prob

Normal Approximation. Contents. 1 Normal Approximation. 1.1 Introduction. Anthony Tanbakuchi Department of Mathematics Pima Community College

Normal Approximation. Contents. 1 Normal Approximation. 1.1 Introduction. Anthony Tanbakuchi Department of Mathematics Pima Community College Introductory Statistics Lectures Normal Approimation To the binomial distribution Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission

More information

Accounting 402 Illustration of a change in inventory method

Accounting 402 Illustration of a change in inventory method Page 1 of 6 (revised fall, 2006) The was incorporated in January, 20X5. At the beginning of, the company decided to change to the FIFO method. Frank-Lex had used the LIFO method for financial and tax reporting

More information

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2

More information

Loss of Load Expectation (LOLE) Methodology ENGCTF Item-8. April 11 th 2013

Loss of Load Expectation (LOLE) Methodology ENGCTF Item-8. April 11 th 2013 Loss of Load Expectation (LOLE) Methodology ENGCTF Item-8 April 11 th 2013 0 Overview LOLE Definition & Background Technical Details & Modeling GADS Summary Reference Links 1 Loss of Load Expectation (LOLE)

More information

Chapter 5: Normal Probability Distributions - Solutions

Chapter 5: Normal Probability Distributions - Solutions Chapter 5: Normal Probability Distributions - Solutions Note: All areas and z-scores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that

More information

Normal Distribution as an Approximation to the Binomial Distribution

Normal Distribution as an Approximation to the Binomial Distribution Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable

More information

Planning Reserve Margin (PRM)

Planning Reserve Margin (PRM) Planning Reserve Margin (PRM) Nguyen Pham Planning Specialist, Power Supply & Planning Overview A more detailed version of the PRM presentation given in July 2015 Q & A on the PRM report based on 2012

More information

Sampling Central Limit Theorem Proportions. Outline. 1 Sampling. 2 Central Limit Theorem. 3 Proportions

Sampling Central Limit Theorem Proportions. Outline. 1 Sampling. 2 Central Limit Theorem. 3 Proportions Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Populations and samples When we use statistics, we are trying to find out information about

More information

Sample Questions for Mastery #5

Sample Questions for Mastery #5 Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could

More information

Binomial Distribution

Binomial Distribution Introductory Statistics Lectures Binomial Distribution Finding the probability of successes in n trials. Department of Mathematics Pima Community College Redistribution of this material is prohibited without

More information

Random Variable: A function that assigns numerical values to all the outcomes in the sample space.

Random Variable: A function that assigns numerical values to all the outcomes in the sample space. STAT 509 Section 3.2: Discrete Random Variables Random Variable: A function that assigns numerical values to all the outcomes in the sample space. Notation: Capital letters (like Y) denote a random variable.

More information

Discrete Random Variables and their Probability Distributions

Discrete Random Variables and their Probability Distributions CHAPTER 5 Discrete Random Variables and their Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Discrete Random Variable

More information

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

More information

M 1313 Review Test 4 1

M 1313 Review Test 4 1 M 1313 Review Test 4 1 Review for test 4: 1. Let E and F be two events of an experiment, P (E) =. 3 and P (F) =. 2, and P (E F) =.35. Find the following probabilities: a. P(E F) b. P(E c F) c. P (E F)

More information

Generation System Reliability Evaluations with Intermittent Renewables

Generation System Reliability Evaluations with Intermittent Renewables Generation System Reliability Evaluations with Intermittent Renewables A Thesis submitted in partial fulfilment for the requirement of degree in Master of Science in Energy Systems and the Environment,

More information

Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture

Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture Chapter 4 Part 2. Binomial Distribution J.C. Wang iclicker Question 4.4 Pre-lecture iclicker Question 4.4 Pre-lecture Outline Computing Binomial Probabilities Properties of a Binomial Distribution Computing

More information

Binomial Distribution Problems. Binomial Distribution SOLUTIONS. Poisson Distribution Problems

Binomial Distribution Problems. Binomial Distribution SOLUTIONS. Poisson Distribution Problems 1 Binomial Distribution Problems (1) A company owns 400 laptops. Each laptop has an 8% probability of not working. You randomly select 20 laptops for your salespeople. (a) What is the likelihood that 5

More information

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing Chapter problem: Does the MicroSort method of gender selection increase the likelihood that a baby will be girl? MicroSort: a gender-selection method developed by Genetics

More information

6.2 Normal distribution. Standard Normal Distribution:

6.2 Normal distribution. Standard Normal Distribution: 6.2 Normal distribution Slide Heights of Adult Men and Women Slide 2 Area= Mean = µ Standard Deviation = σ Donation: X ~ N(µ,σ 2 ) Standard Normal Distribution: Slide 3 Slide 4 a normal probability distribution

More information

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION 6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of

More information

Estimating a population proportion

Estimating a population proportion Introductory Statistics Lectures Estimating a population proportion Confidence intervals for proportions Department of Mathematics Pima Community College Redistribution of this material is prohibited without

More information

Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

More information

Tree Diagrams. on time. The man. by subway. From above tree diagram, we can get

Tree Diagrams. on time. The man. by subway. From above tree diagram, we can get 1 Tree Diagrams Example: A man takes either a bus or the subway to work with probabilities 0.3 and 0.7, respectively. When he takes the bus, he is late 30% of the days. When he takes the subway, he is

More information

Risk Assessment of Wind Generation Dispatch Using Monte Carlo Simulation

Risk Assessment of Wind Generation Dispatch Using Monte Carlo Simulation International Journal of Smart Grid and Clean Energy Risk Assessment of Wind Generation Dispatch Using Monte Carlo Simulation Mohamed Shaaban, M. D. Usman Centre of Electrical Energy Systems (CEES), Faculty

More information

The Value of Reliability in Power Systems - Pricing Operating Reserves -

The Value of Reliability in Power Systems - Pricing Operating Reserves - Energy Laboratory MIT EL 99-005 WP Massachusetts Institute of Technology The Value of Reliability in Power Systems - Pricing Operating Reserves - June 1999 THE VALUE OF RELIABILITY IN POWER SYSTEMS - PRICING

More information

Probability Distributions

Probability Distributions CHAPTER 5 Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Probability Distribution 5.3 The Binomial Distribution

More information

Chapter 5. Discrete Probability Distributions

Chapter 5. Discrete Probability Distributions Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable

More information

Chapter 6 Discrete Probability Distributions

Chapter 6 Discrete Probability Distributions Chapter 6 Discrete Probability Distributions 40. From recent experience, 5 percent of the computer keyboards produced by an automatic, high-speed machine are defective. What is the probability that out

More information

2 Binomial, Poisson, Normal Distribution

2 Binomial, Poisson, Normal Distribution 2 Binomial, Poisson, Normal Distribution Binomial Distribution ): We are interested in the number of times an event A occurs in n independent trials. In each trial the event A has the same probability

More information

Review the following from Chapter 5

Review the following from Chapter 5 Bluman, Chapter 6 1 Review the following from Chapter 5 A surgical procedure has an 85% chance of success and a doctor performs the procedure on 10 patients, find the following: a) The probability that

More information

Chapter 9 Monté Carlo Simulation

Chapter 9 Monté Carlo Simulation MGS 3100 Business Analysis Chapter 9 Monté Carlo What Is? A model/process used to duplicate or mimic the real system Types of Models Physical simulation Computer simulation When to Use (Computer) Models?

More information

FORD RANGER _Ranger_2015.5_COVER_V1.indd /08/ :10:37

FORD RANGER _Ranger_2015.5_COVER_V1.indd /08/ :10:37 FORD RANGER 2 3 4 5 1.8 cu.m 6 7 8 9 10 11 1 4 6 10 9 7 2 8 5 3 12 13 3500kg 14 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 [Nm] 475 450 425 400 375 350 325 300 275 [kw] [PS] 180 245 165 224 150 204

More information

Binomial Random Variables

Binomial Random Variables Binomial Random Variables Dr Tom Ilvento Department of Food and Resource Economics Overview A special case of a Discrete Random Variable is the Binomial This happens when the result of the eperiment is

More information

Reliability/Cost Evaluation of a Wind Power Delivery System

Reliability/Cost Evaluation of a Wind Power Delivery System Reliability/Cost Evaluation of a Wind Power Delivery System A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Master of Science

More information

QUANTITATIVE METHODS IN BUSINESS PROBLEM #2: INTRODUCTION TO SIMULATION

QUANTITATIVE METHODS IN BUSINESS PROBLEM #2: INTRODUCTION TO SIMULATION QUANTITATIVE METHODS IN BUSINESS PROBLEM #2: INTRODUCTION TO SIMULATION Dr. Arnold Kleinstein and Dr. Sharon Petrushka Introduction Simulation means imitation of reality. In this problem, we will simulate

More information

Energy Storage:Maximising Irelands Wind Energy Potential

Energy Storage:Maximising Irelands Wind Energy Potential Dublin Institute of Technology ARROW@DIT ME in Sustainable Electrical Energy Systems Dissertations 2010-10-01 Energy Storage:Maximising Irelands Wind Energy Potential Damien Kelly Dublin Institute of Technology

More information

Proposal for Capacity Credits for Variable Output Electric Power Generators in Michigan

Proposal for Capacity Credits for Variable Output Electric Power Generators in Michigan Proposal for Capacity Credits for Variable Output Electric Power Generators in Michigan Michigan Wind Working Group Subcommittee on Capacity Credits Michigan Renewable Energy Program March 2005 DRAFT Not

More information

STT 315 Practice Problems II for Sections

STT 315 Practice Problems II for Sections STT 315 Practice Problems II for Sections 4.1-4.8 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) Classify the following random

More information

RELIABILITY EVALUATION OF ELECTRIC POWER SYSTEMS INCLUDING WIND POWER AND ENERGY STORAGE

RELIABILITY EVALUATION OF ELECTRIC POWER SYSTEMS INCLUDING WIND POWER AND ENERGY STORAGE RELIABILITY EVALUATION OF ELECTRIC POWER SYSTEMS INCLUDING WIND POWER AND ENERGY STORAGE A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements for

More information

Ch. 6.1 #7-49 odd. The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.7734-0.5= 0.2734

Ch. 6.1 #7-49 odd. The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.7734-0.5= 0.2734 Ch. 6.1 #7-49 odd The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.7734-0.5= 0.2734 The area is found by looking up z= 2.07 in Table E and subtracting from 0.5. Area = 0.5-0.0192

More information

AP STATISTICS 2010 SCORING GUIDELINES

AP STATISTICS 2010 SCORING GUIDELINES 2010 SCORING GUIDELINES Question 4 Intent of Question The primary goals of this question were to (1) assess students ability to calculate an expected value and a standard deviation; (2) recognize the applicability

More information

BINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract

BINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract BINOMIAL OPTIONS PRICING MODEL Mark Ioffe Abstract Binomial option pricing model is a widespread numerical method of calculating price of American options. In terms of applied mathematics this is simple

More information

GCSE HIGHER Statistics Key Facts

GCSE HIGHER Statistics Key Facts GCSE HIGHER Statistics Key Facts Collecting Data When writing questions for questionnaires, always ensure that: 1. the question is worded so that it will allow the recipient to give you the information

More information

Pr(X = x) = f(x) = λe λx

Pr(X = x) = f(x) = λe λx Old Business - variance/std. dev. of binomial distribution - mid-term (day, policies) - class strategies (problems, etc.) - exponential distributions New Business - Central Limit Theorem, standard error

More information

6.1 Graphs of Normal Probability Distributions. Normal Curve aka Probability Density Function

6.1 Graphs of Normal Probability Distributions. Normal Curve aka Probability Density Function Normal Distributions (Page 1 of 23) 6.1 Graphs of Normal Probability Distributions Normal Curve aka Probability Density Function Normal Probability Distribution TP TP µ! " µ µ +! x x-axis Important Properties

More information

Math 201: Statistics November 30, 2006

Math 201: Statistics November 30, 2006 Math 201: Statistics November 30, 2006 Fall 2006 MidTerm #2 Closed book & notes; only an A4-size formula sheet and a calculator allowed; 90 mins. No questions accepted! Instructions: There are eleven pages

More information

Overview of the U.S. Market for Green Certificates. Presentation for the ERRA Licensing/Competition Committee June 11, 2013

Overview of the U.S. Market for Green Certificates. Presentation for the ERRA Licensing/Competition Committee June 11, 2013 Overview of the U.S. Market for Green Certificates Presentation for the ERRA Licensing/Competition Committee June 11, 2013 1 Topics Compliance Renewable Energy Certificate Markets: Renewable Energy Portfolio

More information

Math 141. Lecture 7: Variance, Covariance, and Sums. Albyn Jones 1. 1 Library 304. jones/courses/141

Math 141. Lecture 7: Variance, Covariance, and Sums. Albyn Jones 1. 1 Library 304.  jones/courses/141 Math 141 Lecture 7: Variance, Covariance, and Sums Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Last Time Variance: expected squared deviation from the mean: Standard

More information

You flip a fair coin four times, what is the probability that you obtain three heads.

You flip a fair coin four times, what is the probability that you obtain three heads. Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

Hypothesis testing: Examples. AMS7, Spring 2012

Hypothesis testing: Examples. AMS7, Spring 2012 Hypothesis testing: Examples AMS7, Spring 2012 Example 1: Testing a Claim about a Proportion Sect. 7.3, # 2: Survey of Drinking: In a Gallup survey, 1087 randomly selected adults were asked whether they

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

Math 150 Sample Exam #2

Math 150 Sample Exam #2 Problem 1. (16 points) TRUE or FALSE. a. 3 die are rolled, there are 1 possible outcomes. b. If two events are complementary, then they are mutually exclusive events. c. If A and B are two independent

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups

More information

ICAP/UCAP Overview. Aaron Westcott Awestcott@nyiso.com 518 356 7657. If possible, Please mute your phones Please do not use the hold button.

ICAP/UCAP Overview. Aaron Westcott Awestcott@nyiso.com 518 356 7657. If possible, Please mute your phones Please do not use the hold button. ICAP/UCAP Overview Aaron Westcott Awestcott@nyiso.com 518 356 7657 If possible, Please mute your phones Please do not use the hold button. Agenda What is ICAP/UCAP? How are ICAP and UCAP calculated? How

More information

Utilising SCADA data to enhance performance monitoring of operating assets: The move to real-time performance management

Utilising SCADA data to enhance performance monitoring of operating assets: The move to real-time performance management Utilising SCADA data to enhance performance monitoring of operating assets: The move to real-time performance management Keir Harman EWEA Workshop Malmo, December 2014 1 SAFER, SMARTER, GREENER Asset Operations

More information

Chapter 13. Binomial Distributions

Chapter 13. Binomial Distributions Chapter 13. Binomial Distributions Topics Covered in this chapter: Binomial Probabilities Binomial Probabilities Example (Apply Your Knowledge 13.5): Proofreading The Problem: Typing errors in a text are

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION MODULE IV BINOMIAL DISTRIBUTION A random variable X is said to follow binomial distribution with parameters n & p if P ( X ) = nc x p x q n x where x = 0, 1,2,3..n, p is the probability of success & q

More information

Revisions of FIT Scheme to promote usage of. Renewable Electric Energy

Revisions of FIT Scheme to promote usage of. Renewable Electric Energy February 2015 Revisions of FIT Scheme to promote usage of Renewable Electric Energy On January 22, 2015, the Agency for Natural Resources and Energy ( ANRE ) has promulgated a ministerial ordinance and

More information

Chapter 22 Real Options

Chapter 22 Real Options Chapter 22 Real Options Multiple Choice Questions 1. The following are the main types of real options: (I) The option to expand if the immediate investment project succeeds (II) The option to wait (and

More information

Chapter 15 Binomial Distribution Properties

Chapter 15 Binomial Distribution Properties Chapter 15 Binomial Distribution Properties Two possible outcomes (success and failure) A fixed number of experiments (trials) The probability of success, denoted by p, is the same on every trial The trials

More information

Trailing Stop. Trailing Stop Explained

Trailing Stop. Trailing Stop Explained Trailing Stop Trailing Stop Explained Trailing Stop orders offer the advantage of providing protection against losses with an automatically executed order. Additionally, they may help the trader protect

More information

Statistical Impact of Slip Simulator Training at Los Alamos National Laboratory

Statistical Impact of Slip Simulator Training at Los Alamos National Laboratory LA-UR-12-24572 Approved for public release; distribution is unlimited Statistical Impact of Slip Simulator Training at Los Alamos National Laboratory Alicia Garcia-Lopez Steven R. Booth September 2012

More information

1 Math 1313 Final Review Final Review for Finite. 1. Find the equation of the line containing the points 1, 2)

1 Math 1313 Final Review Final Review for Finite. 1. Find the equation of the line containing the points 1, 2) Math 33 Final Review Final Review for Finite. Find the equation of the line containing the points, 2) ( and (,3) 2. 2. The Ace Company installed a new machine in one of its factories at a cost of $2,.

More information

GLOSSARY. Glossary of Terms for Capacity Based Demand Response PUBLIC. Issue 3.0 GOT-1

GLOSSARY. Glossary of Terms for Capacity Based Demand Response PUBLIC. Issue 3.0 GOT-1 PUBLIC GOT-1 GLOSSARY Glossary of Terms for Capacity Based Demand Response Issue 3.0 This document provides a glossary of terms with definitions used in the Capacity Based Demand Response program. Public

More information

Topic 5 Review [81 marks]

Topic 5 Review [81 marks] Topic 5 Review [81 marks] A four-sided die has three blue faces and one red face. The die is rolled. Let B be the event a blue face lands down, and R be the event a red face lands down. 1a. Write down

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1342 (Elementary Statistics) Test 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the indicated probability. 1) If you flip a coin

More information

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved. 3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately

More information

Computing Binomial Probabilities

Computing Binomial Probabilities The Binomial Model The binomial probability distribution is a discrete probability distribution function Useful in many situations where you have numerical variables that are counts or whole numbers Classic

More information

Binomial Distribution n = 20, p = 0.3

Binomial Distribution n = 20, p = 0.3 This document will describe how to use R to calculate probabilities associated with common distributions as well as to graph probability distributions. R has a number of built in functions for calculations

More information

Chapter 5 Discrete Probability Distribution. Learning objectives

Chapter 5 Discrete Probability Distribution. Learning objectives Chapter 5 Discrete Probability Distribution Slide 1 Learning objectives 1. Understand random variables and probability distributions. 1.1. Distinguish discrete and continuous random variables. 2. Able

More information

EMPIRICAL FREQUENCY DISTRIBUTION

EMPIRICAL FREQUENCY DISTRIBUTION INTRODUCTION TO MEDICAL STATISTICS: Mirjana Kujundžić Tiljak EMPIRICAL FREQUENCY DISTRIBUTION observed data DISTRIBUTION - described by mathematical models 2 1 when some empirical distribution approximates

More information

Chapter 2, part 2. Petter Mostad

Chapter 2, part 2. Petter Mostad Chapter 2, part 2 Petter Mostad mostad@chalmers.se Parametrical families of probability distributions How can we solve the problem of learning about the population distribution from the sample? Usual procedure:

More information

Sampling Distribution of a Sample Proportion

Sampling Distribution of a Sample Proportion Sampling Distribution of a Sample Proportion From earlier material remember that if X is the count of successes in a sample of n trials of a binomial random variable then the proportion of success is given

More information

Answers to some even exercises

Answers to some even exercises Answers to some even eercises Problem - P (X = ) = P (white ball chosen) = /8 and P (X = ) = P (red ball chosen) = 7/8 E(X) = (P (X = ) + P (X = ) = /8 + 7/8 = /8 = /9 E(X ) = ( ) (P (X = ) + P (X = )

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives. The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

Reserves in Capacity Planning A Northwest Approach

Reserves in Capacity Planning A Northwest Approach Reserves in Capacity Planning A Northwest Approach System Planning Committee June 2010 Electronic copies of this report are available on the PNUCC Website www.pnucc.org 101 SW Main Street, Suite 1605 Portland,

More information

Solar Panels and the Smart Grid

Solar Panels and the Smart Grid Solar Panels and the Smart Grid In the Pepco Region Steve Sunderhauf Jeff Roman Joshua Cadoret David Pirtle Outline Pepco Region Background Renewable Portfolio Standards (RPS) Pepco s Blueprint for the

More information

Chapter 4. Probability Distributions

Chapter 4. Probability Distributions Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

More information

Contents. TTM4155: Teletraffic Theory (Teletrafikkteori) Probability Theory Basics. Yuming Jiang. Basic Concepts Random Variables

Contents. TTM4155: Teletraffic Theory (Teletrafikkteori) Probability Theory Basics. Yuming Jiang. Basic Concepts Random Variables TTM4155: Teletraffic Theory (Teletrafikkteori) Probability Theory Basics Yuming Jiang 1 Some figures taken from the web. Contents Basic Concepts Random Variables Discrete Random Variables Continuous Random

More information

Chapter 5 Accounting for Merchandising Operations

Chapter 5 Accounting for Merchandising Operations Chapter 5 Accounting for Merchandising Operations Purchase Transactions Purchaser records goods at cost. When goods are returned, purchaser reduces Inventory. On September 5, De La Hoya Company buys merchandise

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

More information

Review of the activities of Electricity System Commercial Operator. Tbilisi, January 2014

Review of the activities of Electricity System Commercial Operator. Tbilisi, January 2014 Review of the activities of Electricity System Commercial Operator Tbilisi, January 2014 SECTOR PLAYERS Policy Implementation Ministry of Energy and Natural Resources Independent Regulator Georgian National

More information

0022/00015636/en Annual Financial Report LORDOS HOTELS (HOLDINGS) PUBLIC LTD LHH

0022/00015636/en Annual Financial Report LORDOS HOTELS (HOLDINGS) PUBLIC LTD LHH 0022/00015636/en Annual Financial Report LORDOS HOTELS (HOLDINGS) PUBLIC LTD Approval of Audited Financial Statements for 2015 - Proposal for Dividend - AGM on 22/06/2016 Members' Rights and Relevant Documents

More information

AP STATISTICS 2009 SCORING GUIDELINES

AP STATISTICS 2009 SCORING GUIDELINES 2009 SCORING GUIDELINES Question 2 Intent of Question The primary goals of this question were to assess a student s ability to (1) calculate a percentile value from a normal probability distribution; (2)

More information

World s Greenest High Performance Data Center

World s Greenest High Performance Data Center World s Greenest High Performance Data Center EcoDataCenter Sustainability for future generations Our Services Colocation Data Center for Mission Critical Requirements Lockable racks, cages, private rooms

More information

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

PROBLEMS: SET C P6-1C Giles Manufacturing uses a periodic inventory system and has the following transactions for the month of June 2012:

PROBLEMS: SET C P6-1C Giles Manufacturing uses a periodic inventory system and has the following transactions for the month of June 2012: Calculate ending inventory cost of goods sold for four inventory methods (LO 3) PROBLEMS: SET C P6-1C Giles Manufacturing uses a periodic inventory system and has the following transactions for the month

More information

Chapter 8. Hypothesis Testing

Chapter 8. Hypothesis Testing Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing

More information

table to see that the probability is 0.8413. (b) What is the probability that x is between 16 and 60? The z-scores for 16 and 60 are: 60 38 = 1.

table to see that the probability is 0.8413. (b) What is the probability that x is between 16 and 60? The z-scores for 16 and 60 are: 60 38 = 1. Review Problems for Exam 3 Math 1040 1 1. Find the probability that a standard normal random variable is less than 2.37. Looking up 2.37 on the normal table, we see that the probability is 0.9911. 2. Find

More information

Plumas Sierra Solar Rebate Program Guidebook 2015

Plumas Sierra Solar Rebate Program Guidebook 2015 Plumas Sierra Solar Rebate Program Guidebook 2015 Plumas Sierra Rural Electric Cooperative (PSREC) is offering rebates to encourage the installation of high quality solar photovoltaic (PV) systems in 2015.

More information

Part I Learning about SPSS

Part I Learning about SPSS STATS 1000 / STATS 1004 / STATS 1504 Statistical Practice 1 Practical Week 5 2015 Practical Outline In this practical, we will look at how to do binomial calculations in Excel. look at how to do normal

More information

Chapter 9, Problem 7 Closing inventory profits Before Tax After tax 40% tax

Chapter 9, Problem 7 Closing inventory profits Before Tax After tax 40% tax Chapter 9, Problem 7 Cost of 70% of Simon 900,000 Book value of Simon Common stock 550,000 Retained earnings Jan. 1 400,000 Net income to April 1 (¼ 200,000) 50,000 1,000,000 70% 700,000 Purchase discrepancy

More information

*This view is a sample image of electricity consumption.

*This view is a sample image of electricity consumption. Supply-demand balance of electricity is indicated based on the comparison between actual demand updated every five minutes and the maximum supply capacity. Demand forecast* is provided at around 8am, indicating

More information

0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) =

0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) = . A mail-order computer business has si telephone lines. Let X denote the number of lines in use at a specified time. Suppose the pmf of X is as given in the accompanying table. 0 2 3 4 5 6 p(.0.5.20.25.20.06.04

More information

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 3-7, 3-8 The remaining discrete random

More information

Chapter 5 - Practice Problems 1

Chapter 5 - Practice Problems 1 Chapter 5 - Practice Problems 1 Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level

More information