Exam 1 Solutions. PHY2054 Fall Prof. Paul Avery Prof. Andrey Korytov Sep. 26, 2014


 Isaac Hudson
 2 years ago
 Views:
Transcription
1 Exam 1 Solutions Prof. Paul Avery Prof. Andrey Korytov Sep. 26, Charges are arranged on an equilateral triangle of side 5 cm as shown in the diagram. Given that q 1 = 5 µc and q 2 = q 3 = 2 µc find the magnitude of the net force on charge q 1 (in N). Answer: 62 Solution: The x component of the force cancels and the y components of the q 2 q 3 force on q 1 are the same for both charges. Let a be the length of each side. Then the total force in the y direction is 2 q 1 q 2 a 2 k sin60 = 62 N. q 1 2. Charges are arranged on a square of side d as shown in the diagram. In what direction does the electric field at the center of the square point? (The quadrants are numbered counterclockwise starting from the positive xaxis.) Answer: Fourth quadrant Solution: The electric fields at the origin due to the left & right (+Q and Q) and top & bottom (+Q and 2Q) charges do not cancel. The electric fields due to these two charge pairs are then in the directions +x (for the left & right charges) and y (for the top & bottom charges), leading to a net electric field in the 4 th quadrant. 3. Two charged particles are fixed to the xaxis: particle 1 of charge q 1 = 20 µc at x = 0 m, and particle 2 of charge q 2 = 80 µc at x = 0.6 m. At what coordinate along the xaxis is the net electric field produced by the particles equal to zero? Answer: 0.6 m Solution: Between x = 0 and x = 0.6 m, electric fields due to charges q 1 and q 2 point in the same direction and cannot cancel. For x > 0, the two fields are in opposite directions, but the larger in magnitude charge q 2 is closer and hence its field is always greater than the field due to charge q 1 ; hence, the two fields cannot cancel each other here either. For x < 0, the fields are again in the opposite directions and would cancel, if their magnitudes are the same: Solving yields x = L = 0.6 m. q 1 x k = q 2 2 ( L x) k. 2 1
2 4. An electron with velocity v 0 along the +x direction enters a region with a uniform electric field of magnitude 5000 V/m in the y direction. If the electron travels 5.0 cm in the x direction and gets deflected by 1.0 cm in the y direction what is v 0 (in m/s)? Answer: Solution: The deflection by a constant acceleration is y = 1 2 at2, where y = 0.05 m, the acceleration a = Ee / m e and the time t = Δx / v 0. Solving yields v 0 = m/s. 5. A conducting sphere with charge +10 nc is placed at the center of two concentric conducting spherical shells of radius r 1 = 2 cm and r 2 = 5 cm (measured to the outer surfaces). The inner shell carries a charge of 7 nc and the outer shell has a charge of +6 nc. Find the charge (in nc) on the inner surface of the outer shell. Answer: 3 Solution: The E field inside the conductor of the outer shell must be 0. A Gaussian surface drawn within the outer shell will thus have no flux going through it, implying, from Gauss law, that there is 0 charge enclosed by the Gaussian surface. Since the total charge of the central sphere and inner shell is +3 nc, the charge on the inner surface of the outer shell must therefore be 3 nc. 6. In the previous problem, find the magnitude of the electric field at r = 50 cm. Answer: 324 V/m Solution: Outside the uniformly charged shells/spheres, the electric field is kq / r 2 and points radially. In this problem, the total field due to the two shells and the central sphere is then where Q = +9 nc. This yields E = 324 V/m/ E = kq 1 / r 2 + kq 2 / r 2 + kq 3 / r 2 = q 1 + q 2 + q 3 r 2 k = Q r 2 k, 2
3 7. Four charges of magnitude Q = 3.0 µc (but different signs, as in the figure) are arranged on the corners of a square of side 25 cm. Find the potential energy of the system of the four charges (in J). Answer: 0.84 Solution: For a system of point charges, the total potential energy is U = all (i,j) pairs kq i q j r With four charges, there are 6 pairs: 12, 13, 14, 23, 24, 34. Let L be the length of a side. Four pairs (corresponding to the 4 sides) each contribute kq 2 / L while the diagonals each contribute kq 2 / 2L. The total potential energy is thus +Q Q Q +Q 4 kq2 + 2 kq2 = kq2 L 2L L ( ) = 0.84 J. 8. Electrons in a particle beam have a kinetic energy of J. What is the magnitude of the electric field (in V/m) that will stop these electrons in a distance of 0.1 m? Answer: 2000 Solution: The distance d can be calculated from K = Fd = Eed, yielding E = 2000 V/m. 9. The movement of a charge in an electric field from one point to another at constant speed without the expenditure of work by or against the field Answer: none of these Solution: The work is zero only when moving along an equipotential surface. 10. Two particle each with charge Q are fixed at the vertices of an equilateral triangle with sides of length a. The work required to move a particle with a charge q from the other vertex to the center of the line joining the fixed charges is Answer: 2kQq / a Solution: The work required of an external force to move the charge q equals to the change in the potential energy of that charge:! Qq W ext = ΔU =U f U i = 2# " (0.5a) k $! & 2# Qq % " a k $ & = 2 Qq % a k. a a a 11. Two isolated conducting spheres are separated by a large distance. Sphere 1 has a radius of R and an initial charge 3Q while sphere 2 has a radius of 3R and an initial charge 7Q. A very thin 3
4 copper wire is now connected to the spheres to allow charge to flow between the spheres. How much charge will be transferred from sphere 2 to sphere 1? (Note that the charge transferred can be positive, negative or zero.) Answer: Q / 2 Solution: After reaching equilibrium, the two spheres must be at the same potential, thus Q 1 R k = Q 2 3R k Let ΔQ be the charge taken from sphere 2 and moved to sphere 1. Then: from where we obtain ΔQ = Q / 2. 3Q + ΔQ R k = 7Q ΔQ 3R k 12. Four protons are placed at rest on the vertices of a square of side 2.0 µm. The protons are released simultaneously. When the protons are very far away, what is their speed (in m/s)? Answer: 430 Solution: Conservation of total energy yields 0 +U i = K f + 0, where the initial potential energy ( )( 4 + 2) (see problem 7) and the final kinetic energy of four protons ( ). From here, we obtain v = ( ke2 / ml) ( 2 +1/ 2) = 432 m/s. U i = ke 2 / L K = mv2 13. Two equipotential surfaces lying near the middle of the space between the plates of a parallelplate capacitor are 2.0 mm apart and have a potential difference of volt. The area of each plate is 7.5 cm 2. What is the magnitude of the charge on each plate, (in units of C)? Answer: 4 Solution: The electric field between two uniformly charged plates with charges Q and Q is E = σ / ε 0 = Q / ε 0 A, where A is the area of each plate. We calculate E = ΔV / d = 0.6 V/m. Solving for Q yields Q = C. 4
5 14. A certain parallel plate capacitor with capacitance 12 µf is connected to a source of EMF with potential 3 V. A dielectric material with κ = 4 is then inserted between the plates of the capacitor with the capacitor still connected to the circuit. By how much does the energy stored in the capacitor change? Answer: J Solution: The energy in a capacitor is U = 1 2 CV 2, with V the voltage across it. Since the capacitor remains connected to the emf source when the dielectric is inserted, the change in energy is caused only by the change in capacitance ΔC = C f C i = κc C = κ 1 ( )C. Thus the change in energy is ΔU = ( ) 3 2 = 162µJ. 15. An airfilled parallelplate capacitor has a capacitance of 2 pf. The plate separation is then doubled and a wax dielectric is inserted, completely filling the space between the plates. As a result, the capacitance becomes 4 pf. The dielectric constant of the wax is: Answer: 4.0 Solution: The capacitance of a parallelplate capacitor is C = κε 0 A d Without the dielectric, the doubling of the plate spacing would change the capacitance from 2 pf to 1 pf. Thus to achieve 4 pf, the dielectric constant must be A parallel plate capacitor with a capacitance of 2.0 nf is charged to have 0.8 µc on each plate. How much work must be done by an external agent to double the plate separation while keeping the charge constant? Answer: J Solution: If the plate separation is doubled, C new = C 0 / 2. With the charge unchanged, the change in energy is thus ΔU = Q2 2C new Q2 2C 0 = Q2 2C 0 = +160µJ. 5
6 17. A 9 V battery is connected to a 3 Ω resistor. How much charge passes through the resistor in 3 hours? Answer: 32,400 C Solution: The total charge Q = i t, where i = 3 A and t = 10,800 s. Thus Q = 32,400 C. 18. You have two resistors R 1 and R 2, made from the same material, with the length and diameter of R 1 both double that of R 2. If R 1 and R 2 are connected in parallel to a battery, find the ratio of the currents running through R 1 and R 2 (find I 1 / I 2 ). Answer: 2 Solution: The resistance of a cylindrical resistor is R = ρl A = ρl. The cross sectional area 2 π (d / 2) of R 1 is 4 times that of R 2 while its length is double, therefore R 1 = 1 2 R 2. The current in R 1 is thus twice the current in R In the circuit diagram shown find the voltage drop across the 3.0 Ω resistor. Answer: 4.5 V Solution: There is 12 V applied across the bottom branch, whose total 3.0 Ω resistance is = 8 Ω (resistors connected in series). Thus the current is 12 V / 8 Ω = 1.5 A and the voltage drop across the 3 Ω resistor is 1.5 A 3 Ω = 4.5 V. 12 V 6.0 Ω 12 Ω 4.0 Ω 5.0 Ω 20. In the circuit shown find the total energy (in µj) stored on all the capacitors. Where C 1 = 2 µf, C 2 = 4 µf, C 3 = 9 µf, C 4 = 1 µf, C 5 = 3 µf, and V = 10V. Answer: 182 Solution: The total energy can be calculated using the equivalent capacitance and the emf since from the battery s perspective the equivalent capacitance behaves in exactly the same way as the original capacitors. C 4 and C 5 combine to give C 45 = 3.0 µf. Then C 2, C 45, C 3 in series give 1.64 µf. Adding in C 1 in parallel then gives a total capacitance of 3.64 µf. The energy is then U = 1 2 CV 2 = = 182µJ. V C 1 C 2 C 3 C 4 C 5 6
( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011
Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q =  4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force
More informationPhysics 1653 Exam 3  Review Questions
Physics 1653 Exam 3  Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but
More informationCapacitance, Resistance, DC Circuits
This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple
More informationCHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS
CHAPTER 6 ELECTROSTATIC ENERGY AND CAPACITORS. Three point charges, each of +q, are moved from infinity to the vertices of an equilateral triangle of side l. How much work is required? The sentence preceding
More informationChapter 17: Electric Potential
hapter 17: Electric Potential Electric Potential Energy Electric Potential How are the Efield and Electric Potential related? Motion of Point harges in an Efield apacitors Dielectrics 1 Electric Potential
More informationHW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 24.P.021 (a) Find the energy stored in a 20.00 nf capacitor
More informationElectrostatics Problems
Name AP Physics B Electrostatics Problems Date Mrs. Kelly 1. How many excess electrons are contained in a charge of 30 C? 2. Calculate and compare the gravitational and electrostatic force between an electron
More information) 0.7 =1.58 10 2 N m.
Exam 2 Solutions Prof. Paul Avery Prof. Andrey Korytov Oct. 29, 2014 1. A loop of wire carrying a current of 2.0 A is in the shape of a right triangle with two equal sides, each with length L = 15 cm as
More informationHW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 22.P.053 The figure below shows a portion of an infinitely
More informationChapter 16 Electric Forces and Fields
Chapter 16 Electric Forces and Fields 2. How many electrons does it take to make one coulomb of negative charge? A. 1.00 10 9 B. 6.25 10 18 C. 6.02 10 23 D. 1.66 10 18 E. 2.24 10 4 10. Two equal point
More informationPhysics II Exam 2 Review
Physics II Exam 2 Review Christopher Lane 1,2 Justin Lucas 1,3 Julia Bielaski 1,2 1 Department Physics, Clarkson University 2 Department Mathematics, Clarkson University 3 Department Electrical and Computer
More informationExam 1 Practice Problems Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8 Spring 13 Exam 1 Practice Problems Solutions Part I: Short Questions and Concept Questions Problem 1: Spark Plug Pictured at right is a typical
More informationProfs. A. Petkova, A. Rinzler, S. Hershfield. Exam 2 Solution
PHY2049 Fall 2009 Profs. A. Petkova, A. Rinzler, S. Hershfield Exam 2 Solution 1. Three capacitor networks labeled A, B & C are shown in the figure with the individual capacitor values labeled (all units
More informationChapter 25: Capacitance
Chapter 25: Capacitance Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed in a language comprehensible to everyone. Albert Einstein 25.1 Introduction Whenever
More informationChapter 26. Capacitance and Dielectrics
Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples where capacitors are used: radio receivers filters in power supplies energystoring devices
More informationObjectives for the standardized exam
III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction
More informationFall 97 Test 1, P. 2
2102 Fall 97 Test 1 Fall 97 Test 1, P. 2 Fall 97 Test 1, P. 3 Fall 97 Test 1, P. 4 Fall 97 Test 1, P. 5 5. (10 points) A spherical rubber balloon has a charge uniformly distributed over is surface. The
More informationElectric Forces & Fields, Gauss s Law, Potential
This test covers Coulomb s Law, electric fields, Gauss s Law, electric potential energy, and electric potential, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice +q +2q
More informationFall 12 PHY 122 Homework Solutions #4
Fall 12 PHY 122 Homework Solutions #4 Chapter 23 Problem 45 Calculate the electric potential due to a tiny dipole whose dipole moment is 4.8 x 1030 C.m at a point 4.1 x 109 m away if this point is (a)
More informationPHYS2020: General Physics II Course Lecture Notes Section II
PHYS2020: General Physics II Course Lecture Notes Section II Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and
More informationIf two identical balls each of mass m and having charge q are suspended by silk thread of length l from the same point o,then the distance between
If two identical balls each of mass m and having charge q are suspended by silk thread of length l from the same point o,then the distance between the balls is given by : = X = 2 ( ) 1 Two pith balls each
More informationAs customary, choice (a) is the correct answer in all the following problems.
PHY2049 Summer 2012 Instructor: Francisco Rojas Exam 1 As customary, choice (a) is the correct answer in all the following problems. Problem 1 A uniformly charge (thin) nonconucting ro is locate on the
More informationExam No. 1 Solutions
Exam No. 1 Solutions I. (20 pts) Three positive charges q 1 = +2 μc, q 2 = +1 μc, and q 3 = +1 μc are arranged at the corners of an equilateral triangle of side 2 m as shown in the diagram. Calculate:
More information4/16/ Bertrand
Physics B AP Review: Electricity and Magnetism Name: Charge (Q or q, unit: Coulomb) Comes in + and The proton has a charge of e. The electron has a charge of e. e = 1.602 1019 Coulombs. Charge distribution
More informationPhysics 122 (Sonnenfeld), Spring 2013 ( MPSONNENFELDS2013 ) My Courses Course Settings
Signed in as Richard Sonnenfeld, Instructor Help Sign Out Physics 122 (Sonnenfeld), Spring 2013 ( MPSONNENFELDS2013 ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library Essential
More informationSample Exam #3 Electricity Physics 103 Spring 2011
Sample Exam #3 Electricity Physics 103 Spring 2011 1. An electric heater is constructed by applying a potential difference of 110 V across a wire with a resistance of 5.0 Ω. What is the power rating of
More informationphysics 111N electric potential and capacitance
physics 111N electric potential and capacitance electric potential energy consider a uniform electric field (e.g. from parallel plates) note the analogy to gravitational force near the surface of the Earth
More informationNAME. and 2I o. (1) Two long wires carry magnetic fields I o. , where I o
(1) Two long wires carry magnetic fields I o and 2I o, where I o is a constant. The two wires cross at the origin (but without making any electrical connection), and lie in the xy plane. (a) Find the
More informationPH 212 07312015 Physics 212 Exam3 Solution NAME: Write down your name also on the back of the package of sheets you turn in.
PH 1 73115 Physics 1 Exam3 Solution NAME: Write down your name also on the back of the package of sheets you turn in. SIGNATURE and ID: Return this hard copy exam together with your other answer sheets.
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.
More informationLast Name: First Name: Physics 102 Spring 2006: Exam #2 MultipleChoice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged
More informationPhysics 126 Practice Exam #3 Professor Siegel
Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force
More informationPhysics 133: tutorial week 3,4 Capacitance, resistivity and resistance
Physics 33: tutorial week 3,4 Capacitance, resistivity and resistance 20. How much charge flows from a 2.0V battery when it is connected to a 2.0 ñf capacitor? (24 ñc) q CV 2.0 0 6 2 2.4 0 5 C. 2. The
More informationChapter 18 Electric Current and Circuits
Chapter 18 Electric Current and Circuits 3. When a current flows down a wire: A. electrons are moving in the direction of the current. B. electrons are moving opposite the direction of the current. C.
More informationAP2 Electrostatics. Three point charges are located at the corners of a right triangle as shown, where q 1. are each 1 cm from q 3.
Three point charges are located at the corners of a right triangle as shown, where q 1 = q 2 = 3 µc and q 3 = 4 µc. If q 1 and q 2 are each 1 cm from q 3, what is the magnitude of the net force on q 3?
More information104 Practice Exam 23/21/02
104 Practice Exam 23/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A nonzero
More informationLast Name: First Name: Physics 102 Spring 2007: Exam #1 MultipleChoice Questions 1. Two small conducting spheres attract one another electrostatically. This can occur for a variety of reasons. Which of
More informationExam 2 Practice Problems Part 1 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Exam Practice Problems Part 1 Solutions Problem 1 Electric Field and Charge Distributions from Electric Potential An electric potential V ( z
More information1 of 7 3/23/2010 2:45 PM
1 of 7 3/23/2010 2:45 PM Chapter 30 Homework Due: 8:00am on Tuesday, March 23, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
More informationPhysics 2220 Module 09 Homework
Physics 2220 Module 09 Homework 01. A potential difference of 0.050 V is developed across the 10cmlong wire of the figure as it moves though a magnetic field perpendicular to the page. What are the strength
More informationPhys 102 Spg Exam No. 2 Solutions
Phys 102 Spg. 2008 Exam No. 2 Solutions I. (20 pts) A 10turn wire loop measuring 8.0 cm by 16.0 cm carrying a current of 2.0 A lies in the horizontal plane and is free to rotate about a horizontal axis
More informationELECTROSTATICS. Ans: It is a fundamental property of matter which is responsible for all electrical effects
ELECTROSTATICS One Marks Questions with Answers: 1.What is an electric charge? Ans: It is a fundamental property of matter which is responsible for all electrical effects 2. Write the SI unit of charge?
More informationChapter 22: Electric Flux and Gauss s Law
22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we
More informationLab 4  Capacitors & RC Circuits
Lab 4 Capacitors & RC Circuits L41 Name Date Partners Lab 4 Capacitors & RC Circuits OBJECTIVES To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance
More informationElectromagnetism Laws and Equations
Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E and Dfields............................................. Electrostatic Force............................................2
More information45. The peak value of an alternating current in a 1500W device is 5.4 A. What is the rms voltage across?
PHYS Practice Problems hapters 8 hapter 8. 45. The peak value of an alternating current in a 5W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,
More informationMultiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields
Multiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields 63 When a positive charge q is placed in the field created by two other charges Q 1 and Q 2, each a distance r away from q, the
More information2. In Newton s universal law of gravitation the masses are assumed to be. B. masses of planets. D. spherical masses.
Practice Test: 41 marks (55 minutes) Additional Problem: 19 marks (7 minutes) 1. A spherical planet of uniform density has three times the mass of the Earth and twice the average radius. The magnitude
More informationPeople s Physics Book
The Big Idea When current flows through wires and resistors in a circuit as a result of an electric potential, charge does not build up significantly anywhere on the path. Capacitors are devices placed
More informationAP Physics Capacitance & Dielectrics; Current & Resistance; D.C. Circuits
A hysics Capacitance & Dielectrics; Current & esistance; D.C. Circuits art I. Multiple Choice (4 points each) Choose the one best answer to each of the following problems. 1 (A). A parallelplate capacitor
More informationCapacitors. February 5, 2014 Physics for Scientists & Engineers 2, Chapter 24 1
Capacitors February 5, 2014 Physics for Scientists & Engineers 2, Chapter 24 1 Review! The electric potential energy stored in a capacitor is given by! The field energy density stored in a parallel plate
More informationCHAPTER 24 GAUSS S LAW
CHAPTER 4 GAUSS S LAW 4. The net charge shown in Fig. 440 is Q. Identify each of the charges A, B, C shown. A B C FIGURE 440 4. From the direction of the lines of force (away from positive and toward
More informationCLASS TEST GRADE 11. PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism
CLASS TEST GRADE 11 PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism MARKS: 45 TIME: 1 hour INSTRUCTIONS AND INFORMATION 1. Answer ALL the questions. 2. You may use nonprogrammable calculators.
More informationAP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.
A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.
More informationLesson 6 Capacitors and Capacitance Lawrence B. Rees 2007. You may make a single copy of this document for personal use without written permission.
Lesson 6 apacitors and apacitance Lawrence B. Rees 7. You may make a single copy of this document for personal use without written permission. 6. Introduction In 745 Pieter van Musschenbroek, while trying
More informationPH2025D Final Comprehensive Exam (August 10, 2007)
NAME SCORE PH2025D Final Comprehensive Exam (August 0, 2007) You may not open the textbook nor notebook. A letter size information may be used. A calculator may be used. However, mathematics or physics
More informationPhysics 2212 GH Quiz #4 Solutions Spring 2015
Physics 1 GH Quiz #4 Solutions Spring 15 Fundamental Charge e = 1.6 1 19 C Mass of an Electron m e = 9.19 1 31 kg Coulomb constant K = 8.988 1 9 N m /C Vacuum Permittivity ϵ = 8.854 1 1 C /N m Earth s
More information1. If each of the four resistors below has a resistance of 1 µω, what is the equivalent resistance of the combination?
1. If each of the four resistors below has a resistance of 1 µω, what is the equivalent resistance of the combination? V (a) 0.25 µω (b) 1 µω (c) 2 µω (d) 4 µω (e) none of these 2. Three identical lamps
More informationReview Questions PHYS 2426 Exam 2
Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.
More informationFall 12 PHY 122 Homework Solutions #8
Fall 12 PHY 122 Homework Solutions #8 Chapter 27 Problem 22 An electron moves with velocity v= (7.0i  6.0j)10 4 m/s in a magnetic field B= (0.80i + 0.60j)T. Determine the magnitude and direction of the
More informationMagnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.
Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.
More informationPHYSICS 102 EXAM #2  MULTIPLE CHOICE Name Choose the one alternative that best completes the statement or answers the question. March 31, 2005 1) The figure below shows 3 identical lightbulbs connected
More informationPhys222 Winter 2012 Quiz 4 Chapters 2931. Name
Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region
More informationMagnetic Fields; Sources of Magnetic Field
This test covers magnetic fields, magnetic forces on charged particles and currentcarrying wires, the Hall effect, the BiotSavart Law, Ampère s Law, and the magnetic fields of currentcarrying loops
More informationCapacitance and Dielectrics. Physics 231 Lecture 41
apacitance and Dielectrics Physics 3 Lecture 4 apacitors Device for storing electrical energy which can then be released in a controlled manner onsists of two conductors, carrying charges of q and q,
More informationPhysics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:
Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.
More informationElectrostaticsE Field
1. Which diagram represents the electric field lines between two small electrically charged spheres? 2. Which graph best represents the relationship between the magnitude of the electric field strength,
More informationCandidate Number. General Certificate of Education Advanced Level Examination June 2010
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18
More informationSolution: (a) For a positively charged particle, the direction of the force is that predicted by the right hand rule. These are:
Problem 1. (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields as shown in the figure. (b) Repeat part (a), assuming the moving particle is
More informationElectrical Energy, Potential and Capacitance. AP Physics B
Electrical Energy, Potential and Capacitance AP Physics B Electric Fields and WORK In order to bring two like charges near each other work must be done. In order to separate two opposite charges, work
More information3. As shown in the diagram below, a charged rod is held near, but not touching, a neutral electroscope.
1. As a positively charged rod is brought near to but not allowed to touch the knob of an uncharged electroscope, the leaves will diverge because negative charges are transferred from the electroscope
More informationProblem 4.48 Solution:
Problem 4.48 With reference to Fig. 419, find E 1 if E 2 = ˆx3 ŷ2+ẑ2 (V/m), ε 1 = 2ε 0, ε 2 = 18ε 0, and the boundary has a surface charge density ρ s = 3.54 10 11 (C/m 2 ). What angle does E 2 make with
More information1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole.
Exam Name 1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole. 2) Which of the following statements is correct? A) Earth's north pole is magnetic north. B) The north
More informationPHYS 189 Final Exam: Practice March, 2014
PHYS 189 Final Exam: Practice March, 2014 Name: Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page. Multiple choice
More informationChapter 19 Magnetic Forces and Fields
Chapter 19 Magnetic Forces and Fields Student: 3. The magnetism of the Earth acts approximately as if it originates from a huge bar magnet within the Earth. Which of the following statements are true?
More informationCh. 20 Electric Circuits
Ch. 0 Electric Circuits 0. Electromotive Force Every electronic device depends on circuits. Electrical energy is transferred from a power source, such as a battery, to a device, say a light bulb. Conducting
More informationTEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1
TEACHER S CLUB EXAMS GRADE 11 PHYSICAL SCIENCES: PHYSICS Paper 1 MARKS: 150 TIME: 3 hours INSTRUCTIONS AND INFORMATION 1. This question paper consists of 12 pages, two data sheets and a sheet of graph
More informationCandidate Number. General Certificate of Education Advanced Level Examination June 2012
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday
More informationPhysics 9 Summer 2010 Midterm Solutions
Physics 9 Summer 010 Midterm s For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back Please sit every other seat, and please don t cheat! If something isn
More informationPreLab 7 Assignment: Capacitors and RC Circuits
Name: Lab Partners: Date: PreLab 7 Assignment: Capacitors and RC Circuits (Due at the beginning of lab) Directions: Read over the Lab Handout and then answer the following questions about the procedures.
More informationElectroMagnetic Induction. AP Physics B
ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday
More informationCoefficient of Potential and Capacitance
Coefficient of Potential and Capacitance Lecture 12: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We know that inside a conductor there is no electric field and that
More informationExercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F
Exercises on Voltage, Capacitance and Circuits Exercise 1.1 Instead of buying a capacitor, you decide to make one. Your capacitor consists of two circular metal plates, each with a radius of 5 cm. The
More information1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D
Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be
More informationv 2 = v a(x x 0 ) and v = 0 a = v2 0 2d = K md F net = qe = ma E = ma e = K ed = V/m dq = λ ds de r = de cosθ = 1 λ ds = r dθ E r =
Physics 11 Honors Final Exam Spring 003 Name: Section: Closed book exam. Only one 8.5 11 formula sheet (front and back side) can be used. Calculators are allowed. Use the scantron forms (pencil only!)
More informationA satellite of mass 5.00x10² kg is in a circular orbit of radius 2r around Earth. Then it is moved to a circular orbit radius of 3r.
Supplemental Questions A satellite of mass 5.00x10² kg is in a circular orbit of radius 2r around Earth. Then it is moved to a circular orbit radius of 3r. (a) Determine the satellite s GPE in orbit. (b)
More informationPhysics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5
Solutions to Homework Questions 5 Chapt19, Problem2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat
More informationMagnetism Conceptual Questions. Name: Class: Date:
Name: Class: Date: Magnetism 22.1 Conceptual Questions 1) A proton, moving north, enters a magnetic field. Because of this field, the proton curves downward. We may conclude that the magnetic field must
More informationElectric circuits, Current, and resistance (Chapter 22 and 23)
Electric circuits, Current, and resistance (Chapter 22 and 23) Acknowledgements: Several Images and excerpts are taken from College Physics: A strategic approach, Pearson Education Inc Current If electric
More information19 ELECTRIC POTENTIAL AND ELECTRIC FIELD
CHAPTER 19 ELECTRIC POTENTIAL AND ELECTRIC FIELD 663 19 ELECTRIC POTENTIAL AND ELECTRIC FIELD Figure 19.1 Automated external defibrillator unit (AED) (credit: U.S. Defense Department photo/tech. Sgt. Suzanne
More informationPHYSICS PAPER 1 (THEORY)
PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) 
More information2. The sum of the emf s and potential differences around a closed loop equals zero is a consequence
Chapter 27: CIRCUITS 1 The sum of the currents into a junction equals the sum of the currents out of the junction is a consequence of: A Newton s third law B Ohm s law C Newton s second law D conservation
More informationPHY101 Electricity and Magnetism I Course Summary
TOPIC 1 ELECTROSTTICS PHY11 Electricity an Magnetism I Course Summary Coulomb s Law The magnitue of the force between two point charges is irectly proportional to the prouct of the charges an inversely
More informationPhysics 9 Fall 2009 Homework 2  Solutions
Physics 9 Fall 009 Homework  s 1. Chapter 7  Exercise 5. An electric dipole is formed from ±1.0 nc charges spread.0 mm apart. The dipole is at the origin, oriented along the y axis. What is the electric
More informationChapter 18. Electric Forces and Electric Fields
My lecture slides may be found on my website at http://www.physics.ohiostate.edu/~humanic/  Chapter 18 Electric Forces and Electric Fields
More informationHMWK 3. Ch 23: P 17, 23, 26, 34, 52, 58, 59, 62, 64, 73 Ch 24: Q 17, 34; P 5, 17, 34, 42, 51, 52, 53, 57. Chapter 23
HMWK 3 Ch 23: P 7, 23, 26, 34, 52, 58, 59, 62, 64, 73 Ch 24: Q 7, 34; P 5, 7, 34, 42, 5, 52, 53, 57 Chapter 23 P23.7. Prepare: The connecting wires are ideal with zero resistance. We have to reduce the
More informationCONSTANT ELECTRIC CURRENT AND THE DISTRIBUTION OF SURFACE CHARGES 1
CONSTANT ELECTRIC CURRENT AND THE DISTRIBUTION OF SURFACE CHARGES 1 Hermann Härtel Guest scientist at Institute for Theoretical Physics and Astrophysics University Kiel ABSTRACT Surface charges are present,
More informationChapter 22 Magnetism
22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. 8.02 Spring 2013 Conflict Exam Two Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 802 Spring 2013 Conflict Exam Two Solutions Problem 1 (25 points): answers without work shown will not be given any credit A uniformly charged
More informationExam 2 Solutions. PHY2054 Spring Prof. P. Kumar Prof. P. Avery March 5, 2008
Prof. P. Kumar Prof. P. Avery March 5, 008 Exam Solutions 1. Two cylindrical resistors are made of the same material and have the same resistance. The resistors, R 1 and R, have different radii, r 1 and
More information