# Hermitian Operators. Eigenvectors of a Hermitian operator. Definition: an operator is said to be Hermitian if it satisfies: A =A

Save this PDF as:

Size: px
Start display at page:

Download "Hermitian Operators. Eigenvectors of a Hermitian operator. Definition: an operator is said to be Hermitian if it satisfies: A =A"

## Transcription

1 Heriti Opertors Defiitio: opertor is sid to be Heriti if it stisfies: A A Altertively clled self doit I QM we will see tht ll observble properties st be represeted by Heriti opertors Theore: ll eigevles of Heriti opertor re rel Proof: Strt fro Eigevle Eq.: A Eigevectors of Heriti opertor Note: ll eigevectors re defied oly p to ltiplictive c-ber costt A Ths we c choose the orliztio THEOREM: ll eigevectors correspodig to distict eigevles re orthogol Proof: A Strt fro eigevle eqtio: ( c ) ( c ) A Te the H.c. (of both sides): A Te H.c. with : A Use A A: Cobie to give: A A Cobie to give: This c be writte s: A ( ) 0 Sice # 0 it follows tht So either i which cse they re ot distict, or 0, which es the eigevectors re orthogol

2 Copleteess of Eigevectors of Heriti opertor THEOREM: If opertor i M-diesiol Hilbert spce hs M distict eigevles (i.e. o degeercy), the its eigevectors for `coplete set of it vectors (i.e coplete bsis ) Proof: M orthoorl vectors st sp M-diesiol spce. Ths we c se the to for represettio of the idetity opertor: Degeercy Defiitio: If there re t lest two lierly idepedet eigevectors ssocited with the se eigevle, the the eigevle is degeerte. The `degree of degeercy of eigevle is the ber of lierly idepedet eigevectors tht re ssocited with it Let d be the degeercy of the th eigevle The d is the diesio of the degeerte sbspce Eple: The d cse Let s refer to the two lierly idepedet eigevectors % d & There is soe opertor W sch tht for soe we hve: W % % % d W & & & Also we choose to orlize these sttes: % % d & & Lier idepedece es % & #. If they re ot orthogol (% & # 0), we c lwys se Gr-Schidt Orthogoliztio to get orthoorl set

3 Gr-Schidt Orthogoliztio Procedre: Let A secod orthogol vector is the, Proof:,, bt # # Therefore, C be cotied for higher degree of degeercy Alogy i -d: r e r Reslt: Fro M lierly idepedet degeerte eigevectors we c lwys for M orthoorl it vectors which sp the M-diesiol degeerte sbspce. If this is doe, the the eigevectors of Heriti opertor for coplete bsis eve with degeercy preset,, 0 r e r r + e r y r y + e r z r z r e r r ( e r ) + e r e r y ( r ) + r r e y z ( e z r ) r e # r e r e e r # e ( ) r Phy85/Lectre 4: Bsis sets d represettios A `bsis is set of orthogol it vectors i Hilbert spce logos to choosig coordite syste i D spce A bsis is coplete set of it vectors tht sps the stte spce Bsis sets coe i two flvors: discrete d cotios A discrete bsis is wht we hve bee cosiderig so fr. The it vectors c be lbeled by itegers, e.g. {,,, M}, where M c be either fiite or ifiite The ber of bsis vectors is either fiite or cotble ifiity. A cotios bsis is geerliztio whereby the it vectors re lbeled by rel bers, e.g. { }; i < <, where the pper d lower bods c be either fiite or ifiite The ber of bsis vectors is `cotble ifiity.

4 Properties of bsis vectors Eple property orthogolity orliztio stte epsio copoet/ wvefctio proector opertor epsio Mtri eleet discrete cotios # ( ) c d ( ) c ( ) d A A A dd A(, ) A A (, ) A A Cosider the reltio: ' A To ow ' _ or ' yo st ow its copoets i soe bsis Here we will go fro the bstrct for to the specific reltio betwee copoets Abstrct eqtio: Proect oto sigle it vector: Isert the proector: # A# # A# # A# # A# # # A # A # [ d ] d d # # # d d # ( % #) # d Trslte to vector ottio: Se procedre for cotios bsis: c c # A # A c A c # A # # d A # ( ) d # A(, )# ( )

5 Eple : Cobiig differet bsis sets i sigle epressio Let s sse we ow the copoets of ( i the bsis {,,, } c ) ( Let s sppose tht we oly ow the wvefctio of ' i the cotios bsis { } '() ) ' I dditio, we oly ow the tri eleets of A i the lterte cotios bsis { } A(,') ) A ' How wold we copte the tri eleet ( A '? Chge of Bsis Let the sets {,,, } d {,,, } be two differet orthoorl bsis sets Sppose we ow the copoets of ' i the bsis {,,, }, this es we ow the eleets {c }: How do we fid the copoets {C } of ' i the lterte bsis {,,, } A A # % # A d A dd d# A # # d # % dd c A(, ) ( ) We see tht i order to copte this ber, we eed the ier-prodcts d ' This is esily hdled with Dirc ottio: A % %& %& %& d A dd d# dd d# c A (, # ) # ( ) The chge of bsis is ccoplished by ltiplyig the origil col vector by trsfortio tri U. A A # # These re the trsfortio coefficiets to go fro oe bsis to other

6 The Trsfortio tri The trsfortio tri loos lie this & U % M M M L# L L O Eple: -D rottio Let s do filir proble sig the ew ottio Cosider clocwise rottio of -diesiol Crtesi coordites: The cols of U re the copoets of the old it vectors i the ew bsis If we specify t lest oe bsis set i physicl ters, the we c defie other bsis sets by specifyig the eleets of the trsfortio tri

7 Cotied Sry Isert proector oto ow bsis Bsis sets c be cotios or discrete The iportt eqtios re: d # ( ) Chge of bsis is siple with Dirc ottio:. Write ow qtity. Isert proector oto ow bsis. Evlte the trsfortio tri eleets 4. Perfor the reqired stios C c

### Chapter 3 Section 3 Lesson Additional Rules for Exponents

Chpter Sectio Lesso Additiol Rules for Epoets Itroductio I this lesso we ll eie soe dditiol rules tht gover the behvior of epoets The rules should be eorized; they will be used ofte i the reiig chpters

### Arithmetic Sequences

Arithmetic equeces A simple wy to geerte sequece is to strt with umber, d dd to it fixed costt d, over d over gi. This type of sequece is clled rithmetic sequece. Defiitio: A rithmetic sequece is sequece

### A function f whose domain is the set of positive integers is called a sequence. The values

EQUENCE: A fuctio f whose domi is the set of positive itegers is clled sequece The vlues f ( ), f (), f (),, f (), re clled the terms of the sequece; f() is the first term, f() is the secod term, f() is

### Lecture 34: The `Density Operator. Phy851 Fall 2009

Lecture 3: The `Deity Opertor Phy85 Fll 9 The QM `deity opertor HAS NOTHING TO DO WITH MASS PER UNIT VOLUME The deity opertor forli i geerliztio of the Pure Stte QM we hve ued o fr. New cocept: Mixed tte

### FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

### Chapter 04.05 System of Equations

hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

Expoets d Rdicls MODULE - EXPONENTS AND RADICALS We hve lert bout ultiplictio of two or ore rel ubers i the erlier lesso. You c very esily write the followig, d Thik of the situtio whe is to be ultiplied

### A black- line master of Example 3 You Try is on provided on page 10 for duplication or use with a projection system.

Grde Level/Course: Algebr Lesso/Uit Pl Nme: Geometric Sequeces Rtiole/Lesso Abstrct: Wht mkes sequece geometric? This chrcteristic is ddressed i the defiitio of geometric sequece d will help derive the

### Geometric Sequences. Definition: A geometric sequence is a sequence of the form

Geometic equeces Aothe simple wy of geetig sequece is to stt with umbe d epetedly multiply it by fixed ozeo costt. This type of sequece is clled geometic sequece. Defiitio: A geometic sequece is sequece

### Showing Recursive Sequences Converge

Showig Recursive Sequeces Coverge Itroductio My studets hve sked me bout how to prove tht recursively defied sequece coverges. Hopefully, fter redig these otes, you will be ble to tckle y such problem.

### Gaussian Elimination Autar Kaw

Gussi Elimitio Autr Kw After redig this chpter, you should be ble to:. solve set of simulteous lier equtios usig Nïve Guss elimitio,. ler the pitflls of the Nïve Guss elimitio method,. uderstd the effect

### Lecture 4: Cheeger s Inequality

Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

### MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL - INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.

### ORDERS OF GROWTH KEITH CONRAD

ORDERS OF GROWTH KEITH CONRAD Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really wat to uderstad their behavior It also helps you better grasp topics i calculus

### CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS

Lecture Notes PH 4/5 ECE 598 A. L Ros INTRODUCTION TO QUANTUM MECHANICS CHAPTER-0 WAVEFUNCTIONS, OBSERVABLES d OPERATORS 0. Represettios i the sptil d mometum spces 0..A Represettio of the wvefuctio i

### 1 The Binomial Theorem: Another Approach

The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets

### FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

### UNIT FIVE DETERMINANTS

UNIT FIVE DETERMINANTS. INTRODUTION I uit oe the determit of mtrix ws itroduced d used i the evlutio of cross product. I this chpter we exted the defiitio of determit to y size squre mtrix. The determit

### Soving Recurrence Relations

Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

### We will begin this chapter with a quick refresher of what an exponent is.

.1 Exoets We will egi this chter with quick refresher of wht exoet is. Recll: So, exoet is how we rereset reeted ultilictio. We wt to tke closer look t the exoet. We will egi with wht the roerties re for

### Sum and Product Rules. Combinatorics. Some Subtler Examples

Combiatorics Sum ad Product Rules Problem: How to cout without coutig. How do you figure out how may thigs there are with a certai property without actually eumeratig all of them. Sometimes this requires

### {{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers

. Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,

### Infinite Sequences and Series

CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

### SOME IMPORTANT MATHEMATICAL FORMULAE

SOME IMPORTANT MATHEMATICAL FORMULAE Circle : Are = π r ; Circuferece = π r Squre : Are = ; Perieter = 4 Rectgle: Are = y ; Perieter = (+y) Trigle : Are = (bse)(height) ; Perieter = +b+c Are of equilterl

### A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of

Queueig Theory INTRODUCTION Queueig theory dels with the study of queues (witig lies). Queues boud i rcticl situtios. The erliest use of queueig theory ws i the desig of telehoe system. Alictios of queueig

### Section 3.3: Geometric Sequences and Series

ectio 3.3: Geometic equeces d eies Geometic equeces Let s stt out with defiitio: geometic sequece: sequece i which the ext tem is foud by multiplyig the pevious tem by costt (the commo tio ) Hee e some

### Summation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation

Lesso 0.: Sequeces d Summtio Nottio Def. of Sequece A ifiite sequece is fuctio whose domi is the set of positive rel itegers (turl umers). The fuctio vlues or terms of the sequece re represeted y, 2, 3,...,....

### Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity)

Aity Deivatios 4/4/ Deivatio of Aity ad Pepetity Fomlae A. Peset Vale of a Aity (Defeed Paymet o Odiay Aity 3 4 We have i the show i the lecte otes ad i ompodi ad Discoti that the peset vale of a set of

### Computation of matrix eigenvalues and eigenvectors

ENGINEERING COMPUAION Lectre Stephe Roberts Michelms erm Compttio of mtri eigevles d eigevectors opics covered i this lectre:. Itertive Power method for pproimtig the domit eigevle. he Ryleigh Qotiet method.

### 5.3. Generalized Permutations and Combinations

53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

### Fourier Series (Lecture 13)

Fourier Series (Lecture 3) ody s Objectives: Studets will be ble to: ) Determie the Fourier Coefficiets for periodic sigl b) Fid the stedy-stte respose for system forced with geerl periodic forcig Rrely

### = 1. n n 2 )= n n 2 σ2 = σ2

SAMLE STATISTICS A rado saple of size fro a distributio f(x is a set of rado variables x 1,x,,x which are idepedetly ad idetically distributed with x i f(x for all i Thus, the joit pdf of the rado saple

### if A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S,

Lecture 5: Borel Sets Topologically, the Borel sets i a topological space are the σ-algebra geerated by the ope sets. Oe ca build up the Borel sets from the ope sets by iteratig the operatios of complemetatio

### Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

### Repeated multiplication is represented using exponential notation, for example:

Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you

### + 1= x + 1. These 4 elements form a field.

Itroductio to fiite fields II Fiite field of p elemets F Because we are iterested i doig computer thigs it would be useful for us to costruct fields havig elemets. Let s costruct a field of elemets; we

### Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

### 1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

### STUDENT S COMPANIONS IN BASIC MATH: THE SECOND. Basic Identities in Algebra. Let us start with a basic identity in algebra:

STUDENT S COMPANIONS IN BASIC MATH: THE SECOND Bsic Idetities i Algebr Let us strt with bsic idetity i lgebr: 2 b 2 ( b( + b. (1 Ideed, multiplyig out the right hd side, we get 2 +b b b 2. Removig the

### g x is a generator polynomial and generates a cyclic code.

Epress, a Iteratioal Joural of Multi Discipliary Research ISSN: 2348 2052, Vol, Issue 6, Jue 204 Available at: wwwepress-jouralco Abstract ENUMERATION OF CYCLIC CODES OVER GF (5) By Flora Mati Ruji Departet

### Fourier Series and the Wave Equation Part 2

Fourier Series ad the Wave Equatio Part There are two big ideas i our work this week. The first is the use of liearity to break complicated problems ito simple pieces. The secod is the use of the symmetries

### Gray level image enhancement using the Bernstein polynomials

Buletiul Ştiiţiic l Uiersităţii "Politehic" di Timişor Seri ELECTRONICĂ şi TELECOMUNICAŢII TRANSACTIONS o ELECTRONICS d COMMUNICATIONS Tom 47(6), Fscicol -, 00 Gry leel imge ehcemet usig the Berstei polyomils

### m n Use technology to discover the rules for forms such as a a, various integer values of m and n and a fixed integer value a.

TIth.co Alger Expoet Rules ID: 988 Tie required 25 iutes Activity Overview This ctivity llows studets to work idepedetly to discover rules for workig with expoets, such s Multiplictio d Divisio of Like

### Lesson 12. Sequences and Series

Retur to List of Lessos Lesso. Sequeces ad Series A ifiite sequece { a, a, a,... a,...} ca be thought of as a list of umbers writte i defiite order ad certai patter. It is usually deoted by { a } =, or

### represented by 4! different arrangements of boxes, divide by 4! to get ways

Problem Set #6 solutios A juggler colors idetical jugglig balls red, white, ad blue (a I how may ways ca this be doe if each color is used at least oce? Let us preemptively color oe ball i each color,

### Sequences and Series

CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

### Descriptive statistics deals with the description or simple analysis of population or sample data.

Descriptive statistics Some basic cocepts A populatio is a fiite or ifiite collectio of idividuals or objects. Ofte it is impossible or impractical to get data o all the members of the populatio ad a small

### Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

### THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

### Factors of sums of powers of binomial coefficients

ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the

### x(x 1)(x 2)... (x k + 1) = [x] k n+m 1

1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,

### 0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

### Hypothesis testing. Null and alternative hypotheses

Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

### TAYLOR SERIES, POWER SERIES

TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the

### The second difference is the sequence of differences of the first difference sequence, 2

Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

### Math Bowl 2009 Written Test Solutions. 2 8i

Mth owl 009 Writte Test Solutios i? i i i i i ( i)( i ( i )( i ) ) 8i i i (i ) 9i 8 9i 9 i How my pirs of turl umers ( m, ) stisfy the equtio? m We hve to hve m d d, the m ; d, the 0 m m Tryig these umers,

### ARITHMETIC AND GEOMETRIC PROGRESSIONS

Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives

### The Binomial Multi- Section Transformer

4/15/21 The Bioial Multisectio Matchig Trasforer.doc 1/17 The Bioial Multi- Sectio Trasforer Recall that a ulti-sectio atchig etwork ca be described usig the theory of sall reflectios as: where: Γ ( ω

### 3 Basic Definitions of Probability Theory

3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio

### Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

### n Using the formula we get a confidence interval of 80±1.64

9.52 The professor of sttistics oticed tht the rks i his course re orlly distributed. He hs lso oticed tht his orig clss verge is 73% with stdrd devitio of 12% o their fil exs. His fteroo clsses verge

### Simplex Method for Solving Linear Programming Problems with Fuzzy Numbers

Word cde of Sciece Egieerig d Techoog Itertio Jour of Mthetic Coputtio Phsic Eectric d Coputer Egieerig Vo: o:0 00 Sipe Method for Sovig Lier Progrig Probes with Fuzz ubers S H sseri E rdi Yzdi d Zefri

### DEPARTMENT OF ACTUARIAL STUDIES RESEARCH PAPER SERIES

DEPARTMENT OF ACTUARIAL STUDIES RESEARCH PAPER SERIES The ulti-bioil odel d pplictios by Ti Kyg Reserch Pper No. 005/03 July 005 Divisio of Ecooic d Ficil Studies Mcqurie Uiversity Sydey NSW 09 Austrli

### Section 11.3: The Integral Test

Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

### NUMBERS COMMON TO TWO POLYGONAL SEQUENCES

NUMBERS COMMON TO TWO POLYGONAL SEQUENCES DIANNE SMITH LUCAS Chia Lake, Califoria a iteger, The polygoal sequece (or sequeces of polygoal umbers) of order r (where r is r > 3) may be defied recursively

### Sequences II. Chapter 3. 3.1 Convergent Sequences

Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,

### A CHARACTERIZATION OF MINIMAL ZERO-SEQUENCES OF INDEX ONE IN FINITE CYCLIC GROUPS

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(1) (2005), #A27 A CHARACTERIZATION OF MINIMAL ZERO-SEQUENCES OF INDEX ONE IN FINITE CYCLIC GROUPS Scott T. Chapma 1 Triity Uiversity, Departmet

### 1 Correlation and Regression Analysis

1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

### 8.5 Alternating infinite series

65 8.5 Alteratig ifiite series I the previous two sectios we cosidered oly series with positive terms. I this sectio we cosider series with both positive ad egative terms which alterate: positive, egative,

### Asymptotic Growth of Functions

CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

### Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 )

Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before

### Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2

74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is

### CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

### AP CALCULUS FORMULA LIST. f x + x f x f x + h f x. b a

AP CALCULUS FORMULA LIST 1 Defiitio of e: e lim 1+ x if x 0 Asolute Vlue: x x if x < 0 Defiitio of the Derivtive: ( ) f x + x f x f x + h f x f '( x) lim f '( x) lim x x h h f ( + h) f ( ) f '( ) lim derivtive

### More Facts about Finite Symmetry Groups

More Facts about Fiite Symmetry Groups Last time we proved that a fiite symmetry group caot cotai a traslatio or a glide reflectio. We also discovered that i ay fiite symmetry group, either every isometry

### The Field Q of Rational Numbers

Chapter 3 The Field Q of Ratioal Numbers I this chapter we are goig to costruct the ratioal umber from the itegers. Historically, the positive ratioal umbers came first: the Babyloias, Egyptias ad Grees

### Riemann Sums y = f (x)

Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

### Math Discrete Math Combinatorics MULTIPLICATION PRINCIPLE:

Math 355 - Discrete Math 4.1-4.4 Combiatorics Notes MULTIPLICATION PRINCIPLE: If there m ways to do somethig ad ways to do aother thig the there are m ways to do both. I the laguage of set theory: Let

### 1 Computing the Standard Deviation of Sample Means

Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

### Basic Concepts and Definitions of Graph Theory

HAPTER Bsic ocepts d Defiitios of Grph Theory. INTRODUTION Grph theory is rch of thetics strted y Euler [5] s erly s 76. It took hudred yers efore the secod iportt cotriutio of Kirchhoff [9] hd ee de for

### 1.3 Binomial Coefficients

18 CHAPTER 1. COUNTING 1. Biomial Coefficiets I this sectio, we will explore various properties of biomial coefficiets. Pascal s Triagle Table 1 cotais the values of the biomial coefficiets ( ) for 0to

### Chapter One BASIC MATHEMATICAL TOOLS

Chapter Oe BAIC MATHEMATICAL TOOL As the reader will see, the study of the time value of moey ivolves substatial use of variables ad umbers that are raised to a power. The power to which a variable is

### I. Chi-squared Distributions

1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

### Module 4: Mathematical Induction

Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

### THE LEAST SQUARES REGRESSION LINE and R 2

THE LEAST SQUARES REGRESSION LINE ad R M358K I. Recall from p. 36 that the least squares regressio lie of y o x is the lie that makes the sum of the squares of the vertical distaces of the data poits from

### CHAPTER 4: NET PRESENT VALUE

EMBA 807 Corporate Fiace Dr. Rodey Boehe CHAPTER 4: NET PRESENT VALUE (Assiged probles are, 2, 7, 8,, 6, 23, 25, 28, 29, 3, 33, 36, 4, 42, 46, 50, ad 52) The title of this chapter ay be Net Preset Value,

### Lecture 5. Inner Product

Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

### Chapter Gaussian Elimination

Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio

### Investigation of Atwood s machines as Series and Parallel networks

Ivestiatio of Atwood s achies as Series ad Parallel etworks Jafari Matehkolaee, Mehdi; Bavad, Air Ahad Islaic Azad uiversity of Shahrood, Shahid Beheshti hih school i Sari, Mazadara, Ira ehdisaraviaria@yahoo.co

### . P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

4. Basic feasible solutios ad vertices of polyhedra Due to the fudametal theorem of Liear Programmig, to solve ay LP it suffices to cosider the vertices (fiitely may) of the polyhedro P of the feasible

### Even and Odd Functions

Eve d Odd Fuctios Beore lookig t urther emples o Fourier series it is useul to distiguish two clsses o uctios or which the Euler- Fourier ormuls or the coeiciets c be simpliied. The two clsses re eve d

### 1 n. n > dt. t < n 1 + n=1

Math 05 otes C. Pomerace The harmoic sum The harmoic sum is the sum of recirocals of the ositive itegers. We kow from calculus that it diverges, this is usually doe by the itegral test. There s a more

### 1 State-Space Canonical Forms

State-Space Caoical Forms For ay give system, there are essetially a ifiite umber of possible state space models that will give the idetical iput/output dyamics Thus, it is desirable to have certai stadardized

### .04. This means \$1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

RADICALS AND SOLVING QUADRATIC EQUATIONS Evaluate Roots Overview of Objectives, studets should be able to:. Evaluate roots a. Siplify expressios of the for a b. Siplify expressios of the for a. Evaluate

### MATHEMATICS SYLLABUS SECONDARY 7th YEAR

Europe Schools Office of the Secretry-Geerl Pedgogicl developmet Uit Ref.: 2011-01-D-41-e-2 Orig.: DE MATHEMATICS SYLLABUS SECONDARY 7th YEAR Stdrd level 5 period/week course Approved y the Joit Techig

### B1. Fourier Analysis of Discrete Time Signals

B. Fourier Aalysis of Discrete Time Sigals Objectives Itroduce discrete time periodic sigals Defie the Discrete Fourier Series (DFS) expasio of periodic sigals Defie the Discrete Fourier Trasform (DFT)

### Section 9.2 Series and Convergence

Sectio 9. Series ad Covergece Goals of Chapter 9 Approximate Pi Prove ifiite series are aother importat applicatio of limits, derivatives, approximatio, slope, ad cocavity of fuctios. Fid challegig atiderivatives