Nuclear Fission and Fusion

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Nuclear Fission and Fusion"

Transcription

1 CHAPTER 0 2 SECTION Nuclear Changes Nuclear Fission and Fusion KEY IDEAS As you read this section, keep these questions in mind: What holds the nucleus of an atom together? What happens when the nucleus of a heavy atom splits apart? What happens when the nucleus of a small atom joins with the nucleus of another small atom? Who Discovered Nuclear Fission? In 939, German scientists Otto Hahn and Fritz Strassman were trying make uranium atoms with heavier nuclei. To do this, they used a device that shot neutrons at a sample of uranium. They hoped that at least a few uranium nuclei would gain one or more neutrons. To their surprise, new elements formed. Instead of uranium isotopes, they detected barium and krypton. They thought they had made a mistake. Soon after, a scientist named Lise Meitner and her nephew Otto Frisch read the results of the experiments. Meitner realized that Hahn and Strassman had not made a mistake. They had actually split the uranium nuclei into smaller elements. READING TOOLBOX Define As you read, write down any terms in the section that you do not understand. Use the section vocabulary boxes or a dictionary to find the definitions of these terms. Write the definitions in your own words in the text margin.. Explain What did Lise Meitner conclude about the work of Hahn and Strassman? This nuclear reactor was used in the late 940s and early 950s to study controlled nuclear fission. In the early 940s, Enrico Fermi and other scientists at the University of Chicago built a stack of graphite and uranium blocks. These materials formed the nuclear reactor that was used to create the first controlled nuclear fission chain reaction. This work launched the Manhattan Project, which led to the creation of nuclear weapons. Interactive Reader 23 Nuclear Changes

2 What Holds a Nucleus Together? Protons and neutrons are packed tightly in the tiny nucleus of an atom. Recall that some atomic nuclei are unstable and emit nuclear radiation as they decay. The stability of a nucleus depends on the nuclear forces that hold the nucleus together. If like charges repel one another, how can positively charged protons fit together into an atomic nucleus without flying apart? 2. Compare Compare the relative strengths of the nuclear force and the electric force. THE STRONG NUCLEAR FORCE The strong nuclear force holds the neutrons and protons together in a nucleus. This attraction is much stronger than the electric force that causes protons to repel other protons. However, the attraction only happens over a very short distance (3 0 5 meters). This is less than the width of three protons. The strong nuclear force that holds protons and neutrons together is stronger than the electrical force that pushes protons apart. 3. Describe What are the relative strengths of attractive and repulsive forces in a stable nucleus? THE STRONG NUCLEAR FORCE AND STABILITY Because neutrons have no charge, they do not attract or repel protons or one another. However, protons repel one another due to the electric force and attract one another due to the nuclear force. In stable nuclei, the attractive forces are stronger than the repulsive forces. Under these conditions, the element does not undergo decay. Interactive Reader 24 Nuclear Changes

3 What Causes a Nucleus to Decay? An element decays when the repulsive forces in the nucleus are stronger than the attractive forces. A large number of neutrons in an atom can help hold a nucleus together. However, there is a limit to how many neutrons a nucleus can have. Nuclei with too many or too few neutrons are unstable and undergo decay. UNSTABLE NUCLEI Nuclei with more than 83 protons are always unstable, no matter how many neutrons they have. These nuclei always decay and release large amounts of energy and nuclear radiation. Some of the energy is passed to the particles that leave the nucleus. The rest of the energy leaves the nucleus in the form of gamma rays. This radioactive decay helps produce a more stable nucleus. What Is Nuclear Fission? The process of splitting atoms with heavy nuclei into atoms with lighter nuclei is called fission. When the nucleus splits, both neutrons and energy are released. In their experiments, Hahn and Strassman used a device that shot at, or bombarded, a uranium- nucleus with neutrons. One set of products from this type of fission includes two lighter nuclei, barium-40 and krypton-93, and neutrons and energy. U + 92 n Ba + Kr n + energy 0 Notice that the products include three neutrons plus energy. Uranium- can also undergo fission to produce different pairs of lighter nuclei. For example, uranium- can undergo fission to produce strontium-90, xenon-43, and three neutrons. How Does Nuclear Fission Produce Energy? During fission, the nucleus breaks into smaller nuclei. The process releases large amounts of energy. Each dividing nucleus releases about joules of energy. In comparison, the chemical reaction of one molecule of the explosive trinitrotoluene (TNT) releases joules. 4. Identify Under what conditions does a nucleus decay? 5. Identify What is the maximum number of protons that can be found in a stable nucleus? 6. Analyze How many total neutrons are on the left side of the equation? How many total neutrons are found on the right? Math Skills 7. Compare How much more energy is released by a dividing nucleus than by a molecule of TNT? Interactive Reader 25 Nuclear Changes

4 When a uranium- nucleus is bombarded by a neutron, the nucleus breaks apart into smaller nuclei. The process releases energy through fast moving neutrons. 8. Explain Why is some mass missing after fission? 9. Explain What does massenergy equivalence mean? In their experiment, Hahn and Strassman recorded the masses of all of the nuclei and particles before and after the reaction. They found the overall mass had decreased after the reaction. Hahn and Strassman also found that the process had released energy. They concluded that the missing mass must have changed into energy. What Is Mass-Energy Equivalence? Recall that, according to Newton s laws, no mass or energy can be created or destroyed during physical or chemical changes. The laws of conservation of mass and energy do not apply to nuclear reactions such as fission. During fission, some matter changes to energy. Albert Einstein explained the equivalence of mass and energy by the special theory of relativity. This equivalence means that matter can be converted into energy, and energy can be converted into matter. Equivalence is described by the equation below. Mass-Energy Equation Energy = mass (speed of light) 2 E = mc 2 The speed of light, c, equals m/s. If you multiply c 2 by even a very small mass, the energy value is very large. For example, the mass-equivalent energy of kg of matter is joules. That is more than the energy of 22 million tons of the explosive TNT. Interactive Reader 26 Nuclear Changes

5 STABILITY OF MATTER Obviously, the objects around us do not change suddenly into their equivalent energies. The results of that would be disastrous. Under ordinary conditions, matter is very stable. What Is the Mass Defect? Suppose you measured the mass of a carbon-4 nucleus, which has six protons and eight neutrons. Suppose you then measured the mass of six individual protons and eight individual neutrons. You would expect the mass of the nucleus to be the same as the total mass of the individual particles. However, you find that the mass of the nucleus is less than the sum of the individual masses. What happened to the missing mass? Mass of proton = kg Mass of 6 protons = Mass of neutron = kg Actual mass of a carbon-4 nucleus = kg Mass of 8 neutrons = Expected mass of a carbon-4 nucleus = Math Skills 0. Calculate Complete the table to compare the expected and actual values for the mass of a carbon-4 nucleus. The missing mass is called the mass defect. Einstein s theory of special relativity explains: the missing mass changes into energy. When nuclei form, energy is released. Note, however, that the mass defect of a nucleus is very small. What Is a Nuclear Chain Reaction? Have you ever watched balls moving on a pool table? When one ball hits another, the collision can cause the second ball to hit another. Some nuclear reactions work the same way. One reaction triggers another reaction. A nucleus that splits when it is hit by a neutron forms smaller nuclei. The smaller nuclei need fewer neutrons to be held together. Therefore, they release extra neutrons. If one of those neutrons collides with another large nucleus, that nucleus undergoes fission, or splits. A nuclear chain reaction is a continuous series of nuclear fission reactions.. Define What is the mass defect? Interactive Reader 27 Nuclear Changes

6 2. Predict How many total neutrons will probably be released in the next stage of this chain reaction? Kr Ba Kr Ba Ba Kr Ba Kr A nuclear chain reaction may be triggered, or started, by a single neutron. Scientists found that on average, each uranium nucleus that divides produces two or three extra neutrons. Each one of these neutrons could trigger, or start, another fission reaction. The ability to start a nuclear chain reaction depends partly on the number of neutrons released during each fission reaction. What Is a Controlled Chain Reaction? Energy produced in a nuclear chain reaction can be used to generate electricity. The diagram describes this process. Using Nuclear Chain Reactions to Generate Electricity 2 Uranium- nuclei in the fuel rod (black) undergo a chain reaction. Control rods (gray) absorb neutrons. This keeps the chain reaction at a safe level. A coolant, usually water, absorbs energy from the chain reaction. 3 Water absorbs energy from the hot coolant and changes to steam. 3. Identify What is the function of the control rods? To cooling tower 4 The steam turns a turbine attached to a generator. 5 The generator changes the mechanical energy of the spinning turbine into electrical energy. Interactive Reader 28 Nuclear Changes

7 NUCLEAR WEAPONS The chain-reaction principle is also used to make a nuclear bomb. In a nuclear bomb, two or more quantities of uranium- are packed into a container. The uranium is surrounded by a powerful chemical explosive. When the explosives are detonated, or set off, the uranium is pushed together to exceed the critical mass. The critical mass is the smallest amount of a substance that provides enough neutrons to start a nuclear chain reaction. If the amount of a substance is less than the critical mass, a chain reaction will not continue. Fortunately, the concentration of uranium- in nature is too low to start a chain reaction naturally. In nuclear power plants, control rods are used to slow the chain reaction. In a nuclear bomb, reactions are not controlled. What Is Nuclear Fusion? Nuclear fission is not the only nuclear process that can produce energy. Energy can also be produced when light atomic nuclei join, or fuse, to form heavier nuclei. This process is called fusion. In the sun and other stars, huge amounts of energy are produced when hydrogen nuclei fuse. However, a large amount of energy is needed to start a fusion reaction. Energy is needed to push nuclei close enough so that the strong nuclear force can overcome the repulsive electrical force. In stars, extremely high temperatures provide the energy to bring hydrogen nuclei together. 4. Define What is a critical mass? 5. Describe What happens during nuclear fusion? H+ H 2 H + other particles 2 H+ H 3 2 He γ 3 2 He He 4 2 He+ H+ H The process of nuclear fusion releases large amounts of energy. Interactive Reader 29 Nuclear Changes

8 Section 2 Review SECTION VOCABULARY critical mass the minimum mass of a fissionable isotope that provides the number of neutrons needed to sustain a chain reaction fission the process by which a nucleus splits into two or more fragments and releases neutrons and energy fusion the process in which light nuclei combine at extremely high temperatures, forming heavier nuclei and releasing energy nuclear chain reaction a continuous series of nuclear fission reactions. Summarize Complete the process chart to describe how nuclear fission is used to produce electricity. A coolant absorbs energy from the chain reaction. A generator changes the mechanical energy of the spinning turbine into electrical energy. 2. Predict Suppose you had an atom of Fe. Is the mass of its nucleus greater than, less than, or equal to the combined masses of 26 protons and 3eutrons? Explain your answer. 3. Identify Do the following equations describe nuclear fission or nuclear fusion? Explain your answers. U+ 92 n Ba + Kr n + energy Pb + 26 Fe Hs + 08 n 0 Interactive Reader 220 Nuclear Changes

Chemistry: Nuclear Reactions Guided Inquiry

Chemistry: Nuclear Reactions Guided Inquiry Chemistry: Nuclear Reactions Guided Inquiry Nuclear reactions change the nucleus of an atom. Chemical Reactions vs. Nuclear Reactions Atoms and molecules are striving to achieve the most stable arrangement.

More information

Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

More information

Nuclear Fuels and Fission

Nuclear Fuels and Fission Nuclear Fuels and Fission 1 of 33 Boardworks Ltd 2011 2 of 33 Boardworks Ltd 2011 How do we get energy from atoms? 3 of 33 Boardworks Ltd 2011 Atoms contain huge amounts of energy in their nuclei. There

More information

Li Lithium Nuclear Physics. Atom Basics. Atom Basics. Symbol Charge Mass(u) Electron e p Proton. Neutron

Li Lithium Nuclear Physics. Atom Basics. Atom Basics. Symbol Charge Mass(u) Electron e p Proton. Neutron atom the smallest particle of an element that retains the chemical properties of that element An atom is composed of Nucleons Protons Subatomic Neutrons Particles Electrons Atom Basics The number of protons

More information

Lecture 40 Chapter 34 Nuclear Fission & Fusion Nuclear Power

Lecture 40 Chapter 34 Nuclear Fission & Fusion Nuclear Power Lecture 40 Chapter 34 Nuclear Fission & Fusion Nuclear Power Final Exam - Monday Dec. 20, 1045-1315 Review Lecture - Mon. Dec. 13 7-Dec-10 Short-Range Strong Nuclear Force The strong force is most effective

More information

Objectives 404 CHAPTER 9 RADIATION

Objectives 404 CHAPTER 9 RADIATION Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

More information

REVIEW NUCLEAR CHEMISTRY 3/31/16 NAME: PD 3

REVIEW NUCLEAR CHEMISTRY 3/31/16 NAME: PD 3 3/31/16 NAME: PD 3 1. Given the equation representing a nuclear reaction in which X represents a nuclide: Which nuclide is represented by X? 2. Which nuclear emission has the greatest mass and the least

More information

Note-A-Rific: Fission & Fusion

Note-A-Rific: Fission & Fusion Note-A-Rific: Fission & Fusion Nuclear Energy Start talking to someone about nuclear energy, and they ll probably think of two things: nuclear bombs, and the towers of a nuclear power plant (like on the

More information

Nuclear Reactions- chap.31. Fission vs. fusion mass defect..e=mc 2 Binding energy..e=mc 2 Alpha, beta, gamma oh my!

Nuclear Reactions- chap.31. Fission vs. fusion mass defect..e=mc 2 Binding energy..e=mc 2 Alpha, beta, gamma oh my! Nuclear Reactions- chap.31 Fission vs. fusion mass defect..e=mc 2 Binding energy..e=mc 2 Alpha, beta, gamma oh my! Definitions A nucleon is a general term to denote a nuclear particle - that is, either

More information

Lesson 45: Fission & Fusion

Lesson 45: Fission & Fusion Lesson 45: Fission & Fusion Start talking to someone about nuclear energy, and they ll probably think of two things: nuclear bombs, and the towers of a nuclear power plant like on the Simpsons. Most people

More information

Nuclear Reactions Fission And Fusion

Nuclear Reactions Fission And Fusion Nuclear Reactions Fission And Fusion Describe and give an example of artificial (induced) transmutation Construct and complete nuclear reaction equations Artificial transmutation is the changing or manipulation

More information

Nuclear Power. The True meaning Of Nuclear Power On Earth

Nuclear Power. The True meaning Of Nuclear Power On Earth Nuclear Power The True meaning Of Nuclear Power On Earth Basics of Fission Nuclear Fission is the division of generally large and unstable elements (like uranium and plutonium) into smaller elements Nuclear

More information

a) Conservation of Mass states that mass cannot be created or destroyed. b) Conservation of Energy states that energy cannot be created or destroyed.

a) Conservation of Mass states that mass cannot be created or destroyed. b) Conservation of Energy states that energy cannot be created or destroyed. 7 Fission In 1939 Hahn and Strassman, while bombarding U-235 nuclei with neutrons, discovered that sometimes U-235 splits into two nuclei of medium mass. There are two important results: 1. Energy is produced.

More information

1. A release of energy is a sign that. 5. The substance that is formed in a chemical reaction is called the. A. a physical change gust occurred

1. A release of energy is a sign that. 5. The substance that is formed in a chemical reaction is called the. A. a physical change gust occurred 1. A release of energy is a sign that A. a physical change gust occurred B. a chemical change is taking place 5. The substance that is formed in a chemical reaction is called the A. reactant B. product

More information

Chapter 4 Radioactivity and Medicine. A CT scan (computed tomography) of the brain using X-ray beams

Chapter 4 Radioactivity and Medicine. A CT scan (computed tomography) of the brain using X-ray beams Chapter 4 Radioactivity and Medicine A CT scan (computed tomography) of the brain using X-ray beams A radioactive isotope has an unstable nucleus; it emits radiation to become more stable and can be one

More information

Nuclear Energy. Nuclear Energy. Nuclear Energy

Nuclear Energy. Nuclear Energy. Nuclear Energy Nuclear energy - energy from the atomic nucleus. Nuclear fission (i.e. splitting of nuclei) and nuclear fusion (i.e. combining of nuclei) release enormous amounts of energy. Number of protons determines

More information

Radioactivity Review

Radioactivity Review Science Section 7- Name: Block: Radioactivity Review. Complete the following table: Isotope Mass Number Atomic Number (number of protons) Number of Neutrons nitrogen-5 5 7 8 sulfur-3 3 6 neon- magnesium-5

More information

Introduction to Nuclear Physics

Introduction to Nuclear Physics Introduction to Nuclear Physics 1. Atomic Structure and the Periodic Table According to the Bohr-Rutherford model of the atom, also called the solar system model, the atom consists of a central nucleus

More information

fission and fusion: a Physics kit

fission and fusion: a Physics kit half-life Number of particles left The half-life of an element tells us how long it will take for half of the nuclei in a sample of an unstable element to decay. So, after one half-life, only half of the

More information

Chapter 4 & 25 Notes Atomic Structure and Nuclear Chemistry Page 1

Chapter 4 & 25 Notes Atomic Structure and Nuclear Chemistry Page 1 Chapter 4 & 25 Notes Atomic Structure and Nuclear Chemistry Page 1 DEFINING THE ATOM Early Models of the Atom In this chapter, we will look into the tiny fundamental particles that make up matter. An atom

More information

Time for the Class Evaluation and Final Exam Preparationi

Time for the Class Evaluation and Final Exam Preparationi Time for the Class Evaluation and Final Exam Preparationi Please provide your input. The deadline is May 1 st, i.e. next Sunday. All students should have received an e-mail instruction. If you haven t,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chemistry 1C-Dr. Larson Chapter 21 Review Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) By what process does thorium-230 decay to radium-226?

More information

Learning Objectives. Success Criteria. Chemistry Matter and Change pp Chemistry the Central Science p

Learning Objectives. Success Criteria. Chemistry Matter and Change pp Chemistry the Central Science p Nuclear Chemistry Why? Nuclear chemistry is the subdiscipline of chemistry that is concerned with changes in the nucleus of elements. These changes are the source of radioactivity and nuclear power. Since

More information

Generating Heat. Outline Generating Heat Fuel for Fission Heat to Electricity Homework

Generating Heat. Outline Generating Heat Fuel for Fission Heat to Electricity Homework Nuclear Power The uranium-235 isotope reacts with a neutron to generate an unstable isotope, uranium-236. The heat that results from the fission of uranium-236 can be used to generate electricity. Nearly

More information

Chapter 7: The Fires of Nuclear Fission

Chapter 7: The Fires of Nuclear Fission Chapter 7: The Fires of Nuclear Fission What is nuclear fission? Is using nuclear energy safe for humans and the environment? Is nuclear energy better to use than electric generated energy? What happens

More information

The parts of a nuclear fission reactor

The parts of a nuclear fission reactor P2 6.1a Student practical sheet The parts of a nuclear fission reactor Making uranium-235 split and produce energy is actually remarkably easy. The trick is to make it do so in a controllable way. Aim

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Exemplar for Internal Achievement Standard Level 2

Exemplar for Internal Achievement Standard Level 2 Exemplar for Internal Achievement Standard 91172 Level 2 This exemplar supports assessment against: Achievement Standard 91172 Demonstrate understanding of atomic and nuclear physics An annotated exemplar

More information

Which of these atoms are isotopes of the same element? (2) The process by which nuclei join to form a larger nucleus is called

Which of these atoms are isotopes of the same element? (2) The process by which nuclei join to form a larger nucleus is called Q. (a) The diagrams represent three atoms, X, Y and Z. Which of these atoms are isotopes of the same element? Give a reason for your answer. In a star, nuclei of atom X join to form nuclei of atom Y. Complete

More information

Structure and Properties of Atoms

Structure and Properties of Atoms PS-2.1 Compare the subatomic particles (protons, neutrons, electrons) of an atom with regard to mass, location, and charge, and explain how these particles affect the properties of an atom (including identity,

More information

A) B) C) D) Which particle is represented by the letter X?

A) B) C) D) Which particle is represented by the letter X? 1. Which nuclear emission has the greatest mass and the least penetrating power? an alpha particle a beta particle a neutron a positron 2. Which equation represents alpha decay? 3. An unstable nucleus

More information

25.3. Lesson 25.3 Fission and Fusion. Overview. In this lesson, you will cover the topics of nuclear fission and fusion and nuclear reactors.

25.3. Lesson 25.3 Fission and Fusion. Overview. In this lesson, you will cover the topics of nuclear fission and fusion and nuclear reactors. 25.3 Lesson 25.3 Fission and Fusion Objectives Lesson Links 25.3.1 Describe what happens in a nuclear chain reaction. 25.3.2 Distinguish fission reactions from fusion reactions. Ch. 25 Core TR: Section

More information

Exampro GCSE Physics. P2 Fission, Fusion and life cycle of a star self study questions - Higher tier. Name: Class: Author: Date: Time: 68.

Exampro GCSE Physics. P2 Fission, Fusion and life cycle of a star self study questions - Higher tier. Name: Class: Author: Date: Time: 68. Exampro GCSE Physics P2 Fission, Fusion and life cycle of a star self study questions - Higher tier Name: Class: Author: Date: Time: 68 Marks: 68 Comments: Page of 26 Q. Describe briefly how stars such

More information

The Atom. Unit 3 Atomic Structure And Nuclear Chemistry. Ancient Ideas of the Atom. Ancient Ideas of the Atom. Ancient Ideas of the Atom

The Atom. Unit 3 Atomic Structure And Nuclear Chemistry. Ancient Ideas of the Atom. Ancient Ideas of the Atom. Ancient Ideas of the Atom 1 The Atom Unit 3 Atomic Structure And Nuclear Chemistry What are the basic parts of an atom? How is an atom identified? What is nuclear chemistry? How is a nuclear equation written? Atom Smallest particle

More information

AS91172 version 1 Demonstrate understanding of atomic and nuclear physics Level 2 Credits 3

AS91172 version 1 Demonstrate understanding of atomic and nuclear physics Level 2 Credits 3 AS91172 version 1 Demonstrate understanding of atomic and nuclear physics Level 2 Credits 3 This achievement standard involves demonstrating understanding of atomic and nuclear physics. Assessment typically

More information

Nuclear Stability. From Hyperphysics:

Nuclear Stability. From Hyperphysics: Radioactive Decay Certain isotopes of elements are unstable and decompose through one of several processes that release particles or high-energy electromagnetic radiation. In this unit we'll cover examples

More information

22.1 Nuclear Reactions

22.1 Nuclear Reactions In the Middle Ages, individuals called alchemists spent a lot of time trying to make gold. Often, they fooled people into believing that they had made gold. Although alchemists never succeeded in making

More information

Chapter 7: The Fires of Nuclear Fission

Chapter 7: The Fires of Nuclear Fission Chapter 7: The Fires of Nuclear Fission Nuclear Fuel A nuclear fuel pellet contains about 4 grams of fuel It produces the same amount of energy as a ton of coal or 50 gallons of gasoline It s fairly cheap

More information

Physics 1104 Midterm 2 Review: Solutions

Physics 1104 Midterm 2 Review: Solutions Physics 114 Midterm 2 Review: Solutions These review sheets cover only selected topics from the chemical and nuclear energy chapters and are not meant to be a comprehensive review. Topics covered in these

More information

Development of the Atomic Bomb

Development of the Atomic Bomb Chapter 28 Nuclear Fission Fission, Fusion, Binding Energy, and Half Life How would we write this Nuclear Reaction? Uranium Isotopes Naturally occurring Uranium contains two major isotopes Uranium-238

More information

Nuclear Decay. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay

Nuclear Decay. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay Big Idea: Changes in the nucleus of an atom can result in the ejection of particles, the transformation of the atom into another element, and the release of energy. 1 Chapter 20: The Nucleus: A Chemist

More information

Period 18 Solutions: Consequences of Nuclear Energy Use

Period 18 Solutions: Consequences of Nuclear Energy Use Period 18 Solutions: Consequences of Nuclear Energy Use 12/22/12 As you watch the videos in class today, look for a pro-nuclear or anti-nuclear bias on the part of the video producers, narrators, and interviewers.

More information

Nuclear fission and fusion

Nuclear fission and fusion Nuclear fission and fusion P2 62 minutes 62 marks Page of 23 Q. Nuclear power stations use the energy released from nuclear fuels to generate electricity. (a) Which substance do the majority of nuclear

More information

Increasing Energy Decreasing Energy Increasing Frequency Decreasing Frequency Decreasing Wavelength Increasing Wavelength

Increasing Energy Decreasing Energy Increasing Frequency Decreasing Frequency Decreasing Wavelength Increasing Wavelength Chapter 7 Radiation and Nuclear Energy radiation - energy given off by a body electromagnetic radiation - energy which is made up of a varying electrical field and a varying magnetic field. The fields

More information

VO Atomic bombs, nuclear power plants, and the sun are powered as the result of releasing of nuclear energy.

VO Atomic bombs, nuclear power plants, and the sun are powered as the result of releasing of nuclear energy. Physics and Chemistry 1501 Nuclear Science Part I Atomic bombs, nuclear power plants, and the sun are powered as the result of releasing of nuclear energy. (Read objectives on screen.) In this program,

More information

Nuclear Fission and Fusion

Nuclear Fission and Fusion Why? Nuclear Fission and Fusion Fission and fusion are two processes that alter the nucleus of an atom. Nuclear fission provides the energy in nuclear power plants and fusion is the source of the sun s

More information

7.1 Fission Fission Demonstration

7.1 Fission Fission Demonstration Fission Demonstration Grade Level 5-12 Disciplinary Core Ideas (DCI, NGSS) 5-PS1-1, 5-PS1-3, 5-ESS3-1, 3-5 ETS1-1, MS-PS1-4, MS- PS1-5, MS-PS3-1, MS-PS3-2, MS-PS3-4, MS-PS3-5, HS- PS1-1, HS-PS1-8 Time

More information

Atomic Origins: Chapter Problems

Atomic Origins: Chapter Problems Atomic Origins: Chapter Problems Big Bang 1. How old is the Universe? 2. Name and describe the three subatomic particles. 3. Nuclear fusion reactions power stars. Name 2 elements that can be formed in

More information

427.00-6 FISSION. At the conclusion of this lesson the trainee will be able to:

427.00-6 FISSION. At the conclusion of this lesson the trainee will be able to: FISSION OBJECTIVES At the conclusion of this lesson the trainee will be able to: 1. Explain where the energy released by fission comes from (mass to energy conversion). 2. Write a typical fission reaction.

More information

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel Chemistry 1000 Lecture 2: Nuclear reactions and radiation Marc R. Roussel Nuclear reactions Ordinary chemical reactions do not involve the nuclei, so we can balance these reactions by making sure that

More information

Fission, Fusion, Atomic and Hydrogen Bombs

Fission, Fusion, Atomic and Hydrogen Bombs Fission, Fusion, Atomic and Hydrogen Bombs Nuclear Fission: nuclear fission is either a nuclear reaction or a radioactive decay process in which the nucleus of an atom splits into smaller parts (lighter

More information

Nuclear Terminology. Nuclear Chemistry. Nuclear Chemistry. Nuclear Chemistry. Nuclear Reactions. Types of Radioactivity 9/1/12

Nuclear Terminology. Nuclear Chemistry. Nuclear Chemistry. Nuclear Chemistry. Nuclear Reactions. Types of Radioactivity 9/1/12 Nuclear Chemistry Up to now, we have been concerned mainly with the electrons in the elements the nucleus has just been a positively charged thing that attracts electrons The nucleus may also undergo changes

More information

CHAPTER What type of particle is emitted when a U-235 decays to Np-235? a. alpha particle b. beta particle c. neutron d. helium nuclei.

CHAPTER What type of particle is emitted when a U-235 decays to Np-235? a. alpha particle b. beta particle c. neutron d. helium nuclei. CHAPTER 13 1. What type of particle is emitted when a U-235 decays to Np-235? a. alpha particle b. beta particle c. neutron d. helium nuclei 2. Stable nuclei (that is, nonradioactive nuclei) have mass

More information

Chapter 20: The Nucleus: A Chemist s View

Chapter 20: The Nucleus: A Chemist s View Chapter 20: The Nucleus: A Chemist s View Big Idea: Changes in the nucleus of an atom can result in the ejection of particles, the transformation of the atom into another element, and the release of energy.

More information

Radiation and the Universe B+ questions

Radiation and the Universe B+ questions Radiation and the Universe B+ questions Name: Q. The diagram below shows a method of controlling the thickness of paper produced at a paper mill. A radioactive source which emits beta radiation is placed

More information

Exercise 6 - # lb = _?_ g ft 3 cm lb. 454 g. 1 ft 3. in 3 = ft 3 lb 1728 in cm (454) / (1728) (16.39) = 0.

Exercise 6 - # lb = _?_ g ft 3 cm lb. 454 g. 1 ft 3. in 3 = ft 3 lb 1728 in cm (454) / (1728) (16.39) = 0. Exercise 6 - #11 4.7 lb = _?_ g ft 3 cm 3 4.7 lb. 454 g. 1 ft 3. in 3 = ft 3 lb 1728 in 2 16.39 cm 3 Multiply across (no equal sign) 4.7 (454) / (1728) (16.39) = 0.075 g cm 3 Exercise 6, #13 186,000 mi

More information

Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involves

Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involves 1 General Chemistry II Jasperse Nuclear Chemistry. Extra Practice Problems Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involved The

More information

FXA 2008. Candidates should be able to : UNIT G485 Module 3 5.3.4 Fission and Fusion. Δm = m(separate nucleons) - m(nucleus) 1 u = 1.

FXA 2008. Candidates should be able to : UNIT G485 Module 3 5.3.4 Fission and Fusion. Δm = m(separate nucleons) - m(nucleus) 1 u = 1. 1 Candidates should be able to : MASS DEFECT Select and use Einstein s mass-energy equation : ΔE = Δmc 2 All atoms are lighter than the sum of the masses of their constituent protons, neutrons and electrons.

More information

Keep in mind that less stable means more radioactive and more stable means less radioactive.

Keep in mind that less stable means more radioactive and more stable means less radioactive. Nuclear Stability What is the nuclear stability? Nuclear stability means that nucleus is stable meaning that it does not spontaneously emit any kind of radioactivity (radiation). On the other hand, if

More information

FUSION NEUTRON DEUTERIUM HELIUM TRITIUM.

FUSION NEUTRON DEUTERIUM HELIUM TRITIUM. FUSION AND FISSION THE SUN Every second, the sun converts 500 million metric tons of hydrogen to helium. Due to the process of fusion, 5 million metric tons of excess material is converted into energy

More information

Fission Fundamentals

Fission Fundamentals Fission Fundamentals Richard Wolfson Benjamin F. Wissler Professor of Physics Middlebury College The Role of Nuclear Power Washington & Lee University June 21, 2007 Atoms & Nuclei: A Brief History Democritus

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

Nuclear power plants

Nuclear power plants S t r o n a 1 Aneta Kucharczyk Nuclear power plants The article is intended for high school students having chemistry classes at both beginner and advanced level. The material described in this paper can

More information

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle?

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle? 1. In the general symbol cleus, which of the three letters Z A X for a nu represents the atomic number? 2. What is the mass number of an alpha particle? 3. What is the mass number of a beta particle? 4.

More information

Nuclear Energy: Nuclear Energy

Nuclear Energy: Nuclear Energy Introduction Nuclear : Nuclear As we discussed in the last activity, energy is released when isotopes decay. This energy can either be in the form of electromagnetic radiation or the kinetic energy of

More information

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq.

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq. 1 Strontium-90 decays with the emission of a β-particle to form Yttrium-90. The reaction is represented by the equation 90 38 The decay constant is 0.025 year 1. 90 39 0 1 Sr Y + e + 0.55 MeV. (a) Suggest,

More information

2 The Structure of Atoms

2 The Structure of Atoms CHAPTER 4 2 The Structure of Atoms SECTION Atoms KEY IDEAS As you read this section, keep these questions in mind: What do atoms of the same element have in common? What are isotopes? How is an element

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity 1. The number of electrons in an atom of atomic number Z and mass number A is 1) A 2) Z 3) A+Z 4) A-Z 2. The repulsive force between the positively charged protons does

More information

Inside the Atom. Every person is different. What are some things that make one person look different from another person?

Inside the Atom. Every person is different. What are some things that make one person look different from another person? chapter 14 3 Inside the Atom section 2 The Nucleus Before You Read Every person is different. What are some things that make one person look different from another person? What You ll Learn what radioactive

More information

1. Ordinary matter is composed of particles called atoms. 2. Atoms are far too small to be observed with the naked eye.

1. Ordinary matter is composed of particles called atoms. 2. Atoms are far too small to be observed with the naked eye. 2 ATOMIC STRUCTURE Nearly 2500 years ago Greek scholars speculated that the substances around us are made of tiny particles called atoms. A limited number of different kinds of atoms in various combinations

More information

Principles of Imaging Science I (RAD119) Physical Environment Classifications. Atomic Structure. Matter

Principles of Imaging Science I (RAD119) Physical Environment Classifications. Atomic Structure. Matter Principles of Imaging Science I (RAD119) Atomic Structure Atomic Structure & Matter In radiography, it is important to understand the structure of matter and the fundamentals of electromagnetic radiation

More information

NUCLEAR FISSION DOE-HDBK-1019/1-93 Atomic and Nuclear Physics NUCLEAR FISSION

NUCLEAR FISSION DOE-HDBK-1019/1-93 Atomic and Nuclear Physics NUCLEAR FISSION NUCLEAR FISSION DOE-HDBK-101/1-3 Atomic and Nuclear Physics NUCLEAR FISSION Nuclear fission is a process in which an atom splits and releases energy, fission products, and neutrons. The neutrons released

More information

Einstein: (1905) Albert Einstein: He comes up with a little formula you may have heard of: E = mc 2

Einstein: (1905) Albert Einstein: He comes up with a little formula you may have heard of: E = mc 2 Nuclear Fission 1 Einstein: (1905) Albert Einstein: He comes up with a little formula you may have heard of: E = mc 2 This equation changes everything. 1 g = 9 x 10 13 J (equivalent to burning 1000 tons

More information

Nuclear Chemistry Chapter 28 Assignment & Problem Set

Nuclear Chemistry Chapter 28 Assignment & Problem Set Nuclear Chemistry Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Nuclear Chemistry 2 Study Guide: Things You Must Know Vocabulary (know the definition

More information

102 Sample Test 8 SAMPLE TEST FOR CHAPTER 20.

102 Sample Test 8 SAMPLE TEST FOR CHAPTER 20. 102 Sample Test 8 SAMPLE TEST FOR CHAPTER 20. 1. Radioactivity is a. emission of visible light after exposure to light. b. spontaneous emission of penetrating radiation that is not stimulated by light.

More information

Basic Nuclear Concepts

Basic Nuclear Concepts Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

More information

Instructors Guide: Atoms and Their Isotopes

Instructors Guide: Atoms and Their Isotopes Instructors Guide: Atoms and Their Isotopes Standards Connections Connections to NSTA Standards for Science Teacher Preparation C.3.a.1 Fundamental structures of atoms and molecules. C.3.b.27 Applications

More information

Nuke review. Figure 1

Nuke review. Figure 1 Name: Tuesday, June 10, 2008 Nuke review The radioisotopes carbon-14 and nitrogen-16 are present in a living organism. Carbon-14 is commonly used to date a once-living organism. Figure 1 A sample of wood

More information

Nuclear fission. -Fission: what is it? -The main steps toward nuclear energy -How does fission work? -Chain reactions

Nuclear fission. -Fission: what is it? -The main steps toward nuclear energy -How does fission work? -Chain reactions Nuclear fission -Fission: what is it? -The main steps toward nuclear energy -How does fission work? -Chain reactions What is nuclear fission? Nuclear fission is when a nucleus break into two or more nuclei.

More information

HOW DOES A NUCLEAR POWER PLANT WORK?

HOW DOES A NUCLEAR POWER PLANT WORK? HOW DOES A NUCLEAR POWER PLANT WORK? O n t a r i o P o w e r G e n e r a t i o n P U T T I N G O U R E N E R G Y T O U S G O O D E O N T A R I O P O W E R G E N E R A T I O N What a Nuclear Reactor Does

More information

Masses in Atomic Units

Masses in Atomic Units Nuclear Composition - the forces binding protons and neutrons in the nucleus are much stronger (binding energy of MeV) than the forces binding electrons to the atom (binding energy of ev) - the constituents

More information

Chapter 20: Nuclear Chemistry

Chapter 20: Nuclear Chemistry Chapter 2: Nuclear Chemistry Nuclear Reactions vs. Chemical Reactions There are some very distinct differences between a nuclear reaction and a chemical reaction. in a chemical reaction bonds break, atoms

More information

Student Instructions. 1. Ensure that you have blank paper and a Data Booket.. 2. Record all aswers on a separate piece of paper.

Student Instructions. 1. Ensure that you have blank paper and a Data Booket.. 2. Record all aswers on a separate piece of paper. Student Instructions 1. Ensure that you have blank paper and a Data Booket.. 2. Record all aswers on a separate piece of paper. 3. Answer keys are provided at the beginning of each section. 4. When you

More information

Nuclear Fission Chain Reaction

Nuclear Fission Chain Reaction elearning 2009 Introduction Nuclear Fission Chain Reaction Nuclear Chemistry Publication No. 95019 From weapons to electrical power generation, the chain reaction of certain radioisotopes has had a profound

More information

Nuclear Chain Reaction

Nuclear Chain Reaction P h y s i c s Q u e s t A c t i v i t i e s Bonus Activity Nuclear Chain Reaction Observe fission reactions similar to those in a nuclear reactor. Instructions 1. Arrange the dominoes in a similar formation

More information

The Atom. The atom is made of subatomic particles, the proton neutron and electron. A summary of these particles is shown below.

The Atom. The atom is made of subatomic particles, the proton neutron and electron. A summary of these particles is shown below. The Atom Homework from the book: Exercises: 1-23, 25-27, 31-36 Questions: 4-6 Problems 15 In the study guide: All the Multiple choice starting on page 101. The Atom All matter in the universe if made of

More information

Nuclear Fission Chain Reaction Nuclear Chemistry

Nuclear Fission Chain Reaction Nuclear Chemistry Introduction Nuclear Fission Chain Reaction Nuclear Chemistry Publication No. 95019 From weapons to electrical power generation, the chain reaction of certain radioisotopes has had a profound effect on

More information

Chapter 28. Radioactivity. Types of Radiation. Beta Radiation. Alpha Radiation. Section 28.1 Nuclear Radiation. Objectives: Nuclear Radiation

Chapter 28. Radioactivity. Types of Radiation. Beta Radiation. Alpha Radiation. Section 28.1 Nuclear Radiation. Objectives: Nuclear Radiation Section 28.1 Nuclear Radiation Chapter 28 Nuclear Radiation Objectives: Discuss the processes of radioactivity and radioactive decay Characterize alpha, beta, and gamma radiation in terms of composition

More information

Radioactive Elements (pages )

Radioactive Elements (pages ) SX05_BkK_AdRdStdyWkBk.fm Page 58 Monday, April 18, 2005 8:09 AM Radioactive Elements (pages 139 146) Radioactivity (pages 140 141) Key Concept: In 1896, the French scientist Henri Becquerel discovered

More information

All nuclear power in the United States is used to generate electricity. Steam coming out of the nuclear cooling towers is just hot water.

All nuclear power in the United States is used to generate electricity. Steam coming out of the nuclear cooling towers is just hot water. Did You Know? All nuclear power in the United States is used to generate electricity. Did You Know? Steam coming out of the nuclear cooling towers is just hot water. Nonrenewable Uranium (nuclear) Uranium

More information

Subatomic Particles. Nuclear Energy. Mass and Energy. Chemistry in Context: Chapter 7: Fires of Nuclear Fission

Subatomic Particles. Nuclear Energy. Mass and Energy. Chemistry in Context: Chapter 7: Fires of Nuclear Fission Nuclear Energy Chemistry in Context: Chapter 7: Fires of Nuclear Fission Assignment: All the problems with blue codes or answers on Page 530 1957, the first nuclear power plant near Pittsburgh, PA. Seabrook

More information

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents

More information

Chapter 31: Nuclear Physics & Radioactivity. The Nucleus

Chapter 31: Nuclear Physics & Radioactivity. The Nucleus Chapter 31: Nuclear Physics & Radioactivity Nuclear structure, nuclear size The strong nuclear force, nuclear stability, binding energy Radioactive decay, activity The neutrino Radioactive age measurement

More information

CHM1 Review for Exam 8

CHM1 Review for Exam 8 The following are topics and sample questions for the first exam. Topics 1. Subatomic particles a. Alpha, α 42He 2+ b. Beta, β 0-1e c. Positron, β + 0 +1e 0 d. gamma, γ 0γ 1 e. neutron, n 0n 1 f. proton,

More information

Nuclear Energy: Nuclear Decay

Nuclear Energy: Nuclear Decay Introduction The Nucleus Nuclear Energy: Nuclear Decay Almost any phrase that has the word nuclear in it has a bad reputation. The term conjures up images of mushroom clouds and radioactive mutants. It

More information

WHERE DID ALL THE ELEMENTS COME FROM??

WHERE DID ALL THE ELEMENTS COME FROM?? WHERE DID ALL THE ELEMENTS COME FROM?? In the very beginning, both space and time were created in the Big Bang. It happened 13.7 billion years ago. Afterwards, the universe was a very hot, expanding soup

More information

7 Radioactivity and particles

7 Radioactivity and particles 7 Radioactivity and particles 7 Radioactivity and particles Calculations a) i) 57 00Fm 53 57 98Cf + 4 He 37 55 Cs 37 56Ba + 0 55 e a) i) c) i) The upper number is the mass number the number of protons

More information

Lecture Notes (Fission & Fusion)

Lecture Notes (Fission & Fusion) Nuclear Fission History: Lecture Notes (Fission & Fusion) - in the 1930s, German physicists/chemists Otto Hahn and Fritz Strassman attempted to create transuranic elements by bombarding uranium with neutrons;

More information

Nuclear Physics The Atom

Nuclear Physics The Atom Nuclear Energy 1 Outline Outline Science of Nuclear Energy History Current Importance Dangers of Nuclear Power Future Potential Resources Boyle, Everett, Ramage Energy Systems and Sustainability International

More information

not to be republished NCERT NUCLEI Chapter Thirteen MCQ I

not to be republished NCERT NUCLEI Chapter Thirteen MCQ I Chapter Thirteen NUCLEI MCQ I 131 Suppose we consider a large number of containers each containing initially 10000 atoms of a radioactive material with a half life of 1 year After 1 year, (a) all the containers

More information