Chapter 11  Curve Sketching. Lecture 17. MATH Introduction to Calculus. maths.ucd.ie/modules/math Kevin Hutchinson.


 Antonia Lewis
 2 years ago
 Views:
Transcription
1 Lecture 17 MATH Introduction to Calculus maths.ucd.ie/modules/math10070 Kevin Hutchinson 28th October 2010
2 Z Chain Rule (I): If y = f (u) and u = g(x) dy dx = dy du du dx Z Chain rule (II): d dx (f g(x)) = f (g(x)) g (x).
3 Example Differentiate f (x) = 1 3 x We have f (x) = (x 7 + 7) 1/3. Thus f (x) = (1/3) (x 7 + 7) 4/3 7x 6. 7x 6 = 3(x 7 + 7) 4/3.
4 The Generalised Power Rule This is a special  but very often used  case of the Chain Rule. Z Generalised Power Rule If u = f (x) is a function of x, then or d dx (ur ) = ru r 1 du dx d dx f (x)r = rf (x) r 1 f (x)
5 Example The side, S of a cubical container is 10cm and is increasing at a rate of 0.5cm per second. At what rate is the volume of the container increasing? Solution: Volume = V = S 3. Therefore, the rate of increase of volume is dv dt = d dt S3 = 3S 2 ds dt = = 150cm 3 per second.
6 Higher Derivatives Given y = f (x), differentiation yields a new function dy dx = f (x) This function, in turn, can be differentiated to get: d dx ( ) dy dx the second derivative of f (x). = d 2 y dx 2 = f (x)
7 Continuing the process we get d 3 y dx 3 = f (x) = f (3) (x) d 4 y dx 4 = f (4) (x) =... etc. the third, fourth and higher derivatives of y = f (x).
8 Example If s = s(t) is the position of a body at time t, then ds dt = s (t) is the velocity ( = rate of change of position) at time t. Thus d 2 s dt 2 = s (t) is the rate of change of velocity at time t; i.e., it is the acceleration at time t.
9 Example If s(t) = 5t 3 2t 2 + 3t, find the acceleration at time t. Solution: s (t) = 15t 2 4t + 3. So s (t) = 30t 4 is the acceleration at time t.
10 Example Find d 2 y dx 2 where y = 6x x 3 + 7x dy dx = 24x x x d 2 y dx 2 = 72x x + 14
11 Example Find d 2 y dx 2 where y = 3 x. y = x 1/3. So Hence dy dx = 1 3 x 2/3 d 2 y dx 2 = x 5/3 = x 5.
12 Example Consider the function y = 1/x. Using the power and constant rules each time, we obtain: dy dx = 1 2 = x x 2 d 2 y dx 2 = ( 2x 3 ) = 2 x 3 d 3 y dx 3 = 2 ( 3x 4 ) = 6 x 4 d 4 y dx 4 = 6 4x 5 = 24 x 5 =... etc.
13 Spot the general pattern The signs alternate: the odd higher derivatives have a minus. The power of x in the denominator increases by 1 each time. In the nth derivative we get x n+1 in the denominator The nth numerator is obtained by multiplying the previous numerator by n Thus: d n y dx n = n! ( 1)n x n+1 where n! = 1 2 (n 1) n.
14 Curve sketching A graph gives a much better idea of how a function behaves than its algebraic formula We are going to look at how to produce a sketch of a function s graph from its formula We already know how to sketch straight lines and quadratic functions (see Lecture 4 and Lecture 5) We will be sketching other differentiable functions... but we start with some elementary facts
15 Positive and Negative slope If the slope of a line is a positive number, the line makes an angle less than 90 with the xaxis (leans forward, /) If the slope is negative then the line makes an angle greater than 90 (leans backwards, \) Z A positive slope to a line means the line is rising (increasing) as we go from left to right, negative slope means the line is decreasing as we go from left to right.
16 Recall that the derivative of a function f at a point x is just the slope of the tangent line thus knowing whether the derivative is positive or negative tells us something about the graph of f a positive derivative seems to indicate the values of the function are increasing, and a negative derivative that the function is decreasing
17 Increase, decrease and critical points Definition Let f : R R be a differentiable function and let a R. 1. We say that f is INCREASING at a if f (a) > 0, and that f is DECREASING at a if f (a) < If I is an interval such that f is increasing at every point of I, then I is called an INTERVAL OF INCREASE for f. If f is decreasing at every point of I then I is called an INTERVAL OF DECREASE for f. 3. If f (a) = 0 then a is called a CRITICAL point of f.
18 Increasing f is increasing at a f (a) > 0 the tangent line to the graph of f has positive slope the tangent line leans forwards (/) Decreasing f is decreasing at a f (a) < 0 the tangent line to the graph of f has negative slope the tangent line leans backwards (\) Critical Point f (a) = 0 the tangent line to the graph of f at a is horizontal a is a root of f (x)
19 Illustration
Apr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa
Calculus with Algebra and Trigonometry II Lecture 23 Final Review: Curve sketching and parametric equations Apr 23, 2015 Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23,
More informationChapter (AB/BC, noncalculator) (a) Write an equation of the line tangent to the graph of f at x 2.
Chapter 1. (AB/BC, noncalculator) Let f( x) x 3 4. (a) Write an equation of the line tangent to the graph of f at x. (b) Find the values of x for which the graph of f has a horizontal tangent. (c) Find
More informationCalculus Card Matching
Card Matching Card Matching A Game of Matching Functions Description Give each group of students a packet of cards. Students work as a group to match the cards, by thinking about their card and what information
More informationMATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.
MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin
More information2.2 Derivative as a Function
2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an xvalue, why don t we just use x
More informationDr. Z s Math151 Handout #4.5 [Graph Sketching and Asymptotes]
Dr. Z s Math151 Handout #4.5 [Graph Sketching and Asymptotes] By Doron Zeilberger Problem Type 4.5.1 : Sketch the curve y = P olynomial(x). Example Problem 4.5.1: Sketch the curve y = x 4 + 4x 3 Steps
More informationGRAPHING IN POLAR COORDINATES SYMMETRY
GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry  yaxis,
More informationleaving certificate Active Maths 3 Old Syllabus Strand 5 Ordinary Level  Book 1  y 1  x 1 y 2 x 2 m = 2πr Oliver Murphy
leaving certificate Active Maths Ordinary Level  Book Old Syllabus Strand 5 m = y  y x  x πr πr Oliver Murphy Editors: Priscilla O Connor, Sarah Reece Designer: Liz White Layout: Compuscript Illustrations:
More informationMath 181 Spring 2007 HW 1 Corrected
Math 181 Spring 2007 HW 1 Corrected February 1, 2007 Sec. 1.1 # 2 The graphs of f and g are given (see the graph in the book). (a) State the values of f( 4) and g(3). Find 4 on the xaxis (horizontal axis)
More informationPRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
More informationAP Calculus AB 2005 FreeResponse Questions
AP Calculus AB 25 FreeResponse Questions The College Board: Connecting Students to College Success The College Board is a notforprofit membership association whose mission is to connect students to
More informationLearning Objectives for Math 165
Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given
More informationNotes on Curve Sketching. B. Intercepts: Find the yintercept (f(0)) and any xintercepts. Skip finding xintercepts if f(x) is very complicated.
Notes on Curve Sketching The following checklist is a guide to sketching the curve y = f(). A. Domain: Find the domain of f. B. Intercepts: Find the yintercept (f(0)) and any intercepts. Skip finding
More information1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N.
CHAPTER 3: EXPONENTS AND POWER FUNCTIONS 1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N. For example: In general, if
More informationMain page. Given f ( x, y) = c we differentiate with respect to x so that
Further Calculus Implicit differentiation Parametric differentiation Related rates of change Small variations and linear approximations Stationary points Curve sketching  asymptotes Curve sketching the
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More information1 Lecture 19: Implicit differentiation
Lecture 9: Implicit differentiation. Outline The technique of implicit differentiation Tangent lines to a circle Examples.2 Implicit differentiation Suppose we have two quantities or variables x and y
More informationAP CALCULUS AB 2015 SCORING GUIDELINES
AP CALCULUS AB 2015 SCORING GUIDELINES Question 5 The figure above shows the graph of f, the derivative of a twicedifferentiable function f, on the interval [ 3, 4 ]. The graph of f has horizontal tangents
More informationArea Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x b is given by
MATH 42, Fall 29 Examples from Section, Tue, 27 Oct 29 1 The First Hour Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x
More informationDerivatives and Graphs. Review of basic rules: We have already discussed the Power Rule.
Derivatives and Graphs Review of basic rules: We have already discussed the Power Rule. Product Rule: If y = f (x)g(x) dy dx = Proof by first principles: Quotient Rule: If y = f (x) g(x) dy dx = Proof,
More informationDefinition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =
Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a
More informationExample 1. Example 1 Plot the points whose polar coordinates are given by
Polar Coordinates A polar coordinate system, gives the coordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points
More informationStudent Performance Q&A:
Student Performance Q&A: 2008 AP Calculus AB and Calculus BC FreeResponse Questions The following comments on the 2008 freeresponse questions for AP Calculus AB and Calculus BC were written by the Chief
More informationMicroeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
More information3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.
BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's
More informationThe Derivative and the Tangent Line Problem. The Tangent Line Problem
The Derivative and the Tangent Line Problem Calculus grew out of four major problems that European mathematicians were working on during the seventeenth century. 1. The tangent line problem 2. The velocity
More informationCalculus AB 2014 Scoring Guidelines
P Calculus B 014 Scoring Guidelines 014 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are registered trademarks of the College Board. P Central is the official
More informationTaylor Polynomials and Taylor Series Math 126
Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will
More informationWorksheet for Week 1: Circles and lines
Worksheet Math 124 Week 1 Worksheet for Week 1: Circles and lines This worksheet is a review of circles and lines, and will give you some practice with algebra and with graphing. Also, this worksheet introduces
More informationMATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2
MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we
More information55x 3 + 23, f(x) = x2 3. x x 2x + 3 = lim (1 x 4 )/x x (2x + 3)/x = lim
Slant Asymptotes If lim x [f(x) (ax + b)] = 0 or lim x [f(x) (ax + b)] = 0, then the line y = ax + b is a slant asymptote to the graph y = f(x). If lim x f(x) (ax + b) = 0, this means that the graph of
More information5.1 Derivatives and Graphs
5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has
More informationAP Calculus AB 2013 FreeResponse Questions
AP Calculus AB 2013 FreeResponse Questions About the College Board The College Board is a missiondriven notforprofit organization that connects students to college success and opportunity. Founded
More informationAnalyzing Functions Intervals of Increase & Decrease Lesson 76
(A) Lesson Objectives a. Understand what is meant by the terms increasing/decreasing as it relates to functions b. Use graphic and algebraic methods to determine intervals of increase/decrease c. Apply
More informationAP Calculus AB 2010 FreeResponse Questions Form B
AP Calculus AB 2010 FreeResponse Questions Form B The College Board The College Board is a notforprofit membership association whose mission is to connect students to college success and opportunity.
More informationThe composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result.
30 5.6 The chain rule The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result." Example. g(x) = x 2 and f(x) = (3x+1).
More informationTrigonometric Substitutions.
E Trigonometric Substitutions. E. The Area of a Circle. The area of a circle of radius (the unit circle) is wellknown to be π. We will investigate this with several different approaches, each illuminating
More informationCork Institute of Technology. CIT Mathematics Examination, Paper 2 Sample Paper A
Cork Institute of Technology CIT Mathematics Examination, 2015 Paper 2 Sample Paper A Answer ALL FIVE questions. Each question is worth 20 marks. Total marks available: 100 marks. The standard Formulae
More informationMathematics (Project Maths Phase 3)
2014. M329 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 1 Higher Level Friday 6 June Afternoon 2:00 4:30 300
More informationCore Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
More informationx 2 + y 2 = 25 and try to solve for y in terms of x, we get 2 new equations y = 25 x 2 and y = 25 x 2.
Lecture : Implicit differentiation For more on the graphs of functions vs. the graphs of general equations see Graphs of Functions under Algebra/Precalculus Review on the class webpage. For more on graphing
More informationLecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is onetoone, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function
More informationItems related to expected use of graphing technology appear in bold italics.
 1  Items related to expected use of graphing technology appear in bold italics. Investigating the Graphs of Polynomial Functions determine, through investigation, using graphing calculators or graphing
More information5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
More informationDefinition of derivative
Definition of derivative Contents 1. SlopeThe Concept 2. Slope of a curve 3. DerivativeThe Concept 4. Illustration of Example 5. Definition of Derivative 6. Example 7. Extension of the idea 8. Example
More informationAP Calculus BC 2008 Scoring Guidelines
AP Calculus BC 8 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a notforprofit membership association whose mission is to connect students to college
More informationSection P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities
Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.
More informationThe degree of the polynomial function is n. We call the term the leading term, and is called the leading coefficient. 0 =
Math 1310 Section 4.1: Polynomial Functions and Their Graphs A polynomial function is a function of the form = + + +...+ + where 0,,,, are real numbers and n is a whole number. The degree of the polynomial
More informationCHAPTER 13. Definite Integrals. Since integration can be used in a practical sense in many applications it is often
7 CHAPTER Definite Integrals Since integration can be used in a practical sense in many applications it is often useful to have integrals evaluated for different values of the variable of integration.
More informationMath 120 Final Exam Practice Problems, Form: A
Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,
More informationAPPLICATIONS OF DIFFERENTIATION
4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,
More informationMA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
More informationFINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x
More information2008 AP Calculus AB Multiple Choice Exam
008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus
More informationSection 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
More information3.4 Limits at Infinity  Asymptotes
3.4 Limits at Infinity  Asymptotes Definition 3.3. If f is a function defined on some interval (a, ), then f(x) = L means that values of f(x) are very close to L (keep getting closer to L) as x. The line
More informationAverage rate of change of y = f(x) with respect to x as x changes from a to a + h:
L151 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,
More information1.5 ANALYZING GRAPHS OF FUNCTIONS. Copyright Cengage Learning. All rights reserved.
1.5 ANALYZING GRAPHS OF FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Vertical Line Test for functions. Find the zeros of functions. Determine intervals on which
More informationCalculus 1st Semester Final Review
Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim
More information1. [2.3] Techniques for Computing Limits Limits of Polynomials/Rational Functions/Continuous Functions. Indeterminate FormEliminate the Common Factor
Review for the BST MTHSC 8 Name : [] Techniques for Computing Limits Limits of Polynomials/Rational Functions/Continuous Functions Evaluate cos 6 Indeterminate FormEliminate the Common Factor Find the
More informationDefinition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left.
Vertical and Horizontal Asymptotes Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left. This graph has a vertical asymptote
More informationAP Calculus AB 2006 Scoring Guidelines
AP Calculus AB 006 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a notforprofit membership association whose mission is to connect students to college
More informationMathematics (Project Maths Phase 3)
013. M37 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 013 Mathematics (Project Maths Phase 3) Paper 1 Ordinary Level Friday 7 June Afternoon :00 4:30 300
More informationMath 21A Brian Osserman Practice Exam 1 Solutions
Math 2A Brian Osserman Practice Exam Solutions These solutions are intended to indicate roughly how much you would be expected to write. Comments in [square brackets] are additional and would not be required.
More informationCalculus II MAT 146 Integration Applications: Area Between Curves
Calculus II MAT 46 Integration Applications: Area Between Curves A fundamental application of integration involves determining the area under a curve for some interval on the x or yaxis. In a previous
More informationMark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Eam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice eam contributors: Benita Albert Oak Ridge High School,
More informationwww.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
More informationMTH4100 Calculus I. Lecture notes for Week 8. Thomas Calculus, Sections 4.1 to 4.4. Rainer Klages
MTH4100 Calculus I Lecture notes for Week 8 Thomas Calculus, Sections 4.1 to 4.4 Rainer Klages School of Mathematical Sciences Queen Mary University of London Autumn 2009 Theorem 1 (First Derivative Theorem
More informationAP Calculus BC 2013 FreeResponse Questions
AP Calculus BC 013 FreeResponse Questions About the College Board The College Board is a missiondriven notforprofit organization that connects students to college success and opportunity. Founded in
More informationAP Calculus BC 2006 FreeResponse Questions
AP Calculus BC 2006 FreeResponse Questions The College Board: Connecting Students to College Success The College Board is a notforprofit membership association whose mission is to connect students to
More informationCalculus with Analytic Geometry I Exam 5Take Home Part Due: Monday, October 3, 2011; 12PM
NAME: Calculus with Analytic Geometry I Exam 5Take Home Part Due: Monday, October 3, 2011; 12PM INSTRUCTIONS. As usual, show work where appropriate. As usual, use equal signs properly, write in full sentences,
More information2 Applications of Integration
Brian E. Veitch 2 Applications of Integration 2.1 Area between curves In this section we are going to find the area between curves. Recall that the integral can represent the area between f(x) and the
More informationCalculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum
Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic
More informationAn Introduction to Calculus. Jackie Nicholas
Mathematics Learning Centre An Introduction to Calculus Jackie Nicholas c 2004 University of Sydney Mathematics Learning Centre, University of Sydney 1 Some rules of differentiation and how to use them
More informationNumerical methods for finding the roots of a function
Numerical methods for finding the roots of a function The roots of a function f (x) are defined as the values for which the value of the function becomes equal to zero. So, finding the roots of f (x) means
More informationcorrectchoice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
More information88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
More informationRational Polynomial Functions
Rational Polynomial Functions Rational Polynomial Functions and Their Domains Today we discuss rational polynomial functions. A function f(x) is a rational polynomial function if it is the quotient of
More informationWorksheet 1. What You Need to Know About Motion Along the xaxis (Part 1)
Worksheet 1. What You Need to Know About Motion Along the xaxis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the
More informationDerivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x):
Derivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x): f f(x + h) f(x) (x) = lim h 0 h (for all x for which f is differentiable/ the limit exists) Property:if
More information106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM 5.1.1 Fermat s Theorem f is differentiable at a, then f (a) = 0.
5 Curve Sketching Whether we are interested in a function as a purely mathematical object or in connection with some application to the real world, it is often useful to know what the graph of the function
More informationg = l 2π g = bd b c d = ac bd. Therefore to write x x and as a single fraction we do the following
OCR Core 1 Module Revision Sheet The C1 exam is 1 hour 30 minutes long. You are not allowed any calculator 1. Before you go into the exam make sureyou are fully aware of the contents of theformula booklet
More informationAP Calculus AB 2006 FreeResponse Questions
AP Calculus AB 2006 FreeResponse Questions The College Board: Connecting Students to College Success The College Board is a notforprofit membership association whose mission is to connect students to
More informationAP Calculus AB 2004 FreeResponse Questions
AP Calculus AB 2004 FreeResponse Questions The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be
More informationPOLAR COORDINATES DEFINITION OF POLAR COORDINATES
POLAR COORDINATES DEFINITION OF POLAR COORDINATES Before we can start working with polar coordinates, we must define what we will be talking about. So let us first set us a diagram that will help us understand
More information3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
More informationLecture 7 : Inequalities 2.5
3 Lecture 7 : Inequalities.5 Sometimes a problem may require us to find all numbers which satisfy an inequality. An inequality is written like an equation, except the equals sign is replaced by one of
More informationBlue Pelican Calculus First Semester
Blue Pelican Calculus First Semester Teacher Version 1.01 Copyright 20112013 by Charles E. Cook; Refugio, Tx Edited by Jacob Cobb (All rights reserved) Calculus AP Syllabus (First Semester) Unit 1: Function
More informationx 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
More informationSolutions to Study Guide for Test 3. Part 1 No Study Guide, No Calculator
Solutions to Study Guide for Test 3 Part 1 No Study Guide, No Calculator 1. State the definition of the derivative of a function. Solution: The derivative of a function f with respect to x is the function
More informationMath 308 Week 1 Solutions
Math 308 Week 1 Solutions Here are solutions to the evennumbered suggested problems. The answers to the oddnumbered problems are in the back of your textbook, and the solutions are in the Solution Manual,
More information2.4 Motion and Integrals
2 KINEMATICS 2.4 Motion and Integrals Name: 2.4 Motion and Integrals In the previous activity, you have seen that you can find instantaneous velocity by taking the time derivative of the position, and
More informationMotion in OneDimension
This test covers onedimensional kinematics, including speed, velocity, acceleration, motion graphs, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. A rock is released
More informationAP Calculus BC 2004 FreeResponse Questions
AP Calculus BC 004 FreeResponse Questions The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be
More information1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
More informationMATH 121 FINAL EXAM FALL 20102011. December 6, 2010
MATH 11 FINAL EXAM FALL 010011 December 6, 010 NAME: SECTION: Instructions: Show all work and mark your answers clearly to receive full credit. This is a closed notes, closed book exam. No electronic
More informationIntroduction to Calculus
Introduction to Calculus Contents 1 Introduction to Calculus 3 11 Introduction 3 111 Origin of Calculus 3 112 The Two Branches of Calculus 4 12 Secant and Tangent Lines 5 13 Limits 10 14 The Derivative
More information7. Continuously Varying Interest Rates
7. Continuously Varying Interest Rates 7.1 The Continuous Varying Interest Rate Formula. Suppose that interest is continuously compounded with a rate which is changing in time. Let the present time be
More informationAssignment 5 Math 101 Spring 2009
Assignment 5 Math 11 Spring 9 1. Find an equation of the tangent line(s) to the given curve at the given point. (a) x 6 sin t, y t + t, (, ). (b) x cos t + cos t, y sin t + sin t, ( 1, 1). Solution. (a)
More information