# Learning Objectives for Math 165

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given context Interpet and work with analytic, graphical, and numerical information Work successfully and efficiently with function notation, substitution in functions (x a + h), how a graph represents a function Describe the relationship between the secant line and the average rate of change and apply the relationship in a given context Describe the relationship between the tangent line and the instantaneous rate of change and apply the relationship in a given context. Section 2.2: Working with limits, and Section 2.4 State and work with the definition of limit as described on page 66 Demonstrate, describe, and recognize ways in which limits do not exist Evaluate limits given analytic, graphical, numerical function information Explain and give examples illustrating the indeterminent nature of 0 0 forms Describe in simple language the statements of limit laws and use these laws to evaluate limits. Evaluate one sided limits and describe relationship between limits and one-sided limits. Justify (graphically, numerically) the approximation sin x x for small x and demonstrate that the approximation may not be good for large x. Work with limit statements to obtain other approximations in a manner similar to the sin x x derivation Section 2.5: Continuity. State the definition of continuity and use the definition to ascertain the continuity or non continuity of a function at a point Explain and illustrate ways in which function can be discontinuous. Recognize graphs of continuous functions and recognize graphs of discontinuous functions Generate functions and graphs of functions demonstrating the different types of discontinuities Make a continuous extension of a function. 1

2 2 Section 2.6: Infinite limits and limits at Infinity Work with 1 0 forms in the context of one-sided limits to determine existence and location of vertical asymptotes Use limits to determine existence and location of horizontal asymptotes State the definitions of vertical and horizontal asymptotes (pgs. 105, 111) and work with these definitions to create graphs of functions. Evaluate and work with limits x ± by working with dominant terms. Explain the difference between x and x =. Chapter 3 Differentiation Section 3.1: Tangents and the Derivative at a Point. State the limit definition of derivative of a function f(x) at a point (x, f(x) and use the limit definition to calculate a derivative or identify where the derivative fails to exist at a point. Interpret the limit definition of the derivative of a function f(x) at a point x = a as the slope of the graph of a function f(x) at a point x = a, the slope of the tangent to the curve at a point x = a, and the rate of change of a function f(x) with respect to x at x = a. Recognize and be flexible in the use of different representations of the definition of derivative, including f f(b) f(a) f(a + h) f(a) (a) = lim = lim b a b a h 0 h Interpret and be able to represent the definition of derivative analytically, graphically, and numerically. Given a context, apply units to the derivative Given the derivative of a function at a point, sketch a graph of the elements (i.e., local linearity). Section 3.2: The Derivative as a Function Interpret the derivative of a function and state the domain for the derivative, namely, identifying the points of a function f for which the derivative does not exist. Analytically determine the derivative of a function with respect to x at a generic x-value.

3 Interpret and use (apply?) different notation representing the derivative of a function including f (x) = y = dy dx = df dx = d dx f(x) = D xf(x) Estimate the derivative of a function f with respect to x at a point (a, f(a) using the graph of the function and the tangent line to the function at x = a. Similarly, graph the function and the tangent line to the function for x = a when given f (a). Give examples of functions where the derivative at a point does not exist and why. Give examples of continuous functions which are not differentiable. Section 3.3: Differentiation Rules. Calculate derivatives of functions (without the use of technology) by applying differentiation rules, including the derivative of: a constant function, a constant multiple of a function, the power of x, a sum of functions, a product of functions, a quotient of functions, and exponential functions. Verify analytically (i.e., using the limit definition of derivative) the derivative rules for a constant function, a constant multiple of a function, the power of x (where n is an integer or n = ±1/2, a sum of functions, and exponential functions (which explains why we use e). Interpret and make use of notation for second- and higher-order derivatives as well as be able to calculate higher-order derivatives. Section 3.4: The Derivative as a Rate of Change Interpret the difference quotient as an average rate of change over a specified interval. Interpret the instantaneous rate of change as the rate at which the function is changing at a point. Attach units to the difference quotient and the instantaneous rate of change based on the context. Given a position function, solve for the (instantaneous) velocity of the object using the definition of derivative of the object s position with respect to time. Solve for the speed of an object or graph the speed as a function of time when speed = v (t) = ds dt Relate the acceleration of an object to the object s position and object s velocity, (i.e., Acceleration = d2 s = s (t) = dv dt 2 dt = v (t)). Assign units to acceleration based on the context. Apply knowledge of the position, velocity, and acceleration functions to solve problems related to motion. Section 3.5: Derivatives of Trigonometric Functions 3

4 4 Use the limit definition to express the derivatives of the trigonometric functions. Graphically demonstrate why d d dx (sin(x)) = cos(x) and why dx (cos(x)) = sin(x). Use the derivative rules to establish the derivative rules for tan(x), sec(x), cot(x), and csc(x). Use the derivative rules to evaluate the derivatives of functions which contain the trigonometric functions. Section 3.6: The Chain Rule Apply the Chain Rule to find the derivative of a composition of functions. Identify the order at which functions are embedded in another, particularly when the chain rule needs to be repeated to find the derivative of a function. Section 3.7: Implicit DIfferentiation Apply the chain rule to differentiate implicitly defined functions Find higher-order derivatives using implict differentiation Section 3.8: Derivatives of Inverse Functions and Logarithms State the definition one-to-one function (Section 1.6). State why only a one-to-one function can have an inverse. Produce a formula for the inverse of a one-to-one function given a formula for the function and perform the algebra (function composition) to demonstrate that you have the correct inverse. Given the graph of a one-to-one function, draw the graph of the inverse function. Intepreting the derivative of a function as the slope of a tangent line, draw a picture illustrating that d(f 1 ) dx = 1/f (f 1 (b)). x=b State the definition of the logarithm (Section 1.6). manipulate logarithms (and exponentials) Demonstrate the ability to State and work with the derivative of the natural logarithm function. Derive the definition of the logarithm by differentiating the expression e ln x = x. Explain the reasoning leading to d dx ln x = 1 x. Section 3.9: Inverse Trigonometric Functions Define the inverse sine and cosine functions, including the domain, and range of these functions and their relation to the sine and cosine function. Draw the graphs of the inverse sine and cosine functions, and describe the relation to the graphs of the sine and cosine functions.

5 5 Define the inverse tangent function, including the domain, and range of the function and its relation to the tangent function. Draw the graphs of the inverse tangent function, and describe the relation to the graph of the tangent functions. Explain the sin 1 notation and how it differs from (sin x) 1. Be able to write down the derivatives of the inverse sine, cosine, and tangent functions. Be able to apply these derivatives as needed in the contest of the project, quotient, and chain rules. Be able to derive the derivative of tan 1 x and sin 1 x by applying the chain rule to the equations tan(tan 1 x) = x and sin(sin 1 x). Section 3.10: Related Rates Set up and solve related rates problems, clearly documenting work as elucidated in the box on Page 194. At the conclusion of a related rates problem write a sentence declaring exactly what was found and what it means. Section 3.11: Linearization and Differentials Given a function that is differentiable at a point (c, f(c)) be able do describe what you will see if you zoom in on the graph at this point. Be able to define and work with the linearization of a function at a point, and describe the relationship between the linearization and the tangent line. Use the linearization to calculate an approximation to a function near a nice point. Be able to define and work with the differential. Explain the relationship between the quantities f and df and be able to draw and clearly label an picture to illustrate these quantities. Calculate a differential and use it to estimate the change in a function over a small interval. Chapter 4 Applications of Derivatives Section 4.1: Extreme Values of Functions. Write and explain the definition of absolute maximum and absolute minimum of a function. Write the Extreme Value Theorem. Give examples of (i) function(s) that are continuous on an interval (a, b) but do not have an absolute maximum or an absolute minimum; (ii) function(s) that are not continuous on an interval [a, b] and do not have an absolute maximum or absolute minimum.

6 6 Explain the difference between an absolute extreme point and a relative extreme point. Given a function f continuous on a closed interval [a, b], find the values at which f takes on its absolute maximum and minimum values and find the values of extreme values. Write the definition of critical points and explain their importance in finding relative and absolute extreme points. Identify both the candidates for extreme values of a function and the extreme values of the functions, if relalvant. Section 4.3: Monotonic Functions and the First Derivative Test Explain what it means for a function to be increasing (decreasing) on an interval. Give graphical and symbolic interpretations. Given a function f, use the first derivative to identify the intervals on which f is increasing, decreasing. Use the first derivative test to determine the nature (relative maximum, relative minimum, neither) of a critical point. Justify the First Derivative Test as stated on Page 240. Use graphs and knowledge about monotonicity in your justification. Section 4.4: Concavity and Curve Sketching State the definitions of concave up and concave down. Use slopes of tangents to a graph to relate the concavity of a function to the increasing/decreasing nature of the first derivative. Explain what it means for a point to be an inflection point and use analysis of the second derivative to identify inflection points. Use the second derivative test to classify critical points. Give examples to show that the second derivative test yields no information for a critical point c if f (c) = 0. Use the tools of calculus and algebra to sketch, by hand, good graphs of functions, including labels of the intercepts, critical points, inflection points, asymptotes, intervals of monotonicity, and documentation of concavity. Given graphical and textual information about a function f (e.g. intercepts, where f is ± or a graph of f, etc.) draw a graph of y = f(x). Given a graph of a function f, sketch a graph of f. Given a graph of f, sketch a graph of f. Section 4.5: Indeterminant Forms and L Hôpital s Rule

7 Explain why 0 0 and are indeterminant forms. Explain what is meant by indeterminant form. Use L Hôpital s rule to evaluate limits involving indeterminant forms. Use logarithms and L Hôpital s rule to evaluate limits of indeterminant forms such as 0 0, 0, 1. Section 4.6: Applied Optimization Use the tools of calculus to solve applied optimization problems. Write complete solutions including illustrations, identification of variables, verification that the solution produced is the extreme sought. Section 4.7: Newton s Method Use Newton s method to find approximate solutions to equations such as f(x) = 0 or g(x) = h(x). Justify and derive the Newton s method recursion as on Page 275. Section 4.8: Antiderivatives. Evaluate antiderivatives of elementary functions. Explain the significance of the +C for antiderivatives. Find the value of the constant +C in the context of initial value problems. 7 Chapter 5 Integration Section 5.1: Area and Estimating with Finite Sums. Describe upper and lower sums and what they tell you about area. Given a partition and set {t 1,..., t n } of points, with a single t i in each subinterval, draw the rectangles and calculate the associated Riemann Sum. Use Riemann sums to approximate distance and net distance traveled, given a velocity function. During this process keep track of units and know which units go with each quantity. Approximate the average of a function and explain why this approximation is also a Riemann sum. Section 5.2: Sigma Notation and Limits of Finite Sums Given a sum written in sigma notation, write out the expanded from of the sum, and evaluate the sum. Given a sum displayed expanded form write the sum using sigma notation. Be able to manipulate sums using the algebra rules on page 308 of the text book.

8 8 Provide all details in using an equal interval, n + 1 point partition, with right or left endpoints to obtain a Riemann sum. Given the formulas on Page 309, evaluate the limit of the result as n and interpret the result. Explain the contributions given by positive and negative terms of a Riemann sum and give a geometric interpretation. Section 5.3: The Definite Integral. Write the limit definition of definite integral (Page 315), including the relationship to a partition of an interval and explanations of all notation. Use the rules in Table 5.4, Page 317, to evaluate and manipulate definite integrals. Explain and describe the relationship of the definite integral to area under the graph of a non-negative function. Find the average value of a continuous function over an interval and explain how the average value formula arises from the definition of the definite integral.

9 Section 5.4: The Fundamental Theorem of Calculus. Write the statement of the Fundamental Theorem of Calculus (Part 1) and explain what the theorem says about definite integrals. Provide an outline of the proof of the FTC with diagrams. See Page 326. Write the statement of the Fundamental Theorem of Calculus (Part 2) and explain what the theorem says about definite integrals. Use the FTC (Parts 1 and 2) to evaluate derivatives of functions defined by integrals and to evaluate definite integrals. (say something about the use of the chain rule?) If f(t) is a rate function, use Riemann sums to explain the meaning of b a f(t) dt as a net change. Section 5.5: Definite Integration and the Substitution Method. Evaluate indefinite integrals using the substitution method (when needed) showing complete work with differentials. Given an integral, identify and implement the appropriate substitution. Find the antiderivatives of sin 2 θ and cos 2 θ. Section 5.6: Substitution and Area Between Curves Explain, in terms of area, the difference between b a f(x) dx and b a f(x) dx, with reasons. Evaluate each of these integrals for a given function f. Given a velocity function v(t), explain the difference between b a v(t) dt and b a v(t) dt, with reasons. Evaluate definite integrals and use substitution when needed. Make the appropriate changes in the limits of integration when performing such an integration. I changed the wording. Given two functions y = f(x) and y = g(x), be able to set up and evaluate the integral(s) to calculate the area between the graphs of the two curves over a given interval. I changed the wording. 9 Chapter 7 Integrals and Transcendental Functions Section 7.2: Exponential Change and Separable Differential Equations. Solve simple separable equations (with and without initial conditions.) After solving a differential equation, be able to answer further questions about the situation being modeled. State the definitions of half-life and doubling-time and work with these ideas.

10 10 Given a written description of a change phenomenon, write a separable differential equation to model the phenomenon. Given a separable differential equation and a context, write a short paragraph describing what the equation is modeling. Give examples of phenomena for which the rate of change of a quantity is proportional to the value of the quantity and show that the quantity is modeled by an exponential function.

### Course outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems)

Course outline, MA 113, Spring 2014 Part A, Functions and limits 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems) Functions, domain and range Domain and range of rational and algebraic

### Blue Pelican Calculus First Semester

Blue Pelican Calculus First Semester Teacher Version 1.01 Copyright 2011-2013 by Charles E. Cook; Refugio, Tx Edited by Jacob Cobb (All rights reserved) Calculus AP Syllabus (First Semester) Unit 1: Function

### correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

### Items related to expected use of graphing technology appear in bold italics.

- 1 - Items related to expected use of graphing technology appear in bold italics. Investigating the Graphs of Polynomial Functions determine, through investigation, using graphing calculators or graphing

### AP Calculus BC. All students enrolling in AP Calculus BC should have successfully completed AP Calculus AB.

AP Calculus BC Course Description: Advanced Placement Calculus BC is primarily concerned with developing the students understanding of the concepts of calculus and providing experiences with its methods

### Derivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x):

Derivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x): f f(x + h) f(x) (x) = lim h 0 h (for all x for which f is differentiable/ the limit exists) Property:if

### 1. [2.3] Techniques for Computing Limits Limits of Polynomials/Rational Functions/Continuous Functions. Indeterminate Form-Eliminate the Common Factor

Review for the BST MTHSC 8 Name : [] Techniques for Computing Limits Limits of Polynomials/Rational Functions/Continuous Functions Evaluate cos 6 Indeterminate Form-Eliminate the Common Factor Find the

### MTH 233 Calculus I. Part 1: Introduction, Limits and Continuity

MTH 233 Calculus I Tan, Single Variable Calculus: Early Transcendentals, 1st ed. Part 1: Introduction, Limits and Continuity 0 Preliminaries It is assumed that students are comfortable with the material

### AP Calculus AB Syllabus

Course Overview and Philosophy AP Calculus AB Syllabus The biggest idea in AP Calculus is the connections among the representations of the major concepts graphically, numerically, analytically, and verbally.

### Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =

Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a

### Curriculum Map. Discipline: Math Course: AP Calculus AB Teacher: Louis Beuschlein

Curriculum Map Discipline: Math Course: AP Calculus AB Teacher: Louis Beuschlein August/September: State: 8.B.5, 8.C.5, 8.D.5 What is a limit? What is a derivative? What role do derivatives and limits

### PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

### MATHEMATICS 31 A. COURSE OVERVIEW RATIONALE

MATHEMATICS 31 A. COURSE OVERVIEW RATIONALE To set goals and make informed choices, students need an array of thinking and problem-solving skills. Fundamental to this is an understanding of mathematical

### Student Performance Q&A:

Student Performance Q&A: AP Calculus AB and Calculus BC Free-Response Questions The following comments on the free-response questions for AP Calculus AB and Calculus BC were written by the Chief Reader,

### Finding Antiderivatives and Evaluating Integrals

Chapter 5 Finding Antiderivatives and Evaluating Integrals 5. Constructing Accurate Graphs of Antiderivatives Motivating Questions In this section, we strive to understand the ideas generated by the following

### Official Math 112 Catalog Description

Official Math 112 Catalog Description Topics include properties of functions and graphs, linear and quadratic equations, polynomial functions, exponential and logarithmic functions with applications. A

### The Derivative and the Tangent Line Problem. The Tangent Line Problem

The Derivative and the Tangent Line Problem Calculus grew out of four major problems that European mathematicians were working on during the seventeenth century. 1. The tangent line problem 2. The velocity

### MATH 132: CALCULUS II SYLLABUS

MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

### TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

### APPLICATIONS OF DIFFERENTIATION

4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,

### MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.

MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

### Lecture 5 : Continuous Functions Definition 1 We say the function f is continuous at a number a if

Lecture 5 : Continuous Functions Definition We say the function f is continuous at a number a if f(x) = f(a). (i.e. we can make the value of f(x) as close as we like to f(a) by taking x sufficiently close

### Student Performance Q&A:

Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief

### Senior Secondary Australian Curriculum

Senior Secondary Australian Curriculum Mathematical Methods Glossary Unit 1 Functions and graphs Asymptote A line is an asymptote to a curve if the distance between the line and the curve approaches zero

### Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic

### 5.1 Derivatives and Graphs

5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

### 6.6 The Inverse Trigonometric Functions. Outline

6.6 The Inverse Trigonometric Functions Tom Lewis Fall Semester 2015 Outline The inverse sine function The inverse cosine function The inverse tangent function The other inverse trig functions Miscellaneous

### Inverse Trigonometric Functions

SECTION 4.7 Inverse Trigonometric Functions Copyright Cengage Learning. All rights reserved. Learning Objectives 1 2 3 4 Find the exact value of an inverse trigonometric function. Use a calculator to approximate

### Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

### Chapter 7 Outline Math 236 Spring 2001

Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will

### Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom

Free Response Questions 1969-005 Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom 1 AP Calculus Free-Response Questions 1969 AB 1 Consider the following functions

### Derivatives and Graphs. Review of basic rules: We have already discussed the Power Rule.

Derivatives and Graphs Review of basic rules: We have already discussed the Power Rule. Product Rule: If y = f (x)g(x) dy dx = Proof by first principles: Quotient Rule: If y = f (x) g(x) dy dx = Proof,

### Writing Exercises for Calculus. M. E. Murphy Waggoner Professor of Mathematics Simpson College Indianola, Iowa

Writing Exercises for Calculus M. E. Murphy Waggoner Professor of Mathematics Simpson College Indianola, Iowa January 23, 2016 Contents 1 Preliminary Material 5 1.1 General.....................................

### Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

### Georgia Department of Education. Calculus

K-12 Mathematics Introduction Calculus The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by using manipulatives and a variety

### Calculus I Notes. MATH /Richards/

Calculus I Notes MATH 52-154/Richards/10.1.07 The Derivative The derivative of a function f at p is denoted by f (p) and is informally defined by f (p)= the slope of the f-graph at p. Of course, the above

### So here s the next version of Homework Help!!!

HOMEWORK HELP FOR MATH 52 So here s the next version of Homework Help!!! I am going to assume that no one had any great difficulties with the problems assigned this quarter from 4.3 and 4.4. However, if

### 2.4 Motion and Integrals

2 KINEMATICS 2.4 Motion and Integrals Name: 2.4 Motion and Integrals In the previous activity, you have seen that you can find instantaneous velocity by taking the time derivative of the position, and

### 106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM 5.1.1 Fermat s Theorem f is differentiable at a, then f (a) = 0.

5 Curve Sketching Whether we are interested in a function as a purely mathematical object or in connection with some application to the real world, it is often useful to know what the graph of the function

### CHAPTER 13. Definite Integrals. Since integration can be used in a practical sense in many applications it is often

7 CHAPTER Definite Integrals Since integration can be used in a practical sense in many applications it is often useful to have integrals evaluated for different values of the variable of integration.

### Test Information Guide: College-Level Examination Program 2013-14

Test Information Guide: College-Level Examination Program 01-14 Calculus X/ 01 The College Board. All righte reserved. Ccilege Board, College-Level Examination Program, CLEF', and the acorn logo are registered

### Limit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)

SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f

### The Derivative. Philippe B. Laval Kennesaw State University

The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition

### AP Calculus AB 1998 Scoring Guidelines

AP Calculus AB 1998 Scoring Guidelines These materials are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced

### Math 103: Secants, Tangents and Derivatives

Math 103: Secants, Tangents and Derivatives Ryan Blair University of Pennsylvania Thursday September 27, 2011 Ryan Blair (U Penn) Math 103: Secants, Tangents and Derivatives Thursday September 27, 2011

### WEEK #5: Trig Functions, Optimization

WEEK #5: Trig Functions, Optimization Goals: Trigonometric functions and their derivatives Optimization Textbook reading for Week #5: Read Sections 1.8, 2.10, 3.3 Trigonometric Functions From Section 1.8

### Calculus AB 2014 Scoring Guidelines

P Calculus B 014 Scoring Guidelines 014 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are registered trademarks of the College Board. P Central is the official

### Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

### Apr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa

Calculus with Algebra and Trigonometry II Lecture 23 Final Review: Curve sketching and parametric equations Apr 23, 2015 Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23,

### Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

### Math 113 HW #9 Solutions

Math 3 HW #9 Solutions 4. 50. Find the absolute maximum and absolute minimum values of on the interval [, 4]. f(x) = x 3 6x 2 + 9x + 2 Answer: First, we find the critical points of f. To do so, take the

### 4. Graphing and Inverse Functions

4. Graphing and Inverse Functions 4. Basic Graphs 4. Amplitude, Reflection, and Period 4.3 Vertical Translation and Phase Shifts 4.4 The Other Trigonometric Functions 4.5 Finding an Equation From Its Graph

### South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

### STUDENT LEARNING OUTCOMES FOR THE SANTIAGO CANYON COLLEGE MATHEMATICS DEPARTMENT (Last Revised 8/20/14)

STUDENT LEARNING OUTCOMES FOR THE SANTIAGO CANYON COLLEGE MATHEMATICS DEPARTMENT (Last Revised 8/20/14) Department SLOs: Upon completion of any course in Mathematics the student will be able to: 1. Create

### Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

### MATHEMATICS (CLASSES XI XII)

MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

### AP Calculus BC. Course content and suggested texts and reference materials align with the College Board framework for AP Calculus BC.

AP Calculus BC Course Overview Topic Description AP Calculus BC Course Details In AP Calculus BC, students study functions, limits, derivatives, integrals, and infinite series This document details the

### 55x 3 + 23, f(x) = x2 3. x x 2x + 3 = lim (1 x 4 )/x x (2x + 3)/x = lim

Slant Asymptotes If lim x [f(x) (ax + b)] = 0 or lim x [f(x) (ax + b)] = 0, then the line y = ax + b is a slant asymptote to the graph y = f(x). If lim x f(x) (ax + b) = 0, this means that the graph of

### Section 8.1 The Inverse Sine, Cosine, and Tangent Functions

Section 8.1 The Inverse Sine, Cosine, and Tangent Functions You learned about inverse unctions in both college algebra and precalculus. The main characteristic o inverse unctions is that composing one

### Calculus 1: Sample Questions, Final Exam, Solutions

Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

### Math 41: Calculus Final Exam December 7, 2009

Math 41: Calculus Final Exam December 7, 2009 Name: SUID#: Select your section: Atoshi Chowdhury Yuncheng Lin Ian Petrow Ha Pham Yu-jong Tzeng 02 (11-11:50am) 08 (10-10:50am) 04 (1:15-2:05pm) 03 (11-11:50am)

### Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

### 3.5: Issues in Curve Sketching

3.5: Issues in Curve Sketching Mathematics 3 Lecture 20 Dartmouth College February 17, 2010 Typeset by FoilTEX Example 1 Which of the following are the graphs of a function, its derivative and its second

### NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

### Chapter (AB/BC, non-calculator) (a) Write an equation of the line tangent to the graph of f at x 2.

Chapter 1. (AB/BC, non-calculator) Let f( x) x 3 4. (a) Write an equation of the line tangent to the graph of f at x. (b) Find the values of x for which the graph of f has a horizontal tangent. (c) Find

### 4.4 CURVE SKETCHING. there is no horizontal asymptote. Since sx 1 l 0 as x l 1 and f x is always positive, we have

SECTION 4.4 CURE SKETCHING 4.4 CURE SKETCHING EXAMPLE A Sketch the graph of f x. sx A. Domain x x 0 x x, B. The x- and y-intercepts are both 0. C. Symmetry: None D. Since x l sx there is no horizontal

### 2008 AP Calculus AB Multiple Choice Exam

008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus

### Course Syllabus. Math Calculus I. Revision Date: 8/15/2016

Course Syllabus Math 2413- Calculus I Revision Date: 8/15/2016 Catalog Description: Limits and continuity; the Fundamental Theorem of Calculus; definition of the derivative of a function and techniques

### = f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )).

Math 1205 Calculus/Sec. 3.3 The Derivative as a Rates of Change I. Review A. Average Rate of Change 1. The average rate of change of y=f(x) wrt x over the interval [x 1, x 2 ]is!y!x ( ) - f( x 1 ) = y

### 100. In general, we can define this as if b x = a then x = log b

Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,

### 1. [20 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, + or, or Does Not Exist.

Answer Key, Math, Final Eamination, December 9, 9. [ Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, + or, or Does Not Eist. (a lim + 6

### Able Enrichment Centre - Prep Level Curriculum

Able Enrichment Centre - Prep Level Curriculum Unit 1: Number Systems Number Line Converting expanded form into standard form or vice versa. Define: Prime Number, Natural Number, Integer, Rational Number,

### Review Sheet for Third Midterm Mathematics 1300, Calculus 1

Review Sheet for Third Midterm Mathematics 1300, Calculus 1 1. For f(x) = x 3 3x 2 on 1 x 3, find the critical points of f, the inflection points, the values of f at all these points and the endpoints,

### Draft Material. Determine the derivatives of polynomial functions by simplifying the algebraic expression lim h and then

CHAPTER : DERIVATIVES Specific Expectations Addressed in the Chapter Generate, through investigation using technology, a table of values showing the instantaneous rate of change of a polynomial function,

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

### Chapter 11 - Curve Sketching. Lecture 17. MATH10070 - Introduction to Calculus. maths.ucd.ie/modules/math10070. Kevin Hutchinson.

Lecture 17 MATH10070 - Introduction to Calculus maths.ucd.ie/modules/math10070 Kevin Hutchinson 28th October 2010 Z Chain Rule (I): If y = f (u) and u = g(x) dy dx = dy du du dx Z Chain rule (II): d dx

### Pre-Calculus Review Lesson 1 Polynomials and Rational Functions

If a and b are real numbers and a < b, then Pre-Calculus Review Lesson 1 Polynomials and Rational Functions For any real number c, a + c < b + c. For any real numbers c and d, if c < d, then a + c < b

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### TOPIC 3: CONTINUITY OF FUNCTIONS

TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let

### Chapter 11. Techniques of Integration

Chapter Techniques of Integration Chapter 6 introduced the integral. There it was defined numerically, as the limit of approximating Riemann sums. Evaluating integrals by applying this basic definition

### Unit 8 Inverse Trig & Polar Form of Complex Nums.

HARTFIELD PRECALCULUS UNIT 8 NOTES PAGE 1 Unit 8 Inverse Trig & Polar Form of Complex Nums. This is a SCIENTIFIC OR GRAPHING CALCULATORS ALLOWED unit. () Inverse Functions (3) Invertibility of Trigonometric

### 6.3 Inverse Trigonometric Functions

Chapter 6 Periodic Functions 863 6.3 Inverse Trigonometric Functions In this section, you will: Learning Objectives 6.3.1 Understand and use the inverse sine, cosine, and tangent functions. 6.3. Find the

### Math 180 Calculus 1 Worksheets. Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago

Math 180 Calculus 1 Worksheets Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK About this booklet Math 180 Worksheets

### Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the

### MTH4100 Calculus I. Lecture notes for Week 8. Thomas Calculus, Sections 4.1 to 4.4. Rainer Klages

MTH4100 Calculus I Lecture notes for Week 8 Thomas Calculus, Sections 4.1 to 4.4 Rainer Klages School of Mathematical Sciences Queen Mary University of London Autumn 2009 Theorem 1 (First Derivative Theorem

### Calculus with Parametric Curves

Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function

### EQ: How can regression models be used to display and analyze the data in our everyday lives?

School of the Future Math Department Comprehensive Curriculum Plan: ALGEBRA II (Holt Algebra 2 textbook as reference guide) 2016-2017 Instructor: Diane Thole EU for the year: How do mathematical models

### Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is one-to-one, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function

### Dear Accelerated Pre-Calculus Student:

Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also

### MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x

### TI-84/83 graphing calculator

TI-8/83 graphing calculator Let us use the table feature to approimate limits and then solve the problems the old fashion way. Find the following limits: Eample 1.1 lim f () Turn on your TI-8 graphing

### 2.2 Separable Equations

2.2 Separable Equations 73 2.2 Separable Equations An equation y = f(x, y) is called separable provided algebraic operations, usually multiplication, division and factorization, allow it to be written

### Math 181 Spring 2007 HW 1 Corrected

Math 181 Spring 2007 HW 1 Corrected February 1, 2007 Sec. 1.1 # 2 The graphs of f and g are given (see the graph in the book). (a) State the values of f( 4) and g(3). Find 4 on the x-axis (horizontal axis)

### AP Calculus AB 2011 Scoring Guidelines

AP Calculus AB Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 9, the