# Physical Vapor Deposition (PVD): SPUTTER DEPOSITION

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 We saw CVD PECVD Physical Vapor Deposition (PVD): SPUTTER DEPOSITION Gas phase reactants: P g 1 mtorr to 1 atm. Good step coverage, T > > RT Plasma enhanced surface diffusion without need for elevated T We will see evaporation: (another PVD) Evaporate source material, P eq.vap. P g 10 6 Torr Poor step coverage, alloy fractionation: P vapor We will see Dry etching Momentum transfer and chemical reaction from plasma to remove surface species Now sputter deposition. Noble or reactive gas P mtorr What is a plasma? Oct. 17, J/3.155J 1

2 What is a plasma? A gas of ionized particles, typically noble gas (e.g. Ar + + e - ) Ionization potential of of Ar Ar ev ev Ionization event - P m Torr cathode v Ar + E x ve anode V 1kV Plasma is only self-sustaining over a range of pressures: typically 1 or 10 mt > P > 100 mt. To understand Why this pressure range?, we need to understand what goes on inside a plasma? Oct. 17, J/3.155J 2

3 First, what is molecular density at 10 mt? 2.5 x m Ideal gas: n = P/(k B T) λ = λ (cm) k B T 2π d 2 P 24 Log[n (#/m 3 )] n = 3.2 x m λ Ar 3 cm ( λ[ar + ] much less) 1 Torr 10 mt 1 Atm= 0.1 MPa 14 lb/in Log[P (N/m 2 )] At 10 mt, molecular spacing n -1/3 = 0.15 microns. Is this = λ? Oct. 17, J/3.155J 3

4 λ = Spacing between molecules n -1/3 = 0.15 microns. k B T 2πd 2 P λ Ar 3 cm ( λ[ar + ] much less) Thermal velocity of Ar, v 3k B T m Ar 10 3 m/s What s final velocity of ions at x = λ? E field accelerates Ar +, e - between collisions. v 2 f = v ax 2 Eq m λ v v e Ar m/s m/s, (only 0.1% to 1% of n Ar are ions): Oct. 17, J/3.155J 4

5 Be clear about different velocities: v kt 10 3 m/s v Ar m/s m/s v e- v 3k B T m Ar So we have: low-vel. Ar + high vel. e - Ionization event - cathode v Ar + E x ve anode V 1kV The plasma is highly conducting due to electrons: J = nqv x Thus J e- >> J Ar+ J e = σe = nqv x nq at 2 nq Eq 2m λ v σ e nq2 2m λ v = ne2 τ 2m Oct. 17, J/3.155J 5

6 Plasma is self-sustaining only for 1 or 10 mt < P < 100 mt. Necessary conditions: Why this pressure range? If pressure is too low, λ is large, too few collisions in plasma to sustain energy 1) λ < L so collisions exchange energy within plasma λ = k B T 2π d 2 P If pressure is too high, λ is small, very little acceleration between collisions 2) E K > ionization potential of Ar mv 2 f = 2ax Eqλ Oct. 17, J/3.155J 6

7 Plasma is self-sustaining only for 1 or 10 mt < P < 100 mt. λ = k B T 2π d 2 P Self-sustained plasma 1 2 mv 2 f Eqλ V L λ(ev) Log[λ (m)] 0-1 1) λ < L 10 cm 100 V 1000 V λ 3 cm: E K 0.3 x V 2) E K > Ar + E K (ev) 2 1 Ne + 22 Ar + 16 Kr mt: λ 3 cm Log[P (N/m 2 )] -2-3 Oct. 17, J/3.155J 7

8 - What about Glow? cathode Ar + impact on cathode => Lots more electrons, plus sputtered atoms anode E K Cathode 2 ~ v e 3 ev 1.5eV v Ar + glow x x E x v e v f 2 = 2ax Ionization Anode Faraday dark space e - s swept out E K e <1.5eV ~ Cathode dark space, no action e 1.5 < E ~ K < ~ 3eV e - - induced optical excitation of Ar visible glow E K > 3eV => ionization, High conductivity plasma Oct. 17, J/3.155J 8

9 Inside a plasma (D.C. or cathode sputtering ) 3 ev 2 E K ~ v e 1.5eV glow x Ionization J e, v e >> J Ar +,v Ar + Surfaces in plasma charge negative, attract Ar + repel e - - cathode Cathode anode Anode plasma 10 V positive Target relative to anode Cathode sheath: low ion density + V D.C. Target species Substrate Plasma High conductivity Oct. 17, J/3.155J 9 Ar + e -

10 Which species, e - or Ar +, is more likely to dislodge an atom at electrode? Cathode is target, source material - P m Torr cathode v Ar + E x ve anode V 1kV At 1 kev, v Ar+ = v e /43 Momentum transfer: p e = mv Sputter removal (etching) occurs here P Ar = MV = 1832mv/43 43p e- No surprise. from ion implantation, most energy transfer when: i.e. incoming particle has mass close to that of target. 4M E = E 1 M 2 1 ( M 1 + M 2 ) 2 Oct. 17, J/3.155J 10

11 Sputtering process Ar + impact, momentum transfer at cathode 1) e - avalanche and Atomic billiards 2) released target atoms, ions. Elastic energy transfer θ E 2 E 2 ( ) 2 cos 2 θ E 2 greatest for M 1 M 2 E 1 4M 1M 2 M 1 + M 2 E 1 For e - hitting anode, substrate, M 1 < < M 2 E 2 E 1 4M 1 M 2 But e - can give up its E K in inelastic collision: 1 2 m v 2 e e U Excitation of atom or ion (small) Oct. 17, J/3.155J 11

12 Sputtering process: ablation of target Cathode is target, source material - P m Torr cathode v Ar + E x ve anode V 1kV cathode anode - Ar + V 1kV Momentum transfer of Ar + on cathode erodes cathode atoms flux to anode, substrate. Mostly-neutral source atoms (lots of e s around) Target material (cathode) must be conductive or must use RF sputtering (later) Oct. 17, J/3.155J 12

13 How plasma results in deposition 1) Ar + accelerated to cathode 5) Flux => deposition at anode: Al, some Ar, some impurities cathode anode 2) Neutral target species (Al) + Ar + Al kicked off; 3) Some Ar, Ar + and e - also. - Ar =Ar + + e - Al Ar V 1kV e - O - Al 4) e - may ionize impurities (e.g. O => O - ) + Ar + Al 6) Some physical resputtering of film (Al) by Ar Oct. 17, J/3.155J 13

14 Sputtering rate of source material in target is key parameter. Typically target atoms released/ar incident Sputtering rates vary little from material to material. Vapor pressure of source NOT important (this differs greatly for different materials). cathode anode 2) Neutral target species (Al) + Ar + Al kicked off. - Ar =Ar + + e - Al Ar V 1kV + Ar + Al cos θ Al 6) Some physical resputtering of Al by Ar Oct. 17, J/3.155J 14

15 S = Sputtering yield = E S = σ 0 n 2 A 1+ ln E 2 4E thresh E b Sputtering yield # atoms, molecules from target # incident ions E 2 >E t E 1 Surface binding energy E b π d 2 # / area # excited in each layer; E thresh = energy to displace interior atom Random walk to surface; E b = surface binding energy E 2 ( ) 2 cos2 θ E 1 4M 1 M 2 M 1 + M 2 φ Oring, Fig S Sputter rate depends on angle of incidence, relative masses, kinetic energy. Oct. 17, J/3.155J 15 φ 90

16 Figure removed for copyright reasons. Table 3-4 in Ohring, M. The Materials Science of Thin Films. 2nd ed. Burlington, MA: Academic Press, ISBN: Oct. 17, J/3.155J 16

17 Figure removed for copyright reasons. Figure in Campbell, S. The Science and Engineering of Microelectronic Fabrication. 2nd ed. New York, NY: Oxford University Press, ISBN: Sputter yield vs. ion energy, normal incidence Oct. 17, J/3.155J 17

18 Sputtering miscellany Isotropic flux: cos θ = normal component of flux Higher P Anisotropic flux: cos n θ: more-narrowly directed at surface (surface roughness) Poor step coverage. Lower P Large target, small substrate Moving substrates => Good step coverage, more uniform thickness Higher pressure => shorter λ, λ = better step coverage but more trapped gas k B T 2πd 2 P p λ (cm) 10 mt 2 1 mt 20 Oct. 17, J/3.155J 18

19 Target composition vs. film composition Sputtering removes outer layer of target; can lead to problem with multi-component system, but only initially Initial target composition A 3 B If sputter yield A > B Surface composition of target A B A 3 B A 2.5 B A 2 B time Deposited film initially richer in A than target; film composition eventually correct. Another approach: Co-sputtering => composition control; multiple targets & multiple guns. Also can make sample library. A B A 2 B AB AB 2 Oct. 17, J/3.155J 19

20 Varieties of sputtering experience D.C. sputter deposition: Only for conducting materials. if DC sputtering were used for insulator. e.g. carbon, charge would accumulate at each electrode and quench plasma within 1-10 mico-sec. cathode anode t < 1 micro sec Ar =Ar + + e - C - C Ar V 1kV e - O - What does 1 microsec tell you about ion speed? (>10 6 cm /sec) + Ar + C Therefore, use RF plasma RF -sputter system is basically a capacitor with gas dielectric. Energy density as f Oct. 17, J/3.155J 20

21 RF plasma sputtering Plasma conducts at low f ω p ~10 7 s 1 Thus, V = 0 in plasma Target V plasma Substrate Plasma potential still V > 0 due to high e - velocity, (-) charging of surfaces. Potential now symmetric. Mobility of target species (concentration gradient )still => sputtering in 1/2 cycle: v 2eV M m /s Smaller target => higher field Target V plasma V 1 = A 2 V 2 A 1 m m 1,2 F.C.C. reserves: MHz for sputtering + Ar + Ar + + Substrate Some re-sputtering of wafer Oct. 17, J/3.155J 21

22 Varieties of sputtering experience RF Bias sputtering Negative wafer bias enhances re-sputtering of film Target V -1 kv + Ar + V plasma Ar + + Some re-sputtering of wafer V bias -100 V Substrate Figure removed for copyright reasons. Figure 3-24 in Ohring, Bias is one more handle for process control. Used in SiO 2 : denser, fewer asperities. Bias affects stress, resistivity, density, dielectric constant Oct. 17, J/3.155J 22

23 Film stress in RF sputter deposition Cathode Film Species Ar + -V bias Better step coverage Oct. 17, J/3.155J 23

24 Varieties of sputtering experience Magnetron sputtering use magnets ur N F = qv v ur ( B)+ E x q F = mv 2 r, r = mv qb v z B x F y v y S v y B x F z v z Ions spiral around B field lines S N B N S Cathode target v m/s for electron, r < 1 mm for 0.1 T B field enhances time of e - in plasma more ionization, greater Ar + density. E x V + v 0 Oct. 17, J/3.155J 24

25 Reactive sputter deposition: Mix reactive gas with noble gas (Ar or Ne). analogous to PECVD Ti or TiN target Ar +N 2 TiN Also useful for oxides: other nitrides: SiO x, TiO, CrO SiN, FeN, Oct. 17, J/3.155J 25

26 Figure removed for copyright reasons. Figure in Campbell, Resistivity and composition of reactivity sputtered TiN vs. N 2 flow. Oct. 17, J/3.155J 26

27 Thin film growth details (R < 1) R Rate of arrival Diffusion rate 1) Arrival rate, physical adsorption 3) Chemical reaction 5) Growth Anode 4) Nucleation 6) Bulk diffusion 2) Surface diffusion If R > 1, these processes have reduced probability Oct. 17, J/3.155J 27

28 Sputtering metals Can use DC or RF Sputter alloys, compounds Concern about different sputter yield S e.g. Al Si S = But S does not vary as much as P eq.vap which controls evaporation Sputter target T < < T evap No diffusion, surface enriched in low S components High diffusion, composition change, species distributed over entire source Oct. 17, J/3.155J 28

29 Figure removed for copyright reasons. Table 3-7 in Ohring, Oct. 17, J/3.155J 29

### Vacuum Evaporation Recap

Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

### Lecture 6 PVD (Physical vapor deposition): Evaporation and Sputtering

F. G. Tseng Lec6, Fall/2001, p1 Lecture 6 PVD (Physical vapor deposition): Evaporation and Sputtering Vacuum evaporation 1. Fundamental of Evaporation: The material to be evaporated is heated in an evacuated

### Sputtering (cont.) and Other Plasma Processes

Sputtering (cont.) and Other Plasma Processes Sputtering Summary Create an ionic plasma by applying a high voltage to a glow tube. Ions bombard the target material at the cathode. Target atoms are ejected

### Coating Technology: Evaporation Vs Sputtering

Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information

### Deposition of Thin Metal Films " (on Polymer Substrates)!

Deposition of Thin Metal Films " (on Polymer Substrates)! Shefford P. Baker! Cornell University! Department of Materials Science and Engineering! Ithaca, New York, 14853! MS&E 5420 Flexible Electronics,

### Stress Control in AlN and Mo Films for Electro-Acoustic Devices

Stress Control in AlN and Mo Films for Electro-Acoustic Devices Valery Felmetsger and Pavel Laptev Tegal Corporation IFCS 2008 Paper ID 3077 Slide 1 1 Introduction Piezoelectric AlN films with strong (002)

### Dry Etching and Reactive Ion Etching (RIE)

Dry Etching and Reactive Ion Etching (RIE) MEMS 5611 Feb 19 th 2013 Shengkui Gao Contents refer slides from UC Berkeley, Georgia Tech., KU, etc. (see reference) 1 Contents Etching and its terminologies

### Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle

Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

### II. Thin Film Deposition

II. Thin Film Deposition Physical Vapor Deposition (PVD) - Film is formed by atoms directly transported from source to the substrate through gas phase Evaporation Thermal evaporation E-beam evaporation

### Sputtering. Ion-Solid Interactions

ssistant Professor Department of Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (716) 475-2923 Fax (716) 475-5041 PDRDV@RIT.EDU Page 1

### Chemical Vapor Deposition

Chemical Vapor Deposition Physical Vapor Deposition (PVD) So far we have seen deposition techniques that physically transport material from a condensed phase source to a substrate. The material to be deposited

### Ion Beam Sputtering: Practical Applications to Electron Microscopy

Ion Beam Sputtering: Practical Applications to Electron Microscopy Applications Laboratory Report Introduction Electron microscope specimens, both scanning (SEM) and transmission (TEM), often require a

### Module 7 Wet and Dry Etching. Class Notes

Module 7 Wet and Dry Etching Class Notes 1. Introduction Etching techniques are commonly used in the fabrication processes of semiconductor devices to remove selected layers for the purposes of pattern

### Lecture 22: Integrated circuit fabrication

Lecture 22: Integrated circuit fabrication Contents 1 Introduction 1 2 Layering 4 3 Patterning 7 4 Doping 8 4.1 Thermal diffusion......................... 10 4.2 Ion implantation.........................

### Molybdenum Etchants Study Surajit Sutar University of Notre Dame

The purpose of this Molybdenum etching study is to find a Molybdenum metallization process without involving a Lift-Off. Molybdenum, a refractory metal, when evaporated by an E-beam, causes a significant

### Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob

Chemical Sputtering von Kohlenstoff durch Wasserstoff W. Jacob Centre for Interdisciplinary Plasma Science Max-Planck-Institut für Plasmaphysik, 85748 Garching Content: Definitions: Chemical erosion, physical

### III. Wet and Dry Etching

III. Wet and Dry Etching Method Environment and Equipment Advantage Disadvantage Directionality Wet Chemical Solutions Atmosphere, Bath 1) Low cost, easy to implement 2) High etching rate 3) Good selectivity

### Electron Beam and Sputter Deposition Choosing Process Parameters

Electron Beam and Sputter Deposition Choosing Process Parameters General Introduction The choice of process parameters for any process is determined not only by the physics and/or chemistry of the process,

### Oxide Growth. 1. Introduction

Oxide Growth. Introduction Development of high-quality silicon dioxide (SiO 2 ) has helped to establish the dominance of silicon in the production of commercial integrated circuits. Among all the various

### 1. Degenerate Pressure

. Degenerate Pressure We next consider a Fermion gas in quite a different context: the interior of a white dwarf star. Like other stars, white dwarfs have fully ionized plasma interiors. The positively

### MMIC Design and Technology. Fabrication of MMIC

MMIC Design and Technology Fabrication of MMIC Instructor Dr. Ali Medi Substrate Process Choice Mobility & Peak Velocity: Frequency Response Band-Gap Energy: Breakdown Voltage (Power-Handling) Resistivity:

### Physical Vapor Deposition

Physical Vapor Deposition May 2008 2 Contents 8.1 Atomistic Deposition............................... 4 8.2 Evaporation.................................... 5 8.2.1 Source of heat..............................

### Silicon dioxide, SiO2

Silicon dioxide, SiO2 Sand (silica) one of the most common minerals in the earth. Main component in common glass mixed with sodium carbonate and calcium oxide (lime) to make soda-lime glass for window

Graduate Student Presentations Dang, Huong Chip packaging March 27 Call, Nathan Thin film transistors/ liquid crystal displays April 4 Feldman, Ari Optical computing April 11 Guerassio, Ian Self-assembly

### THIN FILM MATERIALS TECHNOLOGY

THIN FILM MATERIALS TECHNOLOGY Sputtering of Compound Materials by Kiyotaka Wasa Yokohama City University Yokohama, Japan Makoto Kitabatake Matsushita Electric Industrial Co., Ltd. Kyoto, Japan Hideaki

### Chapter 5: Diffusion. 5.1 Steady-State Diffusion

: Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

### Coating Thickness and Composition Analysis by Micro-EDXRF

Application Note: XRF Coating Thickness and Composition Analysis by Micro-EDXRF www.edax.com Coating Thickness and Composition Analysis by Micro-EDXRF Introduction: The use of coatings in the modern manufacturing

### Etching Etch Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference between

Etching Etch Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference between 2 materials Other layers below one being etch Masking

### Enhanced step coverage by oblique angle physical vapor deposition

JOURNAL OF APPLIED PHYSICS 97, 150 005 Enhanced step coverage by oblique angle physical vapor deposition Tansel Karabacak a and Toh-Ming Lu Center for Integrated Electronics and Department of Physics,

### Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation

### Exercise 3 Physical Vapour Deposition

Exercise 3 Physical Vapour Deposition Physical Vapour Deposition (PVD) technology consist of the techniques of arc deposition, ion plating, resistance evaporation, electron beam evaporation, sputtering

### Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

### Plasma diagnostics focused on new magnetron sputtering devices for thin film deposition

Université Paris-Sud XI Laboratoire de Physique des Gaz et des Plasmas Orsay, France & Masaryk University in Brno Department of Physical Electronics Brno, Czech Republic Plasma diagnostics focused on new

### Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack

Kinetic Theory of Gas Assistant Professor Department of Materials Science and Engineering University of Tennessee 603 Dougherty Engineering Building Knoxville, TN 3793-00 Phone: (865) 974-5344 Fax (865)

### Thin Film Deposition Processes

International Journal of Modern Physics and Applications Vol. 1, No. 4, 2015, pp. 193-199 http://www.aiscience.org/journal/ijmpa Thin Film Deposition Processes 1, 2, * Dler Adil Jameel 1 School of Physics

### HSC Physics SAMPLE LECTURE SLIDES

HSC SAMPLE LECTURE SLIDES HSC Exam Preparation Programs 4October2015 c 2015 Sci School TM.Allrightsreserved. Overview By the 1850 s vacuum pumps had become efficient enough to reduce the pressure inside

### VI. Pattern Transfer: Additive techniques-physical Vapor Deposition and Chemical Vapor Deposition

VI. Pattern Transfer: Additive techniques-physical Vapor Deposition and Chemical Vapor Deposition Content Physical vapor deposition (PVD) Chemical vapor deposition (CVD) Thermal evaporation Reaction mechanisms

### Etching and Pattern Transfer (1) OUTLINE. 6.152J / 3.155J -- Spring Term 2005 Lecture 12 - Etch and Pattern Transfer I (Wet Etch) 1.

6.15JST05.Lecture1-1 1 Etching and Pattern Transer (1) OUTLINE Basic Concepts o Etching Wet Etching Speciic Wet Etches Silicon Silicon Dioxide Aluminum Dry (Plasma) Etch eview o Plasmas eading Assignment:

### A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators

A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators Dr Peter Hockley and Professor Mike Thwaites, Plasma Quest Limited

### Sheet Resistance = R (L/W) = R N ------------------ L

Sheet Resistance Rewrite the resistance equation to separate (L / W), the length-to-width ratio... which is the number of squares N from R, the sheet resistance = (σ n t) - R L = -----------------------

### Deposition Overview for Microsytems

Deposition Overview for Microsytems Deposition PK Activity Terminology Participant Guide www.scme-nm.org Deposition Overview for Microsystems Primary Knowledge Participant Guide Description and Estimated

### Nanotechnology Center

PLASMA RIE Birck ETCHING Nanotechnology Center FUNDAMENTALS AND APPLICATIONS 1 Outline 1. Introductory Concepts 2. Plasma Fundamentals 3. The Physics and Chemistry of Plasmas 4. Anisotropy Mechanisms 5.

### Module - 01 Lecture - 23 The Diffusion Equation

Electronic Materials Devices and Fabrication Layering: Thermal Oxidation Dr. S. Parasuraman Department of Metallurgical and Materials Engineering Indian Institute of Technology, Madras Module - 01 Lecture

### Introduction to Organic Electronics

Introduction to Organic Electronics (Nanomolecular Science Seminar I) (Course Number 420411 ) Fall 2005 Organic Field Effect Transistors Instructor: Dr. Dietmar Knipp Information: Information: http://www.faculty.iubremen.de/course/c30

### State of the art in reactive magnetron sputtering

State of the art in reactive magnetron sputtering T. Nyberg, O. Kappertz, T. Kubart and S. Berg Solid State Electronics, The Ångström Laboratory, Uppsala University, Box 534, S-751 21 Uppsala, Sweden D.

### Methods of plasma generation and plasma sources

Methods of plasma generation and plasma sources PlasTEP trainings course and Summer school 2011 Warsaw/Szczecin Indrek Jõgi, University of Tartu Partfinanced by the European Union (European Regional Development

### PARTICLE SIMULATION ON MULTIPLE DUST LAYERS OF COULOMB CLOUD IN CATHODE SHEATH EDGE

PARTICLE SIMULATION ON MULTIPLE DUST LAYERS OF COULOMB CLOUD IN CATHODE SHEATH EDGE K. ASANO, S. NUNOMURA, T. MISAWA, N. OHNO and S. TAKAMURA Department of Energy Engineering and Science, Graduate School

### 2. Deposition process

Properties of optical thin films produced by reactive low voltage ion plating (RLVIP) Antje Hallbauer Thin Film Technology Institute of Ion Physics & Applied Physics University of Innsbruck Investigations

### Nickel Electroplating

Nickel Electroplating Nickel Electroplating using Shipley Megaposit SPR 220 Positive Resist as a Mold Purpose: Author: Rekha S. Pai (11/05/01) To obtain high aspect ratio Nickel structures for MEMS processing

### Lecture 11. Etching Techniques Reading: Chapter 11. ECE 6450 - Dr. Alan Doolittle

Lecture 11 Etching Techniques Reading: Chapter 11 Etching Techniques Characterized by: 1.) Etch rate (A/minute) 2.) Selectivity: S=etch rate material 1 / etch rate material 2 is said to have a selectivity

### Physical Vapor Deposition of Coatings On Glass D. J. O Shaughnessy

Physical Vapor Deposition of Coatings On Glass D. J. O Shaughnessy Acknowledgements: Tom Waynar, Andrew Wagner, Ed Kapura, (PPG Industries, Inc.) PPG Confidential and Proprietary Information Outline Solar

### Plasma Etching Outline

Page 1 Plasma Etching Outline Plasma vs. Wet Etching The Plasma State - Plasma composition, DC & RF Plasma Plasma Etching Principles and Processes Equipment Advanced Plasma Systems Terminology Etching

### Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

### a) Conservation of Mass states that mass cannot be created or destroyed. b) Conservation of Energy states that energy cannot be created or destroyed.

7 Fission In 1939 Hahn and Strassman, while bombarding U-235 nuclei with neutrons, discovered that sometimes U-235 splits into two nuclei of medium mass. There are two important results: 1. Energy is produced.

### Neuere Entwicklungen zur Herstellung optischer Schichten durch reaktive. Wolfgang Hentsch, Dr. Reinhard Fendler. FHR Anlagenbau GmbH

Neuere Entwicklungen zur Herstellung optischer Schichten durch reaktive Sputtertechnologien Wolfgang Hentsch, Dr. Reinhard Fendler FHR Anlagenbau GmbH Germany Contents: 1. FHR Anlagenbau GmbH in Brief

### Sputter deposition of metallic thin film and direct patterning

Sputter deposition of metallic thin film and direct patterning L. Ji a), b), Q. Ji, Y. Chen a), X. Jiang a), and K-N. Leung a) Lawrence Berkeley National Laboratory, University of California, Berkeley,

### 427.00-6 FISSION. At the conclusion of this lesson the trainee will be able to:

FISSION OBJECTIVES At the conclusion of this lesson the trainee will be able to: 1. Explain where the energy released by fission comes from (mass to energy conversion). 2. Write a typical fission reaction.

### Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

### Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

### Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

### Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

CMOS Processing Technology Silicon: a semiconductor with resistance between that of conductor and an insulator. Conductivity of silicon can be changed several orders of magnitude by introducing impurity

### VLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras

VLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 14 Oxidation IV Oxide Charges and Oxidation Systems So, in the last class we were

### Correct flow of information linking the 3 elements of the control system is very important.

UNIFORMITY CONTROL IN REACTIVE MAGNETRON SPUTTERING V. Bellido-Gonzalez 1, B. Daniel 1, Dr. D. Monaghan 1, J. Counsell 2 1 Gencoa Ltd, Physics Road, Liverpool, L24 9HP, UK 2 J. Counsell Ltd., Lynwood (54)

### Electricity. Investigating spontaneous gas discharge in air as a function of pressure. LD Physics Leaflets P3.9.2.1. 0210-Sel

Electricity Electrical conduction in gases Gas discharge at reduced pressure LD Physics Leaflets P3.9.2.1 Investigating spontaneous gas discharge in air as a function of pressure Objects of the experiments

### Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield

MTE 585 Oxidation of Materials Part 1 Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield Introduction To illustrate the case of high temperature oxidation, we will use Ni-base superalloys.

### Solar Photovoltaic (PV) Cells

Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation

### Chapter 11 PVD and Metallization

Chapter 11 PVD and Metallization 2006/5/23 1 Metallization Processes that deposit metal thin film on wafer surface. 2006/5/23 2 1 Metallization Definition Applications PVD vs. CVD Methods Vacuum Metals

### Reactive Sputtering Using a Dual-Anode Magnetron System

Reactive Sputtering Using a Dual-Anode Magnetron System A. Belkind and Z. Zhao, Stevens Institute of Technology, Hoboken, NJ; and D. Carter, G. McDonough, G. Roche, and R. Scholl, Advanced Energy Industries,

### Grad Student Presentation Topics PHGN/CHEN/MLGN 435/535: Interdisciplinary Silicon Processing Laboratory

Grad Student Presentation Topics 1. Baranowski, Lauryn L. AFM nano-oxidation lithography 2. Braid, Jennifer L. Extreme UV lithography 3. Garlick, Jonathan P. 4. Lochner, Robert E. 5. Martinez, Aaron D.

### Semiconductor doping. Si solar Cell

Semiconductor doping Si solar Cell Two Levels of Masks - photoresist, alignment Etch and oxidation to isolate thermal oxide, deposited oxide, wet etching, dry etching, isolation schemes Doping - diffusion/ion

### JePPIX Course Processing Wet and dry etching processes. Huub Ambrosius

JePPIX Course Processing Wet and dry etching processes Huub Ambrosius Material removal: etching processes Etching is done either in dry or wet methods: Wet etching uses liquid etchants with wafers immersed

### Abigail Pillitteri University of Florida REU participant, summer 2007 Under supervision of Dr. Ivan Kravchenko

Optical properties of Si x N y, SiO x, and SiO x N y thin films deposited by PECVD and measured by scanning electron microscopy, ellipsometry, and spectroscopy Abigail Pillitteri University of Florida

### Generating high-efficiency neutral beams by using negative ions in an inductively coupled plasma source

Generating high-efficiency neutral beams by using negative ions in an inductively coupled plasma source Seiji Samukawa a) and Keisuke Sakamoto Institute of Fluid Science, Tohoku University, 2-1-1 Katahira,

### Lecture 5 Physics of Welding Arc I Keywords: 5.1 Introduction 5.2 Emission of Free electrons

Lecture 5 Physics of Welding Arc I This chapter presents fundamentals of welding arc, mechanisms of electron emission, different zones in welding arc, electrical aspects related with welding arc and their

### Nanoscale Fabrication Methods

Nanoscale Fabrication Methods Top down Bottom up take away material to form nanoscale objects assemble nanoscale objects out of even smaller units (e.g., atoms and molecules) Semiconductor chips Micromachines

### THE WAY TO SOMEWHERE. Sub-topics. Diffusion Diffusion processes in industry

THE WAY TO SOMEWHERE Sub-topics 1 Diffusion Diffusion processes in industry RATE PROCESSES IN SOLIDS At any temperature different from absolute zero all atoms, irrespective of their state of aggregation

### Electric Forces & Fields, Gauss s Law, Potential

This test covers Coulomb s Law, electric fields, Gauss s Law, electric potential energy, and electric potential, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice +q +2q

### Chap. 6 Proportional Counters

Chap. 6 Proportional Counters Consider the drift motion of an ion in a simple ion chamber. The ions will have a thermal velocity plus a component along the field lines. Then after traveling for a mean-free-path

### OPTIMIZING OF THERMAL EVAPORATION PROCESS COMPARED TO MAGNETRON SPUTTERING FOR FABRICATION OF TITANIA QUANTUM DOTS

OPTIMIZING OF THERMAL EVAPORATION PROCESS COMPARED TO MAGNETRON SPUTTERING FOR FABRICATION OF TITANIA QUANTUM DOTS Vojtěch SVATOŠ 1, Jana DRBOHLAVOVÁ 1, Marian MÁRIK 1, Jan PEKÁREK 1, Jana CHOMOCKÁ 1,

### Plasma ion assisted deposition with radio frequency powered plasma sources

Plasma ion assisted deposition with radio frequency powered plasma sources H. Hagedorn, M. Klosch, H. Reus, A. Zoeller Leybold Optics GmbH, Siemensstrasse 88, 63755 Alzenau, Germany ABSTRACT The deposition

### Lezioni di Tecnologie e Materiali per l Elettronica

Lezioni di Tecnologie e Materiali per l Elettronica Danilo Manstretta danilo.manstretta@unipv.it microlab.unipv.it Outline Passive components Resistors Capacitors Inductors Printed circuits technologies

### Sputter deposition processes

Sputter deposition processes D. Depla 1, S. Mahieu 1, J.E. Greene 2 1 Ghent University, Department of Solid State Sciences, Krijgslaan 281 (S1), 9000 Ghent, Belgium 2 Materials Science and Physics Departments

### Nuclear Reaction Profiling unraveling the incorporation of water in SiO 2 /SiC structures

Nuclear Reaction Profiling unraveling the incorporation of water in SiO 2 /SiC structures Fernanda Chiarello Stedile, E. Pitthan, S. A. Corrêa, G. V. Soares, and C. Radtke Universidade Federal do Rio Grande

### Secondary Ion Mass Spectrometry

Secondary Ion Mass Spectrometry A PRACTICAL HANDBOOK FOR DEPTH PROFILING AND BULK IMPURITY ANALYSIS R. G. Wilson Hughes Research Laboratories Malibu, California F. A. Stevie AT&T Bell Laboratories Allentown,

### Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

### Module 3 : Fabrication Process and Layout Design Rules Lecture 12 : CMOS Fabrication Technologies

Module 3 : Fabrication Process and Layout Design Rules Lecture 12 : CMOS Fabrication Technologies Objectives In this course you will learn the following Introduction Twin Well/Tub Technology Silicon on

### Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

### Silicon Basics -- General Overview. File: ee4494 silicon basics.ppt revised 09/11/2001 copyright james t yardley 2001 Page 1

Silicon Basics -- General Overview. File: ee4494 silicon basics.ppt revised 09/11/2001 copyright james t yardley 2001 Page 1 Semiconductor Electronics: Review. File: ee4494 silicon basics.ppt revised 09/11/2001

### High performance. Architectural glazings utilise thin. low-emissivity coating. Coating technology

Coating technology High performance low-emissivity coating Growing concern with energy efficiency has sparked the development of double low-emissivity coatings in architectural glass. BOC Coating has designed

### Observation of Long Transients in the Electrical Characterization of Thin Film BST Capacitors

Integrated Ferroelectrics, 53: 503 511, 2003 Copyright C Taylor & Francis Inc. ISSN: 1058-4587 print/ 1607-8489 online DOI: 10.1080/10584580390258651 Observation of Long Transients in the Electrical Characterization

### PRACTICE EXAM IV P202 SPRING 2004

PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

### ELECTRICAL CHARACTERIZATION OF ALUMINUM (Al) THIN FILMS MEASURED BY USING FOUR- POINT PROBE METHOD

ELECTRICAL CHARACTERIZATION OF ALUMINUM (Al) THIN FILMS MEASURED BY USING FOUR- POINT PROBE METHOD 1 G. P. Panta, 1 D. P. Subedi * Department of Natural Sciences (Physics) School of Science, Kathmandu

### Lecture 11. Surface Micromachining (II): MUPMS Sacrificial Layer Thin film stress. Department of Mechanical Engineering

Lecture 11 Surface Micromachining (II): MUPMS Sacrificial Layer Thin film stress MUMPS! http://www.memsrus.com/cronos/svcsmumps.html! Cronos Integrated Microsystems Cronos Integrated Microsystems owes

### Spectroscopic Ellipsometry:

Spectroscopic : What it is, what it will do, and what it won t do by Harland G. Tompkins Introduction Fundamentals Anatomy of an ellipsometric spectrum Analysis of an ellipsometric spectrum What you can

### What is Laser Ablation? Mass removal by coupling laser energy to a target material

Laser Ablation Fundamentals & Applications Samuel S. Mao Department of Mechanical Engineering University of California at Berkeley Advanced Energy Technology Department March 1, 25 Laser Ablation What

### Profs. A. Petkova, A. Rinzler, S. Hershfield. Exam 2 Solution

PHY2049 Fall 2009 Profs. A. Petkova, A. Rinzler, S. Hershfield Exam 2 Solution 1. Three capacitor networks labeled A, B & C are shown in the figure with the individual capacitor values labeled (all units

### Electronic Transitions

Most plasmas are characterized by a glow. The specific color depends on the type of gas that is involved. This glow can be used as a diagnostic tool. However, to do this, we need to understand how the

### Radiation Interactions with Matter: Energy Deposition

Radiation Interactions with Matter: Energy Deposition Biological effects are the end product of a long series of phenomena, set in motion by the passage of radiation through the medium. Image removed due