Problem 1. 12ft. Find: Velocity of truck for both drag situations. Equations: Drag F Weight. For force balance analysis: Lift and Drag: Solution:

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Problem 1. 12ft. Find: Velocity of truck for both drag situations. Equations: Drag F Weight. For force balance analysis: Lift and Drag: Solution:"

Transcription

1 Problem 1 Given: Truck traveling down 7% grade Width 10ft m 5 tons 50,000 lb Rolling resistance on concrete 1.% weight C 0.96 without air deflector C 0.70 with air deflector V ft Find: Velocity truck for both drag situations θ For force balance analysis: F ma F ma x x y y Fz maz rag F Weight ift and rag: drag C F lift C F 1. Use force balance to find equation for motion truck.. Calculate drag due to rolling resistance by 0.01*weight.. Calculate aerodynamic drag using both given C (separately) and eqn. for drag. 4. Plug information into original force balance eqn. to find truck velocity. Numbers:

2 Problem Given: Box kite blowing in wind U 0ft/s V wind 0 ft/s W 0.9 lb Tension in string.0 lb ngle to ground 0 o Frontal area 6.0 ft θ Find: a) etermine the lift and drag coefficients b) If V wind 0 ft/s and C and C are as found, will the kite rise or fall? ssumptions: y For force balance analysis: F ma F ma x x y y Fz maz x T W ift and rag: drag C F lift C F a) 1. Find the density air from Table.9.. Use force balance in both x and y to find equations for drag and lift respectively.. Using equations for lift and drag calculate C and C. b) 1. Plug new velocity into equations for lift and drag and recalculate θ.

3 Numbers:

4 Problem Given: Old airplane with wires used to strengthen design, with: U 70mph, wing 148 ft, C wing 0.00, wire 160 ft, wire 0.05 in Find: Ratio drag from wire bracing to that from the wings ssumptions: (1) Wires modeled as smooth cylinders ift and rag: F drag C 1 ρ V F lift C 1 ρ V 1. Calculate the Reynolds number the wire braces.. ook up C for wires in Fig Calculate wire / wing. Numbers:

5 Problem 4 Given: Old airplane with wires used to strengthen design, with: U 150 km/h, wire 60 m, wire 6 mm Find: Power required to move the guy wires ssumptions: (1) Wires modeled as smooth cylinders ift and rag: F drag C 1 ρ V F lift C 1 ρ V 1. ook up the kinematic viscosity and density air at 15 o C in Table ν 1.45x 10 m / s, ρ 1.kg / m. Calculate the Reynolds number the wire braces. km 1000m 1hr 1m 150 6mm U Re hr 1km 600s 1000mm ν 1.45x10 m / s 5. ook up C (Re) for wires in Fig 9.1. C ~ 1. 17,41 4. Calculate the force drag using the equation for the coefficient drag. F C 1 ρv F 1. (0.5)(1.kg / m )(150km / hr *1000m / km *1hr / 600s) (0.006m)(60m) F 461.5N 5. Now calculate power necessary, knowing P FV (461.5 N)(41.7m/s) 19. kw.

6 Problem 5 Given: Optimally faired wires the same length and other properties as in problem 4 Find: Percent power saved by fairing guy wires ift and rag: F drag C 1 ρ V F lift C 1 ρ V 1. ook up the kinematic viscosity and density air at 15 o C in Table ν 1.45x 10 m / s, ρ 1.kg / m. Calculate the Reynolds number the wire braces. km 1000m 1hr 1m 150 6mm U Re hr 1km 600s 1000mm ν 1.45x10 m / s 5 17,41. ook up C (Re) for streamlined strut in Fig C ~ Calculate the force drag using the equation for the coefficient drag. F C 1 ρv F 0.06 (0.5)(1.kg / m )(150km / hr *1000m / km *1hr / 600s) (0.006m)(60m) F N 5. Now calculate power necessary, knowing P FV ( N)(41.7m/s) 960 W. 6. Comparing this to the power in problem 4: P P streamline P 19,00W 960W x100 % x100% 95% less power necessary!!! 19,00W

7 Problem 6 Given: Spherical hailstones, 10mm, falling through air at STP Find: Terminal velocity (1) Coefficien t drag C F 5 1. ook up properties for air in Table.10: ν 1.45x 10 m / s, ρ 1.kg / m. ook up the specific gravity ice in Table.1 and calculate the density ice. SG ρ SG ρ (0.917)(1000kg / m ) 917kg m ice ice ice H 0 /. Since the sum the forces in y is zero when terminal velocity is reached, sum forces: Fy 0 mg F 4. Rearrange equation (1) for the drag force and plug it into the force balance equation just found to find V t. mg C (0.5) ρv t V t mg C ρ π (0.01m) 4 5. Calculate the mass the hail: m ρ V 917kg / m 4.8x10 kg 6 6. Calculate the area: π 4 π x10 5 m 7. Now calculate V t (C ): V t 4 (4.8x10 kg)(9.81m / s ) 5 C (1.kg / m )(7.85x10 m ) 9.87m / s C 8. ssume C is in the flat region Figure 9.11 so that C ~ m / s 9. Now calculate: V t 14.4m / s 0.47 V (14.4 / )(0.01 ) 10. For this velocity calculate: Re t m s m ν 1.45x10 m / s 11. Now go back to Figure 9.11 and look up C for this Reynolds number: C ~ m / s 1. Recalculate: V t 15.4m / s 0.41 * lthough hailstones are not perfectly spherical this is probably a good estimate

8 Problem 7 Given: Bicycle with frontal.9 ft, and C 0.88, and peddling at 15 mph in still air Find: Extra power necessary to peddle against a 0 mph head wind (1) Coefficien t drag C F 1. ook up density air in Table.10: ρ 0.008slug / ft. Change units bike velocity: V bike 15 mph (88ft/s)/(60mph) ft/s. Wind speed relative to bike: V rel (15+0)mph(88ft/s)/(60mph)51. ft/s 4. Rearrange equation (1) into an equation for drag: F.5C ρv (0.5)(0.88)(0.008slug / ft )(09 ft ) V 4.08x rel Vrel 5. Get equation for power necessary to peddle bike: P V F bike ( ft / s)(4.08x10 ) Vrel Vrel 6. Calculate power for peddling in still air: P Vrel (0.0898)( ft / s) 4.5 ft lb / s 7. Calculate power for peddling in 0mph headwind: Prel Vrel (0.0898)(51. ft / s) 6 ft lb / s 8. dditional power necessary: P rel P (6-4.5)(ft-lb/s)(1hp/550ft/lb/s) 0.5 hp

9 Problem 8 Given: Power to overcome aerodynamic drag: P ~ U n Find: n (1) Power UF rag () drag C F 1. Combining equations (1) and () for power: P 0.5UC ρu. For many vehicles the drag coefficient is essentially independent Reynolds number, thus C is not a function U so that P 0.5C ρu. So n.

10 Problem 9 Given: Cork ball in water with: d 0.m, SG 0.1, angle 0 o Find: Current speed, U θ U (1) For force balance for stationary object: F F 0 F 0 x 0 y z F Buoyancy force F B () drag C F W mg Tension T 1. o some geometry and use equations (1) to find in the x-direction: F Tcos0 o, and in the y-direction: F B W + Tsin0 o.. Calculate the buoyancy force and weight the ball: F B ρgvol (9.80 kn/m )(4π/)(0./ m) kn, and W SG F B 0.1 (0.185 kn) kn. Now balancing forces in the y-direction and using equation (): kn kn + tan0 o, Or kn, where C ½ U C U (1/) (999 kg/m ) (π(0.m) /4) 5.C U N, where U ~ m/s. HENCE: (eq. ) 5. C U 189 (in N) or C U 5.5 (eq. B) Re U/ν 0.m U/ 1.1x10-6 m /s.68 x 10 5 U 4. Now the strategy is to use trial and error to determine U. ssume C, then calculate U from Eq. () and Re from Eq. (B); check C from Fig. 9.11, and iterate until C s converge. See below. ssume C 0.5 then from Eq. () U.7 m/s and Re 8.76 x 10 5, and from Fig 9.11 C 0.15 which does not equal 0.5 so try again ssume C 0.15 then from Eq. () U 5.97 m/s and Re 1.6 x 10 6, and from Fig C 0.0 which does not equal 0.15 so try again ssume C 0.19 then from Eq. () U 5.1 m/s and Re 1.4 x 10 6, and from Fig C 0.19 so U 5.1 m/s

11 Problem 10 Given: Flow around UN building where: w 87.5m, h 154m, C 1., U 0 m/s Find: rag ssumptions: (1) ir is at STP (1) drag C F 1. ook up density air at STP in Table.10. ρ 1.kg / m. Rearrange equation (1) to find: F 0.5C ρv. Plug in the given conditions and calculate the drag: 6 F ( 0.5)(1.)(1.kg / m )(0m / s) (87.5m)(154m) 4.1x10 N

12 Problem 11 Given: Flow around UN building where: w 87.5m, h 154m, C 1., U 0 m/s at y h/ 77m Find: rag ssumptions: (1) ir is at STP (1) Velocity prile given: u Cy 0.4 () drag C F () total drag F df 1. ook up density air at STP in Table.10. ρ 1.kg / m. Rearrange equation (1) to find C, knowing u(h/): C 0/( ).5. Rearrange equation () to find: F 0.5C ρv 4. Plug this into equation () to find: F 0.5C ρ u dxdy 5. Now plug in equation (1) and known values and integrate from the ground to the top the building. F F 0.5C ρw u dy 0.5C ρwc y 1.8 (0.5)(1.)(1.kg / m )(87.5m)(.5) * rag is just less than with a uniform flow prile x10 6 N

13 Problem 1 Given: Nuclear submarine cruising submerged V 7 knots δ y x 107m w pi* 4.6m Find: a) Estimate percentage hull length with laminar B b) Calculate drag due to skin friction c) Estimate power consumed ssumptions: (1) Can treat hull as a flat plate with same wetted area () Neglect laminar boundary layer (if small percent hull length) Boundary ayer: Re 500,000 transition * displacement thickness δ momentum thickness θ 0 u U u U u U dy dy δ 0 δ 0 1 u U u 1 U dy u U dy Flow over flat plate parallel to the flow: friction drag F τ d plate surface Turbulent Boundary ayer: 5 x 10 5 < Re < 10 7 : C Re 1 5 Re < 10 9 : w

14 0.455 C (log Re ).58 ift and rag: drag C F lift C F a) 1. ook up value viscosity seawater in Table... Calculate Re.. Calculate the ratio Re xt / Re which will give us the ratio x t /. 4. Multiply this ratio by 100% to get the percent hull length with B (it is small). b) 1. Find C using equation for turbulent boundary layer. 4. Plug C into equation to find F. c) 1. Power F V, so calculate the power.

15 Fox

16 Problem 1 Given: Paddle wheel is immersed in a river current. Find: a) Expression for force produced by the wheel b) Expression for torque produced by the wheel c) Expression for power produced by the wheel d) Find the optimum angular speed, ω ssumptions: (1) Neglect air resistance since ρ air << ρ water () Use the velocity relative to the paddle () ssume the equivalent one paddle is constantly immersed ift and rag: drag C Other useful equations: F lift C F Torque F R Power Tω a) 1. Calculate the relative velocity, V rel V U V - Rω.. Plug into equation for drag force and find the expression. b) 1. Now plug this F into the equation for torque and find the expression. c) 1. Now plug this T into the equation for power and find the expression. d) 1. ifferentiate P with respect to U, where U Rω.. Set this equal to zero to find the minima and maxima.. Plug back in Rω U and find the relationship ω f (V,R).

17 Fox

18 Problem 14

19 Problem 15

ME19b. SOLUTIONS. Feb. 11, 2010. Due Feb. 18

ME19b. SOLUTIONS. Feb. 11, 2010. Due Feb. 18 ME19b. SOLTIONS. Feb. 11, 21. Due Feb. 18 PROBLEM B14 Consider the long thin racing boats used in competitive rowing events. Assume that the major component of resistance to motion is the skin friction

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

Open channel flow Basic principle

Open channel flow Basic principle Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

CE 3500 Fluid Mechanics / Fall 2014 / City College of New York 1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and

More information

E 490 Fundamentals of Engineering Review. Fluid Mechanics. M. A. Boles, PhD. Department of Mechanical & Aerospace Engineering

E 490 Fundamentals of Engineering Review. Fluid Mechanics. M. A. Boles, PhD. Department of Mechanical & Aerospace Engineering E 490 Fundamentals of Engineering Review Fluid Mechanics By M. A. Boles, PhD Department of Mechanical & Aerospace Engineering North Carolina State University Archimedes Principle and Buoyancy 1. A block

More information

Natural Convection. Buoyancy force

Natural Convection. Buoyancy force Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

More information

Dimensional Analysis

Dimensional Analysis Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

More information

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi. SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

Fluids in Motion Supplement I

Fluids in Motion Supplement I Fluids in Motion Supplement I Cutnell & Johnson describe a number of different types of flow: Compressible vs incompressible (most liquids are very close to incompressible) Steady vs Unsteady Viscous or

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

Higher Technological Institute Civil Engineering Department. Lectures of. Fluid Mechanics. Dr. Amir M. Mobasher

Higher Technological Institute Civil Engineering Department. Lectures of. Fluid Mechanics. Dr. Amir M. Mobasher Higher Technological Institute Civil Engineering Department Lectures of Fluid Mechanics Dr. Amir M. Mobasher 1/14/2013 Fluid Mechanics Dr. Amir Mobasher Department of Civil Engineering Faculty of Engineering

More information

1. Introduction, fluid properties (1.1, and handouts)

1. Introduction, fluid properties (1.1, and handouts) 1. Introduction, fluid properties (1.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Applications of fluid mechanics

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79

Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life? - car brakes - driving around a turn - walking - rubbing your hands together

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Performance. 15. Takeoff and Landing

Performance. 15. Takeoff and Landing Performance 15. Takeoff and Landing The takeoff distance consists of two parts, the ground run, and the distance from where the vehicle leaves the ground to until it reaches 50 ft (or 15 m). The sum of

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

3 Work, Power and Energy

3 Work, Power and Energy 3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy

More information

Practice Problems on Viscosity. free surface. water. y x. Answer(s): base: free surface: 0

Practice Problems on Viscosity. free surface. water. y x. Answer(s): base: free surface: 0 viscosity_01 Determine the magnitude and direction of the shear stress that the water applies: a. to the base b. to the free surface free surface U y x h u water u U y y 2 h h 2 2U base: yx y 0 h free

More information

Chapter 4: Buoyancy & Stability

Chapter 4: Buoyancy & Stability Chapter 4: Buoyancy & Stability Learning outcomes By the end of this lesson students should be able to: Understand the concept of buoyancy hence determine the buoyant force exerted by a fluid to a body

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

CHAPTER 2.0 ANSWER B.20.2

CHAPTER 2.0 ANSWER B.20.2 CHAPTER 2.0 ANSWER 1. A tank is filled with seawater to a depth of 12 ft. If the specific gravity of seawater is 1.03 and the atmospheric pressure at this location is 14.8 psi, the absolute pressure (psi)

More information

FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference.

FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference. FLUID MECHANICS TUTORIAL No.7 FLUID FORCES When you have completed this tutorial you should be able to Solve forces due to pressure difference. Solve problems due to momentum changes. Solve problems involving

More information

Introduction to Fluid Mechanics. Chapter 9 External Incompressible Viscous Flow. Pritchard

Introduction to Fluid Mechanics. Chapter 9 External Incompressible Viscous Flow. Pritchard Introduction to Fluid Mechanics Chapter 9 External Incompressible Viscous Flow Main Topics The Boundary-Layer Concept Boundary-Layer Thicknesses Laminar Flat-Plate Boundary Layer: Exact Solution Momentum

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

Mechanics 2. Revision Notes

Mechanics 2. Revision Notes Mechanics 2 Revision Notes November 2012 Contents 1 Kinematics 3 Constant acceleration in a vertical plane... 3 Variable acceleration... 5 Using vectors... 6 2 Centres of mass 8 Centre of mass of n particles...

More information

CHAPTER 15 FORCE, MASS AND ACCELERATION

CHAPTER 15 FORCE, MASS AND ACCELERATION CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car

More information

Dimensional Analysis, hydraulic similitude and model investigation. Dr. Sanghamitra Kundu

Dimensional Analysis, hydraulic similitude and model investigation. Dr. Sanghamitra Kundu Dimensional Analysis, hydraulic similitude and model investigation Dr. Sanghamitra Kundu Introduction Although many practical engineering problems involving fluid mechanics can be solved by using the equations

More information

F mg (10.1 kg)(9.80 m/s ) m

F mg (10.1 kg)(9.80 m/s ) m Week 9 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

Density (r) Chapter 10 Fluids. Pressure 1/13/2015

Density (r) Chapter 10 Fluids. Pressure 1/13/2015 1/13/015 Density (r) Chapter 10 Fluids r = mass/volume Rho ( r) Greek letter for density Units - kg/m 3 Specific Gravity = Density of substance Density of water (4 o C) Unitless ratio Ex: Lead has a sp.

More information

Chapter (1) Fluids and their Properties

Chapter (1) Fluids and their Properties Chapter (1) Fluids and their Properties Fluids (Liquids or gases) which a substance deforms continuously, or flows, when subjected to shearing forces. If a fluid is at rest, there are no shearing forces

More information

Basic Principles in Microfluidics

Basic Principles in Microfluidics Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar)

Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vatten(byggnad) Vätskors egenskaper (1) Hydrostatik (3) Grundläggande ekvationer (5) Rörströmning (4) 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vätska som kontinuerligt medium

More information

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors

More information

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer

More information

These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide.

These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide. Fluid Mechanics FE Review Carrie (CJ) McClelland, P.E. cmcclell@mines.edu Fluid Mechanics FE Review These slides contain some notes, thoughts about what to study, and some practice problems. The answers

More information

Chapter 15. FLUIDS. 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg. ρ = = ; ρ = 5.

Chapter 15. FLUIDS. 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg. ρ = = ; ρ = 5. Chapter 15. FLUIDS Density 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg ρ = ; = = ; = 5.06 x 10-4 m ρ 790 kg/m W = D = ρg = 790 kg/m )(9.8 m/s )(5.06 x

More information

Rotation, Rolling, Torque, Angular Momentum

Rotation, Rolling, Torque, Angular Momentum Halliday, Resnick & Walker Chapter 10 & 11 Rotation, Rolling, Torque, Angular Momentum Physics 1A PHYS1121 Professor Michael Burton Rotation 10-1 Rotational Variables! The motion of rotation! The same

More information

Practice Exam Three Solutions

Practice Exam Three Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD

MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD 130 Experiment-366 F MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD Jeethendra Kumar P K, Ajeya PadmaJeeth and Santhosh K KamalJeeth Instrumentation & Service Unit, No-610, Tata Nagar, Bengaluru-560092.

More information

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

More information

EXAMPLE: Water Flow in a Pipe

EXAMPLE: Water Flow in a Pipe EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Introduction to Aerospace Engineering Formulas

Introduction to Aerospace Engineering Formulas Introduction to Aerospace Engineering Formulas Aerodynamics Formulas. Definitions p = The air pressure. (P a = N/m 2 ) ρ = The air density. (kg/m 3 ) g = The gravitational constant. (Value at sea level

More information

Mechanical Principles

Mechanical Principles Unit 4: Mechanical Principles Unit code: F/60/450 QCF level: 5 Credit value: 5 OUTCOME 3 POWER TRANSMISSION TUTORIAL BELT DRIVES 3 Power Transmission Belt drives: flat and v-section belts; limiting coefficient

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 22 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 22 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 22 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. So

More information

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1 COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT

More information

FILTRATION. Introduction. Batch Filtration (Small Scale) Controlling parameters: Pressure drop, time for filtration, concentration of slurry

FILTRATION. Introduction. Batch Filtration (Small Scale) Controlling parameters: Pressure drop, time for filtration, concentration of slurry FILTRATION Introduction Separation of solids from liquids is a common operation that requires empirical data to make predictions of performance. These data are usually obtained from experiments performed

More information

Buoyant Force and Archimedes Principle

Buoyant Force and Archimedes Principle Buoyant Force and Archimedes Principle Predict the behavior of fluids as a result of properties including viscosity and density Demonstrate why objects sink or float Apply Archimedes Principle by measuring

More information

Gravitational Potential Energy

Gravitational Potential Energy Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

More information

Fluid Mechanics Definitions

Fluid Mechanics Definitions Definitions 9-1a1 Fluids Substances in either the liquid or gas phase Cannot support shear Density Mass per unit volume Specific Volume Specific Weight % " = lim g#m ( ' * = +g #V $0& #V ) Specific Gravity

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

FILTRATION. Introduction

FILTRATION. Introduction FILTRATION Introduction Separation of solids from liquids is a common operation that requires empirical data to make predictions of performance. These data are usually obtained from experiments performed

More information

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2) Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

More information

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

Physics Exam 1 Review - Chapter 1,2

Physics Exam 1 Review - Chapter 1,2 Physics 1401 - Exam 1 Review - Chapter 1,2 13. Which of the following is NOT one of the fundamental units in the SI system? A) newton B) meter C) kilogram D) second E) All of the above are fundamental

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied

More information

SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS. This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles.

SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS. This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles. SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles. On completion of this tutorial you should be able to

More information

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 91 104, Article ID: IJMET_07_02_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

Air Resistance: Distinguishing Between Laminar and Turbulent Flow 0.1 Introduction

Air Resistance: Distinguishing Between Laminar and Turbulent Flow 0.1 Introduction Air Resistance: Distinguishing Between Laminar and Turbulent Flow 0.1 Introduction You have probably heard that objects fall (really, accelerate) at the same rate, independent of their mass. Galileo demonstrated

More information

Physics of the Atmosphere I

Physics of the Atmosphere I Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uni-heidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:

More information

APPLIED FLUID MECHANICS. TUTORIAL No.6 DIMENSIONAL ANALYSIS. When you have completed this tutorial you should be able to do the following.

APPLIED FLUID MECHANICS. TUTORIAL No.6 DIMENSIONAL ANALYSIS. When you have completed this tutorial you should be able to do the following. APPLIED FLUID MECHANICS TUTORIAL No.6 DIMENSIONAL ANALYSIS When you have completed this tutorial you should be able to do the following. Explain the basic system of dimensions. Find the relationship between

More information

Tutorial 4. Buoyancy and floatation

Tutorial 4. Buoyancy and floatation Tutorial 4 uoyancy and floatation 1. A rectangular pontoon has a width of 6m, length of 10m and a draught of 2m in fresh water. Calculate (a) weight of pontoon, (b) its draught in seawater of density 1025

More information

FLUID MECHANICS. Problem 2: Consider a water at 20 0 C flows between two parallel fixed plates.

FLUID MECHANICS. Problem 2: Consider a water at 20 0 C flows between two parallel fixed plates. FLUID MECHANICS Problem 1: Pressures are sometimes determined by measuring the height of a column of liquid in a vertical tube. What diameter of clean glass tubing is required so that the rise of water

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

Mechanics 1. Revision Notes

Mechanics 1. Revision Notes Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture

More information

Aerodynamic Development of a Solar Car

Aerodynamic Development of a Solar Car Aerodynamic Development of a Solar Car Devanshu Singla 1 1 Department of Mechanical Engineering, Aakash Tayal 2 2 Department of Mechanical Engineering, Rajat Sharma 3 3 (Department of Mechanical Engineering,

More information

Belt drives systems may be assembled to (Figure 9.1): Opened belt drive (non-reversing) Reversing crossed or twist belt drive Angled belt drive

Belt drives systems may be assembled to (Figure 9.1): Opened belt drive (non-reversing) Reversing crossed or twist belt drive Angled belt drive heory of Machines / Belt Drives 9. Belt Drives 9. Geometry Specification 9.. Construction: Belt drives systems may be consist of (Figure 9.): Driving pulley Driven pulleys (multiple driven sources) Belts

More information

Physics 2101, First Exam, Fall 2007

Physics 2101, First Exam, Fall 2007 Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

More information

Physics 6B. Philip Lubin

Physics 6B. Philip Lubin Physics 6B Philip Lubin prof@deepspace.ucsb.edu http://www.deepspace.ucsb.edu/classes/physics-6b-spring-2015 Course Outline Text College Physics Freedman 2014 Cover Chap 11-13, 16-21 Chap 11- Fluid Chap

More information

SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET

SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET WWW.NAKKA-ROCKETRY.NET February 007 Rev.1 March 007 1 Introduction As part of the design process for a hobby rocket, it is very

More information

Forces on a Model Rocket

Forces on a Model Rocket Forces on a Model Rocket This pamphlet was developed using information for the Glenn Learning Technologies Project. For more information, visit their web site at: http://www.grc.nasa.gov/www/k-12/aboutltp/educationaltechnologyapplications.html

More information

p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh

p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: P..Sleigh@leeds.ac.uk r J Noakes:.J.Noakes@leeds.ac.uk January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1

More information

F = ma. F = mg. Forces. Forces. Free Body Diagrams. Find the unknown forces!! Ex. 1 Ex N. Newton s First Law. Newton s Second Law

F = ma. F = mg. Forces. Forces. Free Body Diagrams. Find the unknown forces!! Ex. 1 Ex N. Newton s First Law. Newton s Second Law Forces Free Body Diagrams Push or pull on an object Causes acceleration Measured in Newtons N = Kg m s Shows all forces as vectors acting on an object Vectors always point away from object Used to help

More information

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry 0.40 m 0.21 m 0.02 m NACA Airfoils 6-Feb-08 AE 315 Lesson 10: Airfoil nomenclature and properties 1 Definitions: Airfoil Geometry z Mean camber line Chord line x Chord x=0 x=c Leading edge Trailing edge

More information

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information

More information

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

More information

2. Parallel pump system Q(pump) = 300 gpm, h p = 270 ft for each of the two pumps

2. Parallel pump system Q(pump) = 300 gpm, h p = 270 ft for each of the two pumps Pumping Systems: Parallel and Series Configurations For some piping system designs, it may be desirable to consider a multiple pump system to meet the design requirements. Two typical options include parallel

More information

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe

More information

VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied.

VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied. VISCOSITY OF A LIQUID August 19, 004 OBJECTIVE: EQUIPMENT: To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied. Viscosity apparatus

More information

Homework 4. problems: 5.61, 5.67, 6.63, 13.21

Homework 4. problems: 5.61, 5.67, 6.63, 13.21 Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find

More information

Calculation maximum speed outdoor robot platform: The maximum speed of the outdoor robot platform can be calculated with the formula below.

Calculation maximum speed outdoor robot platform: The maximum speed of the outdoor robot platform can be calculated with the formula below. Calculations different driving situations The worst case scenario the outdoor robot platform can be in is assumed while making calculations. The gear ratio between the motor and axle and the wheel axle

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

What is a Mouse-Trap

What is a Mouse-Trap What is a Mouse-Trap Car and How does it Work? A mouse-trap car is a vehicle that is powered by the energy that can be stored in a wound up mouse-trap spring. The most basic design is as follows: a string

More information

Chapter 3. Technical Measurement and Vectors

Chapter 3. Technical Measurement and Vectors Chapter 3. Technical Measurement and Vectors Unit Conversions 3-1. soccer field is 100 m long and 60 m across. What are the length and width of the field in feet? 100 cm 1 in. 1 ft (100 m) 328 ft 1 m 2.54

More information