New alternatives aid medium voltage automatic transfer for critical power systems

Size: px
Start display at page:

Download "New alternatives aid medium voltage automatic transfer for critical power systems"

Transcription

1 POWER MONITORING SYSTEMS CAN RESOLVE GROUND RELAY TRIPPING New alternatives aid medium voltage automatic transfer for critical power systems By Reza Tajali, P.E. Power Systems Engineering, Square D Company To assure critical power in many industrial and commercial facilities, medium voltage power is often switched between alternate sources. In these power systems, each individual feeder often supplies multiple transformers. The automatic transfer operation energizes all the transformers and their loads in one block, resulting in transformer inrush current on phase relays and ground relays. Where a ground relay tripping occurs, maintenance personnel may solve the problem by increasing the relay settings. The problem is that increasing the settings reduces the sensitivity of the relay, which reduces the likelihood of catching a fault online; late detection of faults allows more arcing and other damage. Recently, a large commercial facility was undergoing a major construction project to expand its processing center. Solving certain electrical problems at the site included effective responses to ground relay tripping. In the facility s power distribution system (Figure 1), two low-resistance grounded utility power transformers provide alternate power sources at KV. The grounding resistance on each transformer limit the magnitude of ground fault current to 600 amperes. When one source loses power, the electricity is switched at KV to the other source through an automatic transfer system. The transfer connects the entire affected load to the alternate source in one block. The metal-clad feeder circuit breakers are equipped with digital microprocessor based relays that include the 50/51 three-phase overcurrent and 51N ground relay functions. Three 1200/5 amperes bushingmounted current transformers are connected in a residual ground fault circuit to provide ground fault detection. Identifying the problem During construction, one of the utility sources was accidentally tripped. The automatic transfer system switched the power to the alternate source as expected. However, upon completion of the transfer, the 51N function of the feeder protection relay tripped.

2 The construction crew manually re-energized the tripped feeder, but the 51N relay tripped again. That process repeated itself, leaving half of the construction site without power. The crew checked downstream equipment for ground faults but found no evidence of insulation deterioration. They finally managed to restore power after some of the downstream load was switched off. Everyone s attention was focused on the relay and it s alleged malfunction, yet no actual ground fault was present. To establish a benchmark for the performance of the relay the team measured the exact current in the residual circuit that the relay sees. The metal clad switchgear was equipped with POWERLOGIC circuit monitors that provide full function power quality analysis. The circuit monitor wiring was modified to insert a current coil in series with the ground sensing element of the relay to measure the same exact residual current as is seen by the relay (Figure 2). The current swell detection capability of the circuit monitor captured oscillograms of the events. We asked the construction crew to perform several switching actions, which included energizing and deenergizing blocks of load. One test entailed energizing all the transformers on one feeder together. We were trying to cause the relay to trip and obtain an oscillogram of the tripping current. The current sensed as ground fault by the relay saw a transient reaching up to 1000 amperes due to the switching action (Figure 3). That current corresponded to 4.16 amperes in the CT secondary residual circuit. This occurred with no ground fault in the system. We wondered how to get 1000 amperes (4.16 amperes CT secondary current) in the residual circuit while there was no actual ground fault. The answer involved current transformer saturation and the residual method of ground detection. Inrush current interacts with residual circuit When system voltage is applied to a power transformer, a current transient occurs, which is known as magnetizing inrush current. It occurs because the transformer has some magnitude of remaining flux from the previous energization. If the voltage impressed on the transformer demands a different value of instantaneous flux, a transient condition occurs and significant current will flow for a few cycles. As individual transformers may be de-energized at different points of the voltage wave, they will have

3 different magnitudes of remnant flux. The resultant total inrush current obtained by energizing multiple transformers is random. An oscillogram of inrush current obtained through the test circuit of Figure 2 showed that the offset wave dies after several cycles (Figure 4). This characteristic inrush current is very rich in second harmonic. As no actual ground fault was present in this case, the sum of instantaneous currents in the three phases equaled zero. This is dictated by the physical principles of conservation of charge and Kirchhoff s law. The residual circuit of Figure 2 adds up the currents in the three phases. Therefore, this residual current must be zero. However, our tests indicated a random pattern of residual current of large magnitude. Current transformer saturation The signal produced by the current transformers in a transient inrush condition does not accurately depict the current flowing on their primary side because of current transformer saturation. The saturation occurs due to the direct current (DC) component of the inrush current. In one of the tests, the C phase current showed evidence of severe current transformer saturation (Figure 5). Therefore, the mechanism involved is as follows: 1. The waveshapes of the inrush current (DC offset) on the three phases cause saturation of the CTs to different levels. 2. The saturated CTs produce incorrect waveshapes in their secondary circuits. 3. Net residual currents appear in the secondary circuit due to incorrect waveshapes. Circuit monitors to the rescue The data obtained form the circuit monitors provided two key pieces of information: 1. The residual current exists during transformer energization and is of large magnitude. 2. The waveshape of the current in the CT secondary circuit indicates severe saturation. At this point, equipment shutdown was scheduled and the current transformers were evaluated. It was discovered that the tap settings on the CTs were installed incorrectly. Once the tap settings were corrected, the residual current was reduced, but it was not eliminated. Corrective actions In this example, incorrect setting of the CT taps was the primary cause of the severe transformer saturation and it was easily corrected. However, it is generally possible to improve the transient response

4 of current transformers by providing transformers with a larger magnetic core. Such large transformers may be easy to install during the switchgear manufacturing process, but they are difficult to install in the field. Another common approach is to replace the residual circuit with a core balanced current transformer. The core balanced CT is basically a large window current transformer, which encircles the three phase conductors. In an ideal geometric configuration, the flux produced by the three phase currents would cancel each other. These CTs are not as prone to saturation and provide more accurate ground current waveforms. However, making these physical changes may not be possible in the field. Other corrective options The 51N relay used in this application was a microprocessor based relay. As such, it provided us with the capability to manipulate the protection curves in various ways. Relay manufacturers, usually choose one of three approaches to address the transformer energization problem: Manipulating protection curves; 2 nd harmonic restraint; Cold load pickup restraint. Manipulating protection curves Digital relays offer a variety of ways to manipulate their protection curves. This capability can be used to great advantage when nuisance tripping is a problem because the entire tripping characteristics can be modified in the field. The inrush current dies off within a few cycles (Figures 3-5). So, if we prevented the relay from tripping instantaneously, the relay could ride through the transient inrush condition. This can be accomplished by the instantaneous delay setting. But the new time current curve would also have to coordinate with the upstream relays, requiring similar adjustments in the upstream relays. This kind of adjustment involves a tradeoff. Inserting the referenced time delay increases the amount of potential damage to downstream equipment in case of a true ground fault. In this application, the justification for this adjustment was that the ground current available from the source was limited to 600 amperes due to low resistance grounding. 2nd Harmonic Restraint

5 2nd harmonic is amply present in the transformer inrush current waveform. Figure 6 shows the Fourier Transform (frequency spectral analysis) of the waveform presented in Figure 4. The large second harmonic component is clearly evident in the spectral analysis. Aside from transformer inrush, this harmonic is not at all normal to power systems such as the one in this facility. The shape of the inrush current wave generates the 2nd harmonic. As a matter of comparison, power system fault currents which also have large DC offsets - do not have much 2nd harmonic content. Because 2nd harmonic is somewhat unique to transformer inrush, it is used to restrain relays during transient inrush conditions. This technology was originally developed and applied to transformer differential relaying. Essentially, the relay restrains itself from operating if a certain amount of 2nd harmonic current is present in the current that flows through the relay. A typical restraint setting is 20%. That means that if the 2nd harmonic is larger than 20% of the fundamental, the relay will be restrained from operation. In this case, the percentage of 2nd harmonic in the transformer inrush current was very large (Figure 6). Cold Load Pickup Restraint Cold load pickup is a terminology that applies to distribution line protection. When a de-energized line is suddenly energized, inrush current will flow to the line and to the transformers and loads connected on the line. Relays must be set so they do not trip under these cold load conditions. Some new microprocessor relays have expanded this concept and provide programming capability so that specific tripping functions can be restrained in a cold load condition. The cold load condition is determined by a digital input from the 52a contact of the circuit breaker. So with this technology, any time the circuit breaker is closed, we can restrain the ground fault trip for a pre-determined period. Old problem, new conclusions The cause of nuisance tripping in this case was a transient current in the residual sensing circuit due to saturation of current transformers. This was primarily caused by incorrect CT tap settings. However, nuisance tripping due to transformer inrush current is not new to electrical power industry and is

6 especially troublesome with differential relaying schemes. When combined with current transformer saturation, the problem shows up in radial ground fault relaying schemes. The traditional method for solving this problem has been to raise the instantaneous trip setting of the relay until the relay no longer trips under transformer inrush. But raising this setting would allow more ground fault current in the case of a true ground fault, and coordination with upstream relays limits the allowable settings. Current transformers with larger magnetic core provide better accuracy. Also core balanced current transformers improve the accuracy of the signal delivered to the ground relay. However, physical limitations of switchgear might prevent retrofitting of the current transformers. Microprocessor relays offer special trip curve adjustments, which can be useful in preventing nuisance tripping. Other solutions for this type of problem include harmonic restraint and cold load pickup restraint. The key to choosing the correct solution is in understanding all the available options. # # # Reza Tajali is Senior Staff Engineer for Square D Company s Power Systems Engineering group. He has over 20 years of experience with electrical power distribution and control, and holds two United States patents on switchgear products. In his present function he leads the engineering team in the Midwest region of the United States. His team of engineers support industrial and commercial customers with power system design, analysis and power quality improvement plans.

7 600A 50/ 51 51N 2500KVA 12.47KV 480Y/277 Other XFMRs Figure 1: System One Line Diagram Powerlogic Digital Relay 50/ /5 51N Figure 2: Modified circuit monitor connection diagram to capture the exact residual current.

8 bkr 163 w3s _06_48_new>B_AMPS-AMPS( )(14:06:48) Current (A) Time (ms) Figure 3: Measured Residual Current bkr 163 w3s _06_48_new>A_AMPS-AMPS( )(14:06:48) Current (A) IV. CURRENT TRANSFORMER SATURATION Time (ms) Figure 4: Phase A Current, Transformer Inrush Current

9 bkr 163 w3s _06_48_new>C_AMPS-AMPS( )(14:06:48) Current (A) Time (ms) Figure 5: Phase C Current, Note the Effect of Current Transformer Saturation 600 DERIVED>FFT2-AMPS( )(14:06:48) Current (A) Frequency (Hz) Figure 6: Fourier Transform of Phase A Inrush Current Waveform. Note the large 2 nd harmonic component.

OPTIMIZING POWER SYSTEM PROTECTION FOR MODERN DATA CENTERS

OPTIMIZING POWER SYSTEM PROTECTION FOR MODERN DATA CENTERS OPTIMIZING POWER SYSTEM PROTECTION FOR MODERN DATA CENTERS Data center power systems are constructed with a premium on reliability at a significant cost. The return on this investment is realized if it

More information

Power Monitoring for Modern Data Centers

Power Monitoring for Modern Data Centers Power Monitoring for Modern Data Centers December 2010/AT304 by Reza Tajali, P.E. Square D Power Systems Engineering Make the most of your energy SM Revision #1 12/10 By their nature, mission critical

More information

WHITE PAPER GROUND FAULT. Lowering the Limits for Ground Fault Detection

WHITE PAPER GROUND FAULT. Lowering the Limits for Ground Fault Detection WHITE PAPER GROUND FAULT Lowering the Limits for Ground Fault Detection Current flowing to ground has only two paths it can flow to ground through a ground fault, or it can flow to ground through distributed

More information

OVERCURRENT & EARTH FAULT RELAYS. To study the protection of equipment and system by relays in conjunction with switchgear.

OVERCURRENT & EARTH FAULT RELAYS. To study the protection of equipment and system by relays in conjunction with switchgear. OVERCURRENT & EARTH FAULT RELAYS Objective: To study the protection of equipment and system by relays in conjunction with switchgear. Theory: The function of a relay is to detect abnormal conditions in

More information

Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E.

Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E. By Darrell G. Broussard, P.E. Introduction: As engineers, we are aware that electrical power systems have grown. How much have they grown? When was the last time you specified a 2400-volt system, a 4160-volt

More information

Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO 250447392

Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO 250447392 1 Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading By Ramandeep Kaur Aujla S.NO 250447392 ES 586b: Theory and applications of protective relays Department of

More information

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION ÿþ üûúùø öõöôùóùõò CT Dimensioning DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION Application note GER3973 1 CT Dimensioning ÿþ üûúùø öõöôùóùõò GER-3973 Application note ÿþ üûúùø öõöôùóùõò

More information

Defining the Needs of Modern Data Center Power Systems, Low Voltage Circuit Breaker Application

Defining the Needs of Modern Data Center Power Systems, Low Voltage Circuit Breaker Application Defining the Needs of Modern Data Center Power Systems, Low Voltage Circuit Breaker Application by Reza Tajali, P.E. Square D Company ABSTRACT In modern data centers, Uninterruptible Power Supplies (UPS)

More information

INTRODUCTION TO SYSTEM PROTECTION. Hands-On Relay School 2012

INTRODUCTION TO SYSTEM PROTECTION. Hands-On Relay School 2012 INTRODUCTION TO SYSTEM PROTECTION Hands-On Relay School 2012 CONGRATULATIONS On choosing the field of system protection. It is an exciting, challenging profession. System protection has changed considerably

More information

Reliability requires consulting engineers and end users to grasp design, maintenance basics. By Reza Tajali, P.E. Square D Power Systems Engineering

Reliability requires consulting engineers and end users to grasp design, maintenance basics. By Reza Tajali, P.E. Square D Power Systems Engineering LOW VOLTAGE CIRCUIT BREAKER GUIDELINES FOR DATA CENTERS Reliability requires consulting engineers and end users to grasp design, maintenance basics By Reza Tajali, P.E. Square D Power Systems Engineering

More information

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER

More information

Sentron Series Circuit Breakers

Sentron Series Circuit Breakers Sentron Series Circuit Breakers Siemens Sentron Series circuit breakers are available in nine frame sizes: ED, FD, JD, LD, LMD, MD, ND, PD, and RD. Sentron Series circuit breakers have a wide range of

More information

Electronic Trip Circuit Breaker Basics Circuit Breaker Application Guide Class 0600

Electronic Trip Circuit Breaker Basics Circuit Breaker Application Guide Class 0600 Electronic Trip Circuit Breaker Basics Circuit Breaker Application Guide Class 0600 Data Bulletin 0600DB1104 03/2012 Retain for future use. Electronic Trip Circuit Breaker Basics 0600DB1104 Table of Contents

More information

System Grounding and Ground-Fault Protection Methods for UPS-Supplied Power Systems

System Grounding and Ground-Fault Protection Methods for UPS-Supplied Power Systems System Grounding and Ground-Fault Protection Methods for -Supplied Power Systems Bill Brown, P.E., Square D Critical Power Competency Center 1. INTRODUCTION The use of solid grounding for -supplied power

More information

100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center. 598 N. Buth Rd 3215 Arrowhead Rd

100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center. 598 N. Buth Rd 3215 Arrowhead Rd 100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center Introduction Roger Hedding Steven Schoenherr, P.E. ABB Inc. Minnesota Power 598 N. Buth Rd 3215 Arrowhead Rd Dousman,

More information

Typical Data Requirements Data Required for Power System Evaluation

Typical Data Requirements Data Required for Power System Evaluation Summary 66 Carey Road Queensbury, NY 12804 Ph: (518) 792-4776 Fax: (518) 792-5767 www.nepsi.com sales@nepsi.com Harmonic Filter & Power Capacitor Bank Application Studies This document describes NEPSI

More information

Product Data Bulletin

Product Data Bulletin Product Data Bulletin Power System Harmonics Causes and Effects of Variable Frequency Drives Relative to the IEEE 519-1992 Standard Raleigh, NC, U.S.A. INTRODUCTION This document describes power system

More information

The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies

The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies DATE: November 17, 1999 REVISION: AUTHOR: John Merrell Introduction In some short circuit studies, the X/R ratio is ignored when comparing

More information

Arc Terminator Active Arc-Resistant Switchgear

Arc Terminator Active Arc-Resistant Switchgear Arc Terminator Active Arc-Resistant Switchgear Increasing safety and productivity by extinguishing internal arcing faults within the switchgear. The Square D Arc Terminator from Schneider Electric offers

More information

Transformer protection

Transformer protection 8 Transformer protection 8.1 Introduction The inherent characteristics of power transformers introduce a number of unique problems that are not present in the protection of transmission lines, generators,

More information

Line to Ground Voltage Monitoring on Ungrounded and Impedance Grounded Power Systems

Line to Ground Voltage Monitoring on Ungrounded and Impedance Grounded Power Systems Line to Ground Voltage Monitoring on Ungrounded and Impedance Grounded Power Systems by Reza Tajali, P.E. Square D Company, Power Systems Engineering Group 295 Tech Park Drive LaVergne, Tennessee 37086

More information

Tamura Closed Loop Hall Effect Current Sensors

Tamura Closed Loop Hall Effect Current Sensors Tamura Closed Loop Hall Effect Current Sensors AC, DC, & Complex Currents Galvanic Isolation Fast Response Wide Frequency Bandwidth Quality & Reliability RoHs Compliance Closed Loop Hall Effect Sensors

More information

Harmonics in your electrical system

Harmonics in your electrical system Harmonics in your electrical system What they are, how they can be harmful, and what to do about them Abstract Harmonic currents, generated by non-linear electronic loads, increase power system heat losses

More information

Fundamentals of Power

Fundamentals of Power Fundamentals of Power Fundamentals of Power 2008 American Power Conversion Corporation. All rights reserved. All trademarks provided are the property of their respective owners. Learning Objectives At

More information

ZONE SELECTIVE INTERLOCKING (ZSI) APPLICATION AND TESTING GUIDE SIEMENS WL UL489 AND UL1066 AIR CIRCUIT BREAKERS

ZONE SELECTIVE INTERLOCKING (ZSI) APPLICATION AND TESTING GUIDE SIEMENS WL UL489 AND UL1066 AIR CIRCUIT BREAKERS Definition: Zone Selective Interlocking (ZSI) - A method which allows two or more ground fault breakers to communicate with each other so that a short circuit or ground fault will be cleared by the breaker

More information

Eaton s E-Series protective relay family

Eaton s E-Series protective relay family E-Series protective relays Feeder distribution relays Motor relays Transformer relays Generator relays Eaton s E-Series protective relay family Microprocessor-based design Eaton s E-Series relay family

More information

Fusible Disconnect Switch

Fusible Disconnect Switch Circuit Breakers Circuit breakers are used in panelboards and switchboards to provide circuit protection and provide a means of energizing and de-energizing a circuit. Siemens Sentron molded case circuit

More information

Paralleling Power Sources Which Share a Common Neutral

Paralleling Power Sources Which Share a Common Neutral Paralleling Power Sources Which Share a Common Neutral By: Tony Hoevenaars, P.E., President & CEO, Mirus International, Inc. Mike McGraw, President, NSOEM, Inc. When paralleling power sources that share

More information

CT Application Guide for the 489 Generator Management Relay

CT Application Guide for the 489 Generator Management Relay g GE Power Management Technical Notes CT Application Guide for the 489 Generator Management Relay GE Publication No. GET-8402 Copyright 2002 GE Power Management Introduction A protection scheme operates

More information

Type SA-1 Generator Differential Relay

Type SA-1 Generator Differential Relay ABB Automation Inc. Substation Automation and Protection Division Coral Springs, FL 33065 Instruction Leaflet 41-348.11C Effective: November 1999 Supersedes I.L. 41-348.11B, Dated August 1986 ( ) Denotes

More information

Current Transformers Ratio / Polarity / Types

Current Transformers Ratio / Polarity / Types CT1 Current Ratio / Polarity / Types Application Current (CT s) are instrument transformers that are used to supply a reduced value of current to meters, protective relays, and other instruments. CT s

More information

DISTRIBUTION TRANSFORMER OVERLOAD PROTECTION TRIPPING CIRCUIT

DISTRIBUTION TRANSFORMER OVERLOAD PROTECTION TRIPPING CIRCUIT DISTRIBUTION TRANSFORMER OVERLOAD PROTECTION TRIPPING CIRCUIT Dr. Dipesh Patel 1, Jigar Juthani 2, Harsh Parikh 3, Rushit Bhavsar 4, Ujjaval Darbar 5 1 Head of Electrical Department, BITS edu campus, Vadodara

More information

Part 1 System Modeling & Studies for Existing Systems

Part 1 System Modeling & Studies for Existing Systems Part 1 System Modeling & Studies for Existing Systems Operation Technology, Inc. Copyright 2009 Result of rapid release of energy due to an arcing fault between two conductors. Bus voltages > 208V Temperatures

More information

High Efficiency Motor Protection. Industry White Paper

High Efficiency Motor Protection. Industry White Paper High Efficiency Motor Protection Industry White Paper 2 High Efficiency Motor Protection High Efficiency Motor Protection - An Overview Electric motor protection depends on the accurate selection of overloads,

More information

7CURRENT TRANSFORMERS

7CURRENT TRANSFORMERS 7CURRENT TRANSFORMERS Protective relays of the a-c type are actuated by current and voltage supplied by current and voltage transformers. These transformers provide insulation against the high voltage

More information

CIRCUIT BREAKER INTERRUPTING CAPACITY AND SHORT-TIME CURRENT RATINGS

CIRCUIT BREAKER INTERRUPTING CAPACITY AND SHORT-TIME CURRENT RATINGS CIRCUIT BREAKER INTERRUPTING CAPACITY AND SHORT-TIME CURRENT RATINGS David D. Roybal, P.E. Senior Member, IEEE Eaton Electrical 3697 Mount Diablo Boulevard Lafayette, CA 94549 Abstract Low-voltage circuit

More information

21 st Century Facilities

21 st Century Facilities Electrical Testing 21 st Century Facilities Facility Owners face tough challenges 24 X 7 reliability needed Non linear loads cause harmonics VFD Computers Switching transients disrupt operations Less customer

More information

WINDING RESISTANCE TESTING

WINDING RESISTANCE TESTING WINDING RESISTANCE TESTING WINDING RESISTANCE TEST SET, MODEL WRT-100 ADWEL INTERNATIONAL LTD. 60 Ironside Crescent, Unit 9 Scarborough, Ontario, Canada M1X 1G4 Telephone: (416) 321-1988 Fax: (416) 321-1991

More information

SPECIAL TOPICS ON GROUND FAULT PROTECTION AND PROTECTION COORDINATION IN INDUSTRIAL AND COMMERCIAL POWER SYSTEMS

SPECIAL TOPICS ON GROUND FAULT PROTECTION AND PROTECTION COORDINATION IN INDUSTRIAL AND COMMERCIAL POWER SYSTEMS SPECIAL TOPICS ON GROUND FAULT PROTECTION AND PROTECTION COORDINATION IN INDUSTRIAL AND COMMERCIAL POWER SYSTEMS Claudio S. Mardegan claudio.mardegan@engepower.com www.engepower.com Phone: 55 3579-8777

More information

Power System Selectivity: The Basics of Protective Coordination

Power System Selectivity: The Basics of Protective Coordination Feature Power System Selectivity: The Basics of Protective Coordination by Gary H. Fox, PE GE Specification Engineer The intent of this article is to provide a brief primer about the essence of coordinating

More information

Switchgear Application Issues for Mission Critical Power Systems, Part One

Switchgear Application Issues for Mission Critical Power Systems, Part One Switchgear pplication Issues for Mission Critical Power Systems, Part One BSTRCT With the advent of high reliability data centers and telecommunication facilities, designers of commercial power face new

More information

Generator Differential Relay Electrical Apparatus

Generator Differential Relay Electrical Apparatus Generator Differential Relay Electrical Apparatus MD3G Rotating Machine Differential Relay 150-3 The MD3G Rotating Machine Differential Relay is a member of Cooper Power Systems Edison line of microprocessor

More information

ABB ! CAUTION. Type COQ Negative Sequence Generator Relay. (50/60 Hertz) 41-161J. Instruction Leaflet

ABB ! CAUTION. Type COQ Negative Sequence Generator Relay. (50/60 Hertz) 41-161J. Instruction Leaflet ABB Instruction Leaflet 41-161J Effective: May 1997 Supersedes I.L. 41-161H Dated July 1984 ( ) Denotes Change Since Previous Issue Type COQ Negative Sequence Generator Relay (50/60 Hertz)! CAUTION Before

More information

White Paper Mervin Savostianik P. Eng. Littelfuse, Inc.

White Paper Mervin Savostianik P. Eng. Littelfuse, Inc. Ground-Fault Protection with VFDs How to use a Sensitive Relay to Find Hard-to-Spot Ground Faults in VFDs on Resistance-Grounded Systems White Paper Mervin Savostianik P. Eng. Littelfuse, Inc. How to Use

More information

Arc Flash Energy Mitigation Techniques

Arc Flash Energy Mitigation Techniques Arc Flash Energy Mitigation Techniques When short circuits occur on an electrical distribution system, an arc flash event usually forms. These arc flash events can cause dangerous and potentially fatal

More information

Bus Protection Considerations for Various Bus Types

Bus Protection Considerations for Various Bus Types Bus Protection Considerations for Various Bus Types Caitlin Martin Bonneville Power Administration Steven Chase, Thanh-Xuan Nguyen, Dereje Jada Hawaz, Jeff Pope, and Casper Labuschagne Schweitzer Engineering

More information

HIGH VOLTAGE CALCULATIONS / EVALUATIONS. West Virginia Office of Miners Health, Safety & Training

HIGH VOLTAGE CALCULATIONS / EVALUATIONS. West Virginia Office of Miners Health, Safety & Training HIGH VOLTAGE CALCULATIONS / EVALUATIONS West Virginia Office of Miners Health, Safety & Training Helping You To Work More Safely In The Mining Industry DISCLAIMER The West Virginia Office of Miners Health,

More information

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Introduction There is a growing trend in the UPS industry to create a highly efficient, more lightweight and smaller UPS

More information

Chapter 22 Further Electronics

Chapter 22 Further Electronics hapter 22 Further Electronics washing machine has a delay on the door opening after a cycle of washing. Part of this circuit is shown below. s the cycle ends, switch S closes. t this stage the capacitor

More information

Safety technique. Emergency stop module BO 5988 safemaster

Safety technique. Emergency stop module BO 5988 safemaster Safety technique Emergency stop module BO 5988 safemaster 0221562 Function diagram Pushbutton on Mains or emergencystop () K1 According to EC Directive for machines 98/37/EG According to IEC/E 60204-1

More information

Residual Current Circuit Breaker

Residual Current Circuit Breaker Introduction Residual Current Circuit Breaker / ELCB The Fault current overloads and short circuits can be detected by circuit breakers like MCB s MCCB s & HRC Fuses etc. But, Circuit breakers don t detect

More information

Engineering innovation

Engineering innovation Eaton's Electrical Engineering Services & Systems Solutions Focus Seamless Solutions for Reliable, Efficient and Safe Power Systems Engineering innovation Progressive solutions for today s power systems

More information

National Craft Assessment and Certification Program S P E C I F I C A T I O N S

National Craft Assessment and Certification Program S P E C I F I C A T I O N S National Craft Assessment and Certification Program S P E C I F I C A T I O N S INDUSTRIAL ELECTRICIAN V4 ELEC26_O4 Released September 2013 Focus Statement An Industrial Electrician must be able to interpret

More information

Current Transformers. Bonneville Power Administration. Steve Laslo For the Hands On Relay School (3-12) Revision 1.1. February 21, 2012 1

Current Transformers. Bonneville Power Administration. Steve Laslo For the Hands On Relay School (3-12) Revision 1.1. February 21, 2012 1 Current Transformers Bonneville Power Administration Steve Laslo For the Hands On Relay School (3-12) Revision 1.1 February 21, 2012 1 Basic Theory: CT as a Voltage Transformer February 21, 2012 2 CT as

More information

E-Series protective relay family

E-Series protective relay family E-Series protective relays Feeder distribution relays Motor relays Transformer relays Generator relays E-Series protective relay family Reliable protection for every application Eaton s E-Series relay

More information

ABB Power T&D Company Inc. Power Automation and Protection Division Coral Springs, FL 33065

ABB Power T&D Company Inc. Power Automation and Protection Division Coral Springs, FL 33065 ABB Power T&D Company Inc. Power Automation and Protection Division Coral Springs, FL 33065 Instruction Leaflet 41-252A Effective: December 1996 Supersedes I.L. 41-252. Dated April 1987 ( ) Denotes Change

More information

Introduction. Harmonics and IEEE 519 Page 1 of 19

Introduction. Harmonics and IEEE 519 Page 1 of 19 Introduction In an ideal power system, the voltage supplied to customer equipment, and the resulting load current are perfect sine waves. In practice, however, conditions are never ideal, so these waveforms

More information

Relion 605 series. Self-powered feeder protection REJ603 Product Guide

Relion 605 series. Self-powered feeder protection REJ603 Product Guide Relion 605 series Relion 605 series Relion 605 series Self-powered feeder protection Product Guide Product version: 3.0 Contents 1.... 3 2. Relay functions... 3 3. Protection functions... 4 4. Application...

More information

Power Quality Issues, Impacts, and Mitigation for Industrial Customers

Power Quality Issues, Impacts, and Mitigation for Industrial Customers Power Quality Issues, Impacts, and Mitigation for Industrial Customers By Kevin Olikara, Power and Energy Management Products Rockwell Automation, Inc. Now, more than ever, electronic equipment and computing

More information

New standardized approach to arc flash protection

New standardized approach to arc flash protection New standardized approach to arc flash protection Samuel Dahl Juha Arvola Tero Virtala Arcteq Relays Ltd Arcteq Relays Ltd Arcteq Relays Ltd Wolffintie 36 F 11 Wolffintie 36 F 11 Wolffintie 36 F11 65200

More information

Secondary Unit Substations

Secondary Unit Substations 14 SWITCHGEAR Secondary Unit Substations Overview Siemens offers a wide variety of unit substation designs to meet customer requirements. A unit substation consists of one or more transformers mechanically

More information

Circuit Breakers and Switchgear. Thomas Greer Director of Engineering TLG Services

Circuit Breakers and Switchgear. Thomas Greer Director of Engineering TLG Services Circuit Breakers and Switchgear Thomas Greer Director of Engineering TLG Services Presentation Outline Switchgear Definition Overcurrent Protection Devices Circuit Breaker Trip Curves and Coordination

More information

Neutral Currents in Three Phase Wye Systems

Neutral Currents in Three Phase Wye Systems POWER SYSTEMS ENGINEERING DATA PUBLISHED BY SQUARE D, OSHKOSH, WISCONSIN Subject: Neutral Currents in Three Phase Wye Systems by Robert Arthur Square D Company Oshkosh, Wisconsin (414) 46-80 and R. A.

More information

HIGH RELIABILITY POWER SUPPLY TESTING

HIGH RELIABILITY POWER SUPPLY TESTING HIGH RELIABILITY POWER SUPPLY TESTING Dale Cigoy Keithley Instruments, Inc. The reliability of a power supply must match or exceed the rest of the system in which it is installed. Generally, this requires

More information

Short-circuit, Protective Device Coordination & Arc Flash Analysis. By Albert Marroquin Operation Technology, Inc.

Short-circuit, Protective Device Coordination & Arc Flash Analysis. By Albert Marroquin Operation Technology, Inc. Short-circuit, Protective Device Coordination & Arc Flash Analysis By Albert Marroquin Operation Technology, Inc. Agenda Short-circuit Calculations for Arc Flash Analysis Protection and Coordination Principles

More information

Primary Electric Distribution for Industrial Plants

Primary Electric Distribution for Industrial Plants PDH Course E242 Primary Electric Distribution for Industrial Plants Adolph A. Biss, P.E. 2007 PDH Center 2410 Dakota Lakes Drive Herndon, VA 20171-2995 Phone: 703-478-6833 Fax: 703-481-9535 www.pdhcenter.com

More information

ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science. HW7: Energy Storage Elements ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

More information

ARC FLASH HAZARD MITIGATION. Industrial Tests, Inc. [indtests.com]

ARC FLASH HAZARD MITIGATION. Industrial Tests, Inc. [indtests.com] ARC FLASH HAZARD MITIGATION ARC FLASH HAZARD MITIGATION NWHA TECHNICAL SEMINAR May 17, 2012 Richard D Reese Power Systems Manager Industrial Tests, Inc. Rocklin, California [Dick@indtests.com; 916-660-2837]

More information

Current and voltage measuring relays

Current and voltage measuring relays Current and voltage measuring relays RXIK 1, RXEEB 1 and Page 1 Issued June 1999 Changed since July 1998 Data subject to change without notice RXIK 1 RXEEB 1 (SE980082) (SE980081) (SE970869) Features Application

More information

Percentage Restrained Differential, Percentage of What?

Percentage Restrained Differential, Percentage of What? Percentage Restrained Differential, Percentage of What? Michael J. Thompson Schweitzer Engineering Laboratories, Inc. 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be

More information

Triplen Harmonics Mitigation 3 Phase Four-Wire Electrical Distribution System Using Wye- Zig-Zag Transformers

Triplen Harmonics Mitigation 3 Phase Four-Wire Electrical Distribution System Using Wye- Zig-Zag Transformers Journal Journal of of Emerging Emerging Trends Trends in in Engineering Engineering and and Applied Applied Sciences Sciences (JETEAS) (JETEAS) 1 1 (1): (1): 72-78 72-78 Scholarlink Research Institute

More information

Pulse Width Modulated (PWM) Drives. AC Drives Using PWM Techniques

Pulse Width Modulated (PWM) Drives. AC Drives Using PWM Techniques Drives AC Drives Using PWM Techniques Power Conversion Unit The block diagram below shows the power conversion unit in Pulse Width Modulated (PWM) drives. In this type of drive, a diode bridge rectifier

More information

Motor Protection Principles. Craig Wester GE Multilin Craig.Wester@GE.com

Motor Protection Principles. Craig Wester GE Multilin Craig.Wester@GE.com Motor Protection Principles Craig Wester GE Multilin Craig.Wester@GE.com Motor History & Facts The first U.S. patent for a motor was issued to Thomas Davenport in 1837. Today in North America, more than

More information

Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.

Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes. by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification

More information

This webinar brought to you by the Relion product family Advanced protection and control IEDs from ABB

This webinar brought to you by the Relion product family Advanced protection and control IEDs from ABB This webinar brought to you by the Relion product family Advanced protection and control IEDs from ABB Relion. Thinking beyond the box. Designed to seamlessly consolidate functions, Relion relays are smarter,

More information

EXTENDING THE LIFE OF POWER FACTOR CAPACITORS

EXTENDING THE LIFE OF POWER FACTOR CAPACITORS by John Houdek, President, Allied Industrial Marketing, Inc., and Cesar Chavez, Engineering Manager, ARTECHE / Inelap Abstract: The addition of power factor improvement capacitors to individual motors

More information

Understanding Emergency Power Off (EPO)

Understanding Emergency Power Off (EPO) Understanding Emergency Power Off (EPO) White Paper #22 Executive Summary Emergency Power Off (EPO) is the capability to power down a piece of electronic equipment or an entire installation from a single

More information

RM4TG20 three-phase network control relay RM4-T - range 200..500 V

RM4TG20 three-phase network control relay RM4-T - range 200..500 V Characteristics three-phase network control relay RM4-T - range 200..500 V Complementary [Us] rated supply voltage Output contacts Setting accuracy of time delay Delay at power up Measuring cycle Marking

More information

Choosing the Best Solution for Reducing Arc Energy

Choosing the Best Solution for Reducing Arc Energy CONVENTION SESSION HANDOUT Choosing the Best Solution for Reducing Arc Energy Terry L. Schiazza, Business Development Manager Square D / Schneider Electric SESSION #11 Independent Electrical Contractors

More information

SUBJECT: How to wire a motor starter Number: AN-MC-004 Date Issued: 2/08/2005 Revision: Original

SUBJECT: How to wire a motor starter Number: AN-MC-004 Date Issued: 2/08/2005 Revision: Original SUBJECT: How to wire a motor starter Number: AN-MC-004 Date Issued: 2/08/2005 Revision: Original A motor starter is a combination of devices to allow an induction motor to start, run and stop according

More information

Cold Load Pickup Issues

Cold Load Pickup Issues Cold Load Pickup Issues A report to the Line Protection Subcommittee of the Power System Relay Committee of The IEEE Power Engineering Society prepared by working group D1 Abstract This report describes

More information

TRACTION NETWORK MONITORING AND PROTECTION SYSTEM SMTN-3 CITY ELECTRIC TRANSPORT RAILWAYS METRO INDUSTRY

TRACTION NETWORK MONITORING AND PROTECTION SYSTEM SMTN-3 CITY ELECTRIC TRANSPORT RAILWAYS METRO INDUSTRY TRACTION NETWORK MONITORING AND PROTECTION SYSTEM SMTN-3 CITY ELECTRIC TRANSPORT RAILWAYS METRO INDUSTRY 2 TRACTION NETWORK MONITORING AND PROTECTION SYSTEM Traction network monitoring and protection system,

More information

TA Kahraman Yumak ELK412 - Distribution of Electrical Energy Lab. Notes v1.0 2013 Spring web.itu.edu.tr/yumakk. Distance Protection

TA Kahraman Yumak ELK412 - Distribution of Electrical Energy Lab. Notes v1.0 2013 Spring web.itu.edu.tr/yumakk. Distance Protection Distance Protection Announcement: You are not supposed to prepare a pre-report. But there will be an oral examination, so you are strongly advised to study this note regarding to the pre-study questions

More information

Electric utilities may vary in their application of end-to-end testing

Electric utilities may vary in their application of end-to-end testing An Application Case of End-to-End Relay Testing of Communication-Based Protection Schemes Using GPS-Synchronized Secondary Injection Feature by J. Ariza, Megger USA G. Ibarra, CFE, Mexico Electric utilities

More information

EMTP STUDIES PERFORMED TO INSERT LONG AC CABLES IN THE FRENCH GRID

EMTP STUDIES PERFORMED TO INSERT LONG AC CABLES IN THE FRENCH GRID Tension (kv) Impedance (Ohms) EMTP STUDIES PERFORMED TO INSERT LONG AC CABLES IN THE FRENCH GRID frequency (Hz) Simon DESCHANVRES Yannick VERNAY RTE, CNER, Substations Department t (ms) EMTP-RV Users Group

More information

ECE 586b Course Project Report. Auto-Reclosing

ECE 586b Course Project Report. Auto-Reclosing ECE 586b Course Project Report Auto-Reclosing Srichand Injeti May 5, 2008 Department Of Electrical and computer Engineering University Of Western Ontario, London Ontario Table of contents 1. Introduction...1

More information

TABLE OF CONTENTS 1.0 INTRODUCTION... 2 1.1 PURPOSE... 2 1.2 DEVIATION... 2 4.0 INTERTIE PROTECTION REQUIREMENTS... 4

TABLE OF CONTENTS 1.0 INTRODUCTION... 2 1.1 PURPOSE... 2 1.2 DEVIATION... 2 4.0 INTERTIE PROTECTION REQUIREMENTS... 4 Page: 1 of 14 KEY BULLETIN POINTS: THIS GUIDE OUTLINES MINIMUM REQUIREMENTS FOR CONNECTION OF CUSTOMER-OWNED EMERGENCY AND STANDBY (ESG) TO THE GEORGIA POWER COMPANY (GPC) DISTRIBUTION SYSTEM. THESE ARE

More information

Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012

Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current Transformers 25 januari 2012 Topics - Theory of current transformers (CTs) - Equivalent Circuit for

More information

LIMITING SHORT-CIRCUIT CURRENTS IN MEDIUM-VOLTAGE APPLICATIONS

LIMITING SHORT-CIRCUIT CURRENTS IN MEDIUM-VOLTAGE APPLICATIONS LIMITING SHORT-CIRCUIT CURRENTS IN MEDIUM-VOLTAGE APPLICATIONS Terence Hazel Senior Member IEEE Schneider Electric 38050 Grenoble France Abstract The power requirements for large industrial sites is increasing.

More information

APPLICATION CASE OF THE END-TO-END RELAY TESTING USING GPS-SYNCHRONIZED SECONDARY INJECTION IN COMMUNICATION BASED PROTECTION SCHEMES

APPLICATION CASE OF THE END-TO-END RELAY TESTING USING GPS-SYNCHRONIZED SECONDARY INJECTION IN COMMUNICATION BASED PROTECTION SCHEMES APPLICATION CASE OF THE END-TO-END RELAY TESTING USING GPS-SYNCHRONIZED SECONDARY INJECTION IN COMMUNICATION BASED PROTECTION SCHEMES J. Ariza G. Ibarra Megger, USA CFE, Mexico Abstract This paper reviews

More information

PSEG-LONG ISLAND SMART GRID SMALL GENERATOR INTERCONNECTION SCREENING CRITERIA FOR OPERATING IN PARALLEL WITH LIPA S DISTRIBUTION SYSTEM

PSEG-LONG ISLAND SMART GRID SMALL GENERATOR INTERCONNECTION SCREENING CRITERIA FOR OPERATING IN PARALLEL WITH LIPA S DISTRIBUTION SYSTEM PSEG-LONG ISLAND SMART GRID SMALL GENERATOR INTERCONNECTION SCREENING CRITERIA FOR OPERATING IN PARALLEL WITH LIPA S DISTRIBUTION SYSTEM PSEG-LI SGSGIP DG Screening Criteria 5-29-14 Table of Contents I.

More information

Low Voltage Transformer Through-Fault Protection: A System Approach

Low Voltage Transformer Through-Fault Protection: A System Approach Data Bulletin 7400DB1001 Nashville, TN USA Low Voltage Transformer Through-Fault Protection: A System Approach Introduction Low Voltage Transformer Protection Criteria NEC Article 450 Transformers and

More information

Integration of Distributed Generation in the Power System. IEEE Press Series on Power Engineering

Integration of Distributed Generation in the Power System. IEEE Press Series on Power Engineering Brochure More information from http://www.researchandmarkets.com/reports/2171489/ Integration of Distributed Generation in the Power System. IEEE Press Series on Power Engineering Description: A forward

More information

Nu-Lec Training Modules

Nu-Lec Training Modules PTCC Controller Nu-Lec Training Modules Product Training Operator Training PTCC The Basics An overview of the construction and physical features of the Pole Top Control Cubicle PTCC Operation and Features

More information

DISTRIBUTION RELIABILITY USING RECLOSERS AND SECTIONALISERS

DISTRIBUTION RELIABILITY USING RECLOSERS AND SECTIONALISERS ABB DISTIBUTION ELIABILITY USING ECLOSES AND SECTIONALISES obert E. Goodin Chief Engineer ABB Inc. Lake Mary, FL Timothy S. Fahey, PE Sr. Application Engineer ABB Inc. aleigh, NC Andrew Hanson, PE Executive

More information

Fault Characteristics in Electrical Equipment

Fault Characteristics in Electrical Equipment 1. Introduction Proper design and installation of electrical equipment minimizes the chance of electrical faults. Faults occur when the insulation system is compromised and current is allowed to flow through

More information

QUESTIONS and ANSWERS RFB 745-15-9894, Metal Clad Switchgear and Power Control Room

QUESTIONS and ANSWERS RFB 745-15-9894, Metal Clad Switchgear and Power Control Room QUESTIONS and ANSWERS RFB 745-15-9894, Metal Clad Switchgear and Power Control Room 1) When you click on the UTHSCSA Drawing the site takes you to the E-1 drawing no other. Will there be other drawings

More information

Fortune Oregon Data Center Increases Reliability with a High Resistance Grounding System

Fortune Oregon Data Center Increases Reliability with a High Resistance Grounding System Fortune Oregon Data Center Increases Reliability with a High Resistance Grounding System Cory David Smith, Project Manager, ECOM Engineering Inc., and David Lawrence Smith, Principal, ECOM Engineering

More information

PETROLEUM REFINERY SAVES MILLIONS WITH RETURN ON INVESTMENT IN LESS THAN ONE YEAR

PETROLEUM REFINERY SAVES MILLIONS WITH RETURN ON INVESTMENT IN LESS THAN ONE YEAR PETROLEUM REFINERY SAVES MILLIONS WITH RETURN ON INVESTMENT IN LESS THAN ONE YEAR Second only to crude oil, electrical power is typically one of the highest production costs and key elements in the refining

More information

VOLTAGE REGULATOR AND PARALLEL OPERATION

VOLTAGE REGULATOR AND PARALLEL OPERATION VOLTAGE REGULATOR AND PARALLEL OPERATION Generator sets are operated in parallel to improve fuel economy and reliability of the power supply. Economy is improved with multiple paralleled generators by

More information