# Chapter 13 Other Planetary Systems: The New Science of Distant Worlds

Save this PDF as:

Size: px
Start display at page:

Download "Chapter 13 Other Planetary Systems: The New Science of Distant Worlds"

## Transcription

1 Chapter 13 Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning: Why is it so difficult to detect planets around other stars? How do we detect planets around other stars? Why is it so difficult to detect planets around other stars?

2 Brightness Difference A Sun-like star is about a billion times brighter than the light reflected from its planets. This is like being in San Francisco and trying to see a pinhead 15 meters from a grapefruit in Washington, D.C. Special Topic: How Did We Learn That Other Stars Are Suns? Ancient observers didn t think stars were like the Sun because Sun is so much brighter. Christian Huygens ( ) used holes drilled in a brass plate to estimate the angular sizes of stars. His results showed that, if stars were like Sun, they must be at great distances, consistent with the lack of observed parallax. How do we detect planets around other stars?

3 Planet Detection Direct: pictures or spectra of the planets themselves Indirect: measurements of stellar properties revealing the effects of orbiting planets Gravitational Tugs The Sun and Jupiter orbit around their common center of mass. The Sun therefore wobbles around that center of mass with same period as Jupiter. Gravitational Tugs The Sun s motion around the solar system s center of mass depends on tugs from all the planets. Astronomers around other stars that measured this motion could determine the masses and orbits of all the planets.

4 Astrometric Technique We can detect planets by measuring the change in a star s position on sky. However, these tiny motions are very difficult to measure (~ arcsecond). Doppler Technique Measuring a star s Doppler shift can tell us its motion toward and away from us. Current techniques can measure motions as small as 1 m/s (walking speed!). First Extrasolar Planet Insert TCP 6e Figure 13.4a unannotated Doppler shifts of the star 51 Pegasi indirectly revealed a planet with 4- day orbital period. This short period means that the planet has a small orbital distance. This was the first extrasolar planet to be discovered (1995).

5 First Extrasolar Planet Insert TCP 6e Figure 13.4b The planet around 51 Pegasi has a mass similar to Jupiter s, despite its small orbital distance. Other Extrasolar Planets Doppler shift data tell us about a planet s mass and the shape of its orbit. Planet Mass and Orbit Tilt We cannot measure an exact mass for a planet without knowing the tilt of its orbit, because Doppler shift tells us only the velocity toward or away from us. Doppler data give us lower limits on masses.

6 Thought Question Suppose you found a star with the same mass as the Sun moving back and forth with a period of 16 months. What could you conclude? A. It has a planet orbiting at less than 1 AU. B. It has a planet orbiting at greater than 1 AU. C. It has a planet orbiting at exactly 1 AU. D. It has a planet, but we do not have enough information to know its orbital distance. Transits and Eclipses A transit is when a planet crosses in front of a star. The resulting eclipse reduces the star s apparent brightness and tells us planet s radius. No orbital tilt: accurate measurement of planet mass Spectrum During Transit Change in spectrum during a transit tells us about the composition of planet s atmosphere.

7 Surface Temperature Map Measuring the change in infrared brightness during an eclipse enables us to map a planet s surface temperature. Direct Detection Special techniques like adaptive optics are helping to enable direct planet detection. Direct Detection Techniques that help block the bright light from stars are also helping us to find planets around them.

8 Direct Detection Techniques that help block the bright light from stars are also helping us to find planets around them. Other Planet-Hunting Strategies Gravitational Lensing: Mass bends light in a special way when a star with planets passes in front of another star. Features in Dust Disks: Gaps, waves, or ripples in disks of dusty gas around stars can indicate presence of planets. What have we learned? Why is it so difficult to detect planets around other stars? Direct starlight is billions of times brighter than the starlight reflected from planets. How do we detect planets around other stars? A star s periodic motion (detected through Doppler shifts) tells us about its planets. Transiting planets periodically reduce a star s brightness. Direct detection is possible if we can reduce the glare of the star s bright light.

9 13.2 The Nature of Extrasolar Planets Our goals for learning: What have we learned about extrasolar planets? How do extrasolar planets compare with planets in our solar system? What have we learned about extrasolar planets? Measurable Properties Orbital period, distance, and Shape Planet mass, size, and density Composition

10 Orbits of Extrasolar Planets Most of the detected planets have orbits smaller than Jupiter s. Planets at greater distances are harder to detect with the Doppler technique. Orbits of Extrasolar Planets Orbits of some extrasolar planets are much more elongated (have a greater eccentricity) than those in our solar system. Multiple-Planet Systems Some stars have more than one detected planet.

11 Orbits of Extrasolar Planets Most of the detected planets have greater mass than Jupiter. Planets with smaller masses are harder to detect with Doppler technique. How do extrasolar planets compare with planets in our solar system? Surprising Characteristics Some extrasolar planets have highly elliptical orbits. Some massive planets, called hot Jupiters, orbit very close to their stars.

12 Hot Jupiters What have we learned? What have we learned about extrasolar planets? Extrasolar planets are generally much more massive than Earth. They tend to have orbital distances smaller than Jupiter s. Some have highly elliptical orbits. How do extrasolar planets compare with planets in our solar system? Some hot Jupiters have been found The Formation of Other Solar Systems Our goals for learning: Can we explain the surprising orbits of many extrasolar planets? Do we need to modify our theory of solar system formation?

13 Can we explain the surprising orbits of many extrasolar planets? Revisiting the Nebular Theory The nebular theory predicts that massive Jupiter-like planets should not form inside the frost line (at << 5 AU). The discovery of hot Jupiters has forced reexamination of nebular theory. Planetary migration or gravitational encounters may explain hot Jupiters. Planetary Migration A young planet s motion can create waves in a planetforming disk. Models show that matter in these waves can tug on a planet, causing its orbit to migrate inward.

14 Gravitational Encounters Close gravitational encounters between two massive planets can eject one planet while flinging the other into a highly elliptical orbit. Multiple close encounters with smaller planetesimals can also cause inward migration. Orbital Resonances Resonances between planets can also cause their orbits to become more elliptical. Thought Question What happens in a gravitational encounter that allows a planet s orbit to move inward? A. It transfers energy and angular momentum to another object. B. The gravity of the other object forces the planet to move inward. C. It gains mass from the other object, causing its gravitational pull to become stronger.

15 Do we need to modify our theory of solar system formation? Modifying the Nebular Theory Observations of extrasolar planets have shown that the nebular theory was incomplete. Effects like planetary migration and gravitational encounters might be more important than previously thought. Planets: Common or Rare? One in ten stars examined so far have turned out to have planets. The others may still have smaller (Earthsized) planets that current techniques cannot detect.

16 What have we learned? Can we explain the surprising orbits of many extrasolar planets? Original nebular theory cannot account for the existence of hot Jupiters. Planetary migration or gravitational encounters may explain how Jupiter-like planets moved inward. Do we need to modify our theory of solar system formation? Migration and encounters may play a larger role than previously thought Finding More New Worlds Our goals for learning: How will we search for Earth-like planets? How will we search for Earth-like planets? Insert TCP 6e Figure 13.18

17 Transit Missions NASA s Kepler mission was launched in 2008 to begin looking for transiting planets. It is designed to measure the 0.008% decline in brightness when an Earth-mass planet eclipses a Sunlike star. Astrometric Missions GAIA: a European mission planned for 2011 that will use interferometry to measure precise motions of a billion stars SIM: A NASA mission that will use interferometry to measure star motions even more precisely (to 10-6 arcseconds) Direct Detection Determining whether Earth-mass planets are really Earth-like requires direct detection. Mission concept for NASA s Terrestrial Planet Finder (TPF) Missions capable of blocking enough starlight to measure the spectrum of an Earth-like planet are being planned.

18 What have we learned? How will we search for Earth-like planets? Transit missions will be capable of finding Earth-like planets that cross in front of their stars. Astrometric missions will be capable of measuring the wobble of a star caused by an orbiting Earth-like planet. Missions for direct detection of an Earth-like planet will need to use special techniques (like interferometry) for blocking starlight.

### Chapter 13 Other Planetary Systems The New Science of Distant Worlds. Why is it so difficult to detect planets around other stars?

Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning Why is it so difficult to detect planets around other stars? How do we detect

### Chapter 13 Other Planetary Systems. The New Science of Distant Worlds

Chapter 13 Other Planetary Systems The New Science of Distant Worlds Why is it so difficult to detect planets around other stars? Brightness Difference A Sun-like star is about a billion times brighter

### Chapter 13 Other Planetary Systems. Detecting Extrasolar Planets Brightness Difference. How do we detect planets around other stars?

Chapter 13 Other Planetary Systems The New Science of Distant Worlds Detecting Extrasolar Planets Brightness Difference A Sun-like star is about a billion times brighter than the sunlight reflected from

### Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

### How do we detect planets around other stars? Planet Detection. Gravitational Tugs. Gravitational Tugs

Important Stuff (Section 3) Important Stuff (Section 4) The Final Exam is Monday, December 19, 1:30 pm 3:30 pm The Final Exam will be given in Physics 150 Physics 150 (seats over 300 - lots of space) Don

### Chapter 13 Other Planetary Systems: The New Science of Distant Worlds

Chapter 13 Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning: Why is it so difficult to detect planets around other stars? How do we detect

### Other Planetary Systems

Other Planetary Systems Other Planetary Systems Learning goals How do we detect planets around other stars? What have other planetary systems taught us about our own? Extrasolar planet search

### Chapter 6 Formation of Planetary Systems Our Solar System and Beyond

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond The solar system exhibits clear patterns of composition and motion. Sun Over 99.9% of solar system s mass Made mostly of H/He gas (plasma)

### 15.6 Planets Beyond the Solar System

15.6 Planets Beyond the Solar System Planets orbiting other stars are called extrasolar planets. Until 1995, whether or not extrasolar planets existed was unknown. Since then more than 300 have been discovered.

### The Formation of Planetary Systems. Astronomy 1-1 Lecture 20-1

The Formation of Planetary Systems Astronomy 1-1 Lecture 20-1 Modeling Planet Formation Any model for solar system and planet formation must explain 1. Planets are relatively isolated in space 2. Planetary

### Lecture 35: Exoplanets - Planets Around Other Stars

Lecture 35 Exoplanets: Planets Around Other Stars Astronomy 141 Winter 2012 This lecture describes the search for exoplanets: planets orbiting other stars. Direct detection is very challenging, but now

### Other Planetary Systems

BENN6189_05_C13_PR5_V3_TT.QXD 10/31/07 8:03 AM Page 394 13 Other Planetary Systems The New Science of Distant Worlds LEARNING GOALS 13.1 Detecting Extrasolar Planets Why is it so difficult to detect planets

### Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan. 2011 Pearson Education, Inc.

Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

### Astronomy of extrasolar planetary systems. Methods and results of searches for planets around other stars

Astronomy of extrasolar planetary systems Methods and results of searches for planets around other stars Course layout - methods Introduction and history of searches for planets Doppler spectroscopy and

### Planets beyond the solar system

Planets beyond the solar system Review of our solar system Why search How to search Eclipses Motion of parent star Doppler Effect Extrasolar planet discoveries A star is 5 parsecs away, what is its parallax?

### Class 2 Solar System Characteristics Formation Exosolar Planets

Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

### The Origin of the Solar System and Other Planetary Systems

The Origin of the Solar System and Other Planetary Systems Modeling Planet Formation Boundary Conditions Nebular Hypothesis Fixing Problems Role of Catastrophes Planets of Other Stars Modeling Planet Formation

### AST1100 Lecture Notes

AST1100 Lecture Notes 3 Extrasolar planets 1 Detecting extrasolar planets Most models of star formation tell us that the formation of planets is a common process. We expect most stars to have planets orbiting

### 4. Formation of Solar Systems

Astronomy 110: SURVEY OF ASTRONOMY 4. Formation of Solar Systems 1. A Survey of the Solar System 2. The Solar System s Early History 3. Other Planetary Systems The solar system s rich and varied structure

### Planet Detection Techniques and Results (outline of lectures)

Planet Detection Techniques and Results (outline of lectures) These notes are meant to be read in conjunction with the lecture presentation. A pdf of the powerpoint presentation containing all the illustrations

### The Layout of the Solar System

The Layout of the Solar System Planets fall into two main categories Terrestrial (i.e. Earth-like) Jovian (i.e. Jupiter-like or gaseous) [~5000 kg/m 3 ] [~1300 kg/m 3 ] What is density? Average density

### ASTR 380 Extrasolar Planets.

ASTR 380 Extrasolar Planets http://www.astro.keele.ac.uk/~rdj/planets/images/taugruishydra2.jpg Outline Detection of extrasolar planets Selection biases Properties of extrasolar systems Future missions

### The Origin of the Solar System. Formation and basic characteristics of the Solar System

The Origin of the Solar System Formation and basic characteristics of the Solar System The origin of matter All the building material necessary to make our Solar System was assembled in the process of

### Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

### Solar System Formation

Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

### astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

### variation in light. This method really has resulted in planetary detections, but not many because it requires a particular orientation that is

Extrasolar Planets Thus far we have concentrated on our own Solar System. This is a natural starting spot. But what if planets are exceedingly rare? This would put a damper on the prospects for abundant

### Chapter 6: Our Solar System and Its Origin

Chapter 6: Our Solar System and Its Origin What does our solar system look like? The planets are tiny compared to the distances between them (a million times smaller than shown here), but they exhibit

### PHYS-1000 Final Exam Study Guide Fall 2012

This study guide is for the final exam of the course, covering chapters 1 through 5 and 7 through 13. You are responsible for all material in these chapters referenced from this guide as well as the corresponding

### Formation and content of the solar system.

Formation and content of the solar system. The Solar Nebula Hypothesis Basis of modern theory of planet formation: Planets form at the same time from the same cloud as the star. Planet formation sites

### Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

### What Are Stars? continued. What Are Stars? How are stars formed? Stars are powered by nuclear fusion reactions.

What Are Stars? How are stars formed? Stars are formed from clouds of dust and gas, or nebulas, and go through different stages as they age. star: a large celestial body that is composed of gas and emits

### A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

### Spectroscopy, the Doppler Shift and Masses of Binary Stars.

Spectroscopy, the Doppler Shift and Masses of Binary Stars http://apod.nasa.gov/apod/astropix.html Doppler Shift At each point the emitter is at the center of a circular wavefront extending out from its

### Solar Nebula Theory. Basic properties of the Solar System that need to be explained:

Solar Nebula Theory Basic properties of the Solar System that need to be explained: 1. All planets orbit the Sun in the same direction as the Sun s rotation 2. All planetary orbits are confined to the

### Chapter 5. Determining Masses of Astronomical Objects

Chapter 5. Determining Masses of Astronomical Objects One of the most fundamental and important properties of an object is its mass. On Earth we can easily weigh objects, essentially measuring how much

### 1 Exoplanets. 2 Types of Exoplanets. 1.1 Introduction. 2.1 Gas Giants. 2.2 Hot Jupiters. 2.3 Water Worlds. Name: Date:

Name: Date: 1 Exoplanets 1.1 Introduction Exoplanets are a hot topic in astronomy right now. As of January, 2015, there are over 1500 confirmed exoplanet discoveries with more than 3000 candidates still

### Chapter 12 Remnants of Rock and Ice. Asteroids, Comets, and the Kuiper Belt

Chapter 12 Remnants of Rock and Ice Asteroids, Comets, and the Kuiper Belt What are asteroids like? Asteroid Facts Asteroids are rocky leftovers of planet formation. Largest is Ceres, diameter ~1,000 km

### Chapter 13 Newton s Theory of Gravity

Chapter 13 Newton s Theory of Gravity Chapter Goal: To use Newton s theory of gravity to understand the motion of satellites and planets. Slide 13-2 Chapter 13 Preview Slide 13-3 Chapter 13 Preview Slide

### Patterns in the Solar System (Chapter 18)

GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Patterns in the Solar System (Chapter 18) For this assignment you will require: a calculator, colored pencils, a metric ruler, and meter stick.

### This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00

Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June

### Chapter 6 Formation of Planetary Systems: Our Solar System and Beyond. What does the solar system look like? What does the solar system look like?

Chapter 6 Formation of Planetary Systems: Our Solar System and Beyond What does the solar system look like? The solar system exhibits clear patterns of composition and motion. These patterns are far more

### Chapter 12 Asteroids, Comets, and Dwarf Planets. Asteroid Facts. What are asteroids like? Asteroids with Moons. 12.1 Asteroids and Meteorites

Chapter 12 Asteroids, Comets, and Dwarf Planets Their Nature, Orbits, and Impacts What are asteroids like? 12.1 Asteroids and Meteorites Our goals for learning:! What are asteroids like?! Why is there

### Astro 1 Lab Exercise

Summer 2014 Astro 1 Lab Exercise Lab #4: ExoPlanet Detection Wednesday Aug 7,8 and 11 Room 200 in Wilder Lab reports are due by 5 pm on Friday August 15, 2013 Put it in the large ASTRO 1 Lab Box just inside

### How did the Solar System form?

How did the Solar System form? Is our solar system unique? Are there other Earth-like planets, or are we a fluke? Under what conditions can Earth-like planets form? Is life common or rare? Ways to Find

### Top 10 Discoveries by ESO Telescopes

Top 10 Discoveries by ESO Telescopes European Southern Observatory reaching new heights in astronomy Exploring the Universe from the Atacama Desert, in Chile since 1964 ESO is the most productive astronomical

### Lecture 13. Gravity in the Solar System

Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

### Astron 100 Sample Exam 1 1. Solar eclipses occur only at (A) New moon (B) 1 st quarter moon (C) Full moon (D) 3 rd quarter moon (E) The equinoxes 2.

Astron 100 Sample Exam 1 1. Solar eclipses occur only at (A) New moon (B) 1 st quarter moon (C) Full moon (D) 3 rd quarter moon (E) The equinoxes 2. If the Moon is at first quarter tonight in Amherst,

### Chapter 12 Remnants of Rock and Ice Asteroids, Comets, and the Kuiper Belt. Asteroid Facts. What are asteroids like? Asteroids with Moons

Chapter 12 Remnants of Rock and Ice Asteroids, Comets, and the Kuiper Belt 12.1 Asteroids and Meteorites Our goals for learning What are asteroids like? Why is there an asteroid belt? Where do meteorites

### Astronomy 103: First Exam

Name: Astronomy 103: First Exam Stephen Lepp October 25, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial

### EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

### From Aristotle to Newton

From Aristotle to Newton The history of the Solar System (and the universe to some extent) from ancient Greek times through to the beginnings of modern physics. The Geocentric Model Ancient Greek astronomers

### Beginning of the Universe Classwork 6 th Grade PSI Science

Beginning of the Universe Classwork Name: 6 th Grade PSI Science 1 4 2 5 6 3 7 Down: 1. Edwin discovered that galaxies are spreading apart. 2. This theory explains how the Universe was flattened. 3. All

### SCIENCE 101 DISTANCES IN ASTRONOMY LECTURE NOTES

SCIENCE 0 DISTANCES IN ASTRONOMY LECTURE NOTES Distances in the Solar System Distance to Venus can be obtained using radar ranging Send signal, determine how long it takes to return Radio waves move at

### Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date:

Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date: 1. If stellar parallax can be measured to a precision of about 0.01 arcsec using telescopes on Earth to observe stars, to what distance

### Astro Lecture 5. Eclipses of the Moon and the Sun, and other odd events

Astro110-01 Lecture 5 Eclipses of the Moon and the Sun, and other odd events Lunar eclipse Solar eclipse 1 Brief Review Why do we see phases of the Moon? What causes eclipses? 2 Why do we see phases of

### 8. Mercury, the planet nearest to the Sun, has extreme surface temperatures, ranging from 465 C in sunlight to 180 C in darkness.

6.E.1 Unit Test DO NOT WRITE ON THIS QUIZ!!! 1. The largest body in our solar system is Earth. the Sun. Jupiter. the Moon. 4. What do the four planets closest to the Sun have in common? Their solid, rocky

### 7.2 Calculate force of gravity at a given distance given the force of gravity at another distance (making use of the inverse square relationship).

Chapter 7 Circular Motion and Gravitation 7.1 Calculate force of gravity using Newton s Law of Universal Gravitation. 5. What is the gravitational force between the Earth and the Sun? (Mass of Earth: 5.98

### Cosmology and the Birth of Earth

Cosmology and the Birth of Earth Our Island in Space The Earth is a very special and unique planet. Its temperature, composition and atmosphere favor life. It is dynamic and ever-changing. It has a long

### Astronomy Excerpts from the Frameworks for Science Education - Third Grade

NOTE: Since the writing of the Frameworks, Pluto has been reclassified as a dwarf planet along with several other known small bodies of similar size. There are likely to be hundreds more discovered out

### Extra-solar massive planets with small semi-major axes?

Monografías de la Real Academia de Ciencias de Zaragoza. 25: 115 120, (2004). Extra-solar massive planets with small semi-major axes? S. Fernández, D. Giuliodori and M. A. Nicotra Observatorio Astronómico.

### Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula

Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain

### ASTR 135 Exam 2 3/6/2015 Topically rearranged version.

ASTR 135 Exam 2 3/6/2015 Topically rearranged version. 1) On February 1, a careful observer notes the exact compass point on the horizon where the sun rises. A few days later, the sun rises a) further

### Lecture 10 Formation of the Solar System January 6c, 2014

1 Lecture 10 Formation of the Solar System January 6c, 2014 2 Orbits of the Planets 3 Clues for the Formation of the SS All planets orbit in roughly the same plane about the Sun. All planets orbit in the

### Science Focus 9 Space Exploration Review Booklet

Science Focus 9 Unit E Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Space Exploration Space Link: NASA http://www.nasa.gov/home/index.html For Our Eyes Only Frames of Reference What

### Patterns in the Solar System. Patterns in the Solar System. ASTR 105 The Solar System

ASTR 105 The Solar System 1. Orderly motions 2.Two kinds of planets 3.Two kinds of small bodies 4.Exceptions to the rules Today: Group Lab at the end of class Next THURSDAY 03/10: First Group Project Orderly

### Exploring the Universe Through the Hubble Space Telescope

Exploring the Universe Through the Hubble Space Telescope WEEK FIVE: THE HUBBLE DEEP FIELD + LIMITATIONS OF HUBBLE, COLLABORATIONS, AND THE FUTURE OF ASTRONOMY Date: October 14, 2013 Instructor: Robert

### Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality

### 4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning:! How do we describe motion?! How is mass different from weight? How do we

### Exploring Our Solar System and Its Origin

Exploring Our Solar System and Its Origin Sun Over 99.9% of solar system s mass Made mostly of H/He gas (plasma) Converts 4 million tons of mass into energy each second Earth and Moon to scale Mercury

### Section 3. Origin of the Universe and the Solar System. What Do You See? Think About It. Learning Outcomes

Section 3 Origin of the Universe and the Solar System Section 3 Origin of the Universe and the Solar System What Do You See? Learning Outcomes In this In section, this section, you will you will Describe

### Lecture 5: Newton s Laws. Astronomy 111

Lecture 5: Newton s Laws Astronomy 111 Isaac Newton (1643-1727): English Discovered: three laws of motion, one law of universal gravitation. Newton s great book: Newton s laws are universal in scope,

### Kepler, Newton, and laws of motion

Kepler, Newton, and laws of motion !! " The only history in this course:!!!geocentric vs. heliocentric model (sec. 2.2-2.4)" The important historical progression is the following:!! Ptolemy (~140 AD) Copernicus

### Motion and Gravity in Space

Motion and Gravity in Space Each planet spins on its axis. The spinning of a body, such a planet, on its axis is called rotation. The orbit is the path that a body follows as it travels around another

### Newton s laws of motion and gravity

Newton s laws of motion and gravity 1. Every body continues in a state of rest or uniform motion (constant velocity) in a straight line unless acted on by a force. (A deeper statement of this law is that

### 1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

### 165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

### ASTR 115: Introduction to Astronomy. Stephen Kane

ASTR 115: Introduction to Astronomy Stephen Kane ASTR 115: The Second Mid-Term Exam What will be covered? - Everything from chapters 6-10 of the textbook. What will be the format of the exam? - It will

### LESSON 3 THE SOLAR SYSTEM. Chapter 8, Astronomy

LESSON 3 THE SOLAR SYSTEM Chapter 8, Astronomy OBJECTIVES Identify planets by observing their movement against background stars. Explain that the solar system consists of many bodies held together by gravity.

### The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture

Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity Making Sense of the Universe: Understanding Motion, Energy, and Gravity

### The Origin of the Solar System

The Origin of the Solar System Questions: How did the various constituents of Solar System form? What were the physical processes involved? When did they form? Did they all form more-or less simultaneously?

### Summary: Four Major Features of our Solar System

Summary: Four Major Features of our Solar System How did the solar system form? According to the nebular theory, our solar system formed from the gravitational collapse of a giant cloud of interstellar

### The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:

### Science@ESA vodcast series. Script for Episode 6 Charting the Galaxy - from Hipparcos to Gaia

Science@ESA vodcast series Script for Episode 6 Charting the Galaxy - from Hipparcos to Gaia Available to download from http://sci.esa.int/gaia/vodcast Hello, I m Rebecca Barnes and welcome to the Science@ESA

### Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

### Class 14 Patterns & diversity in our Solar System. I : The kinematics of the Solar System

Class 14 Patterns & diversity in our Solar System Kinematics of the solar system Comparative planetology I : The kinematics of the Solar System We have learned about the laws of physics (motion and gravity)

### NASA discovers Earth s bigger, older cousin, Kepler 452b

http://www.news.com.au/technology/science/nasa-discovers-earths-bigger-older-cousinkepler-452b/story-fnjwlcze-1227454755492 NASA discovers Earth s bigger, older cousin, Kepler 452b JULY 24, 2015 10:51AM

### i>clicker Questions A scientific law is something that has been proven to be true. A. True B. False C. Only in experimental sciences.

A scientific law is something that has been proven to be true. A. True B. False C. Only in experimental sciences. i>clicker Questions The fifth planet from the sun, the sixth planet and the seventh planet

### Arrange the following forms of radiation from shortest wavelength to longest. optical gamma ray infrared x-ray ultraviolet radio

Arrange the following forms of radiation from shortest wavelength to longest. optical gamma ray infrared x-ray ultraviolet radio Which of the wavelength regions can completely penetrate the Earth s atmosphere?

### Chapter 9 Asteroids, Comets, and Dwarf Planets. Their Nature, Orbits, and Impacts

Chapter 9 Asteroids, Comets, and Dwarf Planets Their Nature, Orbits, and Impacts Asteroid Facts Asteroids are rocky leftovers of planet formation. The largest is Ceres, diameter ~1,000 km. There are 150,000

### The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe

Football Review- Earth, Moon, Sun 1. During a total solar eclipse, when almost all of the Sun's light traveling to the Earth is blocked by the Moon, what is the order of the Earth, Sun, and Moon? A. Moon,

### GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter

IT S UNIVERSAL GRAVITY CONCEPTS Gravity is the universal force of attraction between all matter Weight is a measure of the gravitational force pulling objects toward Earth Objects seem weightless when

### Astro 110-01 Lecture 10 Newton s laws

Astro 110-01 Lecture 10 Newton s laws Twin Sungrazing comets 9/02/09 Habbal Astro110-01 Lecture 10 1 http://umbra.nascom.nasa.gov/comets/movies/soho_lasco_c2.mpg What have we learned? How do we describe

### Making Sense of the Universe: Understanding Motion, Energy, and Gravity

Making Sense of the Universe: Understanding Motion, Energy, and Gravity 1. Newton s Laws 2. Conservation Laws Energy Angular momentum 3. Gravity Review from last time Ancient Greeks: Ptolemy; the geocentric

### Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007. Name: (Answer Key)

Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007 Name: (Answer Key) Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures thus

### Astro Lecture 16 The Sun [Chapter 10 in the Essential Cosmic Perspective]

Astro 110-01 Lecture 16 The Sun [Chapter 10 in the Essential Cosmic Perspective] Habbal Lecture 16 1 For problems with Mastering Astronomy Contact: Jessica Elbern Jessica.Elbern@Pearson.com 808-372-6897

### Are there Earth-like planets around other stars?

Cutting-edge science Are there Earth-like planets around other stars? Image courtesy of ESO Uffe Gråe Jørgensen from the University of Copenhagen, Denmark, describes the search for Earth-like planets elsewhere

### The Main Point. The Scientific Method. Laws of Planetary Motion. Lecture #3: Orbits and Gravity. Laws of Planetary Motion:

Lecture #3: Orbits and Gravity Laws of Planetary Motion: Kepler's Laws. Newton's Laws. Gravity. Planetary Orbits. Spacecraft Orbits. The Main Point Motions of planets, moons, and asteroids can be very