IEEE (WLAN) Standards. Osama Aboul-Magd

Size: px
Start display at page:

Download "IEEE 802.11 (WLAN) Standards. Osama Aboul-Magd"

Transcription

1 1 IEEE (WLAN) Standards Osama Aboul-Magd

2 Abstract This presentation provides an overview of the IEEE Standards. Both MAC and PHY specifications are considered. 2

3 Outline Introduction IEEE 802 Overview IEEE Overview IEEE PHY Evolution IEEE MAC IEEE QoS Future Directions 3

4 Relationship to WiSense Project WiSense Project Heterogeneous sensor networks 4 Needs standard interfaces between different technologies

5 Why Do We Need Standards? Consumers and Network Providers Mix and match 5 Equipment Vendors Embed their IPR into standards and collect fees Engineers Job security!!!

6 IEEE 802 Overview 6 IEEE Project 802 LAN/MAN Standards Committee (aka IEEE 802 or LMSC) Develop LAN and MAN standards Mainly for link and physical layers of the network stack In operation since March 1980 (30 year anniversary) WORKING GROUP/TAG CHAIRS BRIDGING/ARCH CSMA/CD WLAN WPAN BWA ResPackRing TAG Radio Regulatory TAG Coexistance MBWA Handoff DISBANDED Token Bus DQDB Broadband TAG Fiber Optic TAG ISLAN Security Demand Priority CATV WRAN HIBERNATION LLC Token Ring

7 WLAN Standards Overview 7 11z 11v 11u IEEE s 11aa IEEE n MAC PCF HCCA EDCA Common MAC independent of the PHY PHY-dependent parameters Other IEEE common (draft) standards IEEE i (security of data frames) IEEEE w (security of management frames) IEEE k (radio resource management) Common MAC (DCF) IEEE a PHY IEEE b PHY IEEE g PHY IEEE n PHY

8 Radio Spectrum 8 UHF ISM S-Band Band S-Band ISM C-Band C-Band Satellite Downlink C-Band Radar (Weather) C-Band ISM C-Band Satellite uplink X-Band X-Band Radar (police/weather) Ku-Band Ku Band Radar (police) Frequency Range MHz 2-4 GHz GHz 4-8 GHz GHz GHz GHz GHz 8-12 GHz GHz GHz GHz GHz IEEE operates in the ISM (Industrial, Scientific, and Medical) bands ISM bands are license-free, provided that devices are lowpower IEEE b and IEEE g devices operate in S-band ISM IEEE a devices operate in C-band ISM IEEE n devices operates in both bands

9 IEEE Protocol Entities 9 MSDU MAC Sublayer MAC Layer Management Frm Cntr Dur ADD 1 ADD 2 ADD 3 SEQ # ADD 4 Data FCS PLCP Sublayer PMD Sublayer PHY Layer Management Preamble Short Training Field Long Training Field Signal Field 8 ms 8 ms 4 ms MPDU Srvc Field MPDU Tail PAD PPDU

10 Why 4 Addresses are Needed? 10 BSS 1 STA 1 AP STA 2 DS AP STA 3 STA 4 BSS 2 Stations belong to different BSS communicate through the distribution system (DS) An access point (AP) is a STA that provides access to DS Data moves between a BSS and the DS via an AP The DS can be either wireline or wireless (WLAN Mesh)

11 Guard Time PHY Layer Evolution 11 IEEE IEEE a Data Rates up to 2 Mbps Data Rates up to 54 Mbps Frequency OFDM Slot/Frame IFF T IFF T S N + 1 IFF T S S S S S N S N S N S 5 S 6 S 7 S 2N S N OFDM Symbol (FTT duration) Time Bandwidth IEEE n Data Rates up to 600 Mbps MIMO AP MIMO propaga tion channel Station y y y 1 2 N h h h N Channel Matrix h h h N h h h N1 N2 NN space x x x 1 2 N n n n 1 2 N Data Rates up to 11 Mbps IEEE b N M N Tx and M Rx - multiple parallel channels frequency time

12 Common MAC Distributed Control Function (DCF) DCF is the basic access mechanism for IEEE It employs carrier sense multiple access with collision avoidance (CSMA/CA) Each successful transmission is acknowledged by the recipient. Contention window is randomly generated from a uniform distribution between 0 and CW. CW is doubled each time there is a collision up to a maximum value, CW max. Successful transmission brings CW back to its minimum value, CW min. 12 EIFS Contention Window Busy Medium DIFS Next Frame Access Deferral Back Off SIFS ACK DIFS = DCF Inter-Frame Spacing EIFS = Extended Inter-Frame Spacing SIFS = Short Inter-Frame Spacing

13 Carrier Sensing (Clear Channel Assessment- CCA) Physical Carrier Sensing 13 Detecting the absence or presence of carrier by listening to the medium. Virtual Carrier Sensing Using Network Allocation Vector (NAV) together with the Duration field in the various IEEE frames

14 RTS/CTS Mechanism RTS/CTS: Request to Send/Clear 14 to Send Deals with hidden terminals and employs virtual sensing SIFS SIFS Area reachable By MTU 1 SIFS SIFS SIFS DIFS Area reachable By MTU 1 RTS Frame Frame CTS ACK ACK NAV (RTS) NAV (CTS) NAV (Fragment 1) NAV (ACK 1)

15 MTT (Mbps) IEEE MAC Theoretical Maximum Throughput (No Collisions) 15 X Frame and PHY Overhead Preamble P-HDR M-HDR PLCP-PDU MAC-SDU MAC-PDU PLCP-SDU FCS T Data T P T Phy x h Rate frame BitStream (PMD-SDU) IFS IFS BO WLAN MTT T MSDU T DIFS T SIFS T BO T RTS T CTS T ACK T Data 40 IEEE a IEEE a Simulation IEEE g IEEE g Simulation x T MSDU Rate 2T P 2T Phy T DIFS x T SIFS T BO T RTS T Increasing the rate without reducing overhead is not sufficient to achieve high throughput CTS Frame (MSDU) Length (bytes)

16 Frame Aggregation 16 Carrier MPDU Frame Control Dur / ID Address 1 Address 2 Address 3 Seq Control Address 4 QoS Control A- MSDU FCS Subframe 1 Subframe 2... Subframe n Subframe Header 14 B MSDU Pad B 0-3 B A-MSDU Aggregation DA SA Len 6B 6B 2B Length CRC MPDU Header MPDU Payload FCS Length CRC MPDU Header MPDU Payload FCS Length CRC MPDU Delimiter MPDU A-MPDU Aggregation MPDU Header MPDU Payload FCS PSDU

17 WLAN QoS (IEEE e) 17 Allows both prioritized and parameterized QoS Prioritized QoS is offered by Enhanced Distributed Channel Access (EDCA) Parameterized QoS is offered by the HCF Controlled Channel Access (HCCA) Introduces Traffic Stream ID Introduces User Priority (UP) similar to IEEE Q priorities 8 priority levels Employs the notion of Transmission Opportunity (TXOP) TXOP is of finite length Introduces traffic parameter specification (TSPEC) Necessary for parameterized QoS Introduces block acknowledgement (BA) Improves efficiency

18 Transmission Opportunity (TXOP) TXOP is an interval of time when a particular station has the right to initiate frame exchange sequence onto the WM. TXOP can be attained by either the EDCA (contention) or the HCCA (contention free) TXOP is always of finite duration TXOP duration should allow for al least one frame exchange sequence to be initiated. After the first frame, no other exchange sequence is allowed if the time left of the TXOP is not sufficient to complete the sequence Other stations use NAV, set to TXOP duration, to refrain from accessing the WM. CF-Poll TXOP Frame Frame 18 CF-Poll +ACK TXOP Frame NAV NAV TXOP TXOP

19 Access Categories IEEE defines 4 Access Categories (AC) for use with EDCA. The priority of an AC to access the WM is determined by the Arbitration Inter-frame Spacing AIFS[AC], and congestion window, CW min [AC] and CW max [AC] One-to-one mapping between UP and AC 19 Mapping to AC Transmit Queues Per Queue Channel Access Function UP Designation AC BK BK BE BE CL VI VO NC AC_BK AC_BK AC_BE AC_BE AC_VI AC_VI AC_V0 AC_VO Background Background Best Effort Best Effort Video Video Voice Voice

20 Enhanced Distributed Control Function (EDCF) 20 AIFS[j] AIFS[i] DIFS/AIFS Busy Medium DIFS PIFS Contention Window Next Frame SIFS Each QoS station has a separate channel access function per AC. Access rules are similar to those of DCF (CSMA/CA) The TXOP duration is advertised by the AP in the EDCA Parameter Set IE. The QoS station ensures that its transmission does not exceed the TXOP limit Fragmentation may be employed A continuation TXOP is granted if there is a frame available for transmission that fits in the remaining TXOP duration A continuation TXOP is granted to the same AC that initially won the TXOP. Internal collisions are handled as if they were external collision. The higher priority AC gains access to the WM.

21 CAP CAP CAP CAP CAP CAP Controlled Channel Access 21 HCCA(Hybrid Controller Channel Access) is a polling scheme that is centrally controlled by Hybrid Coordinator (HC) HC resides in the AP. TXOP are assigned by the HC to a QSTA at a regular interval and for a specified duration TXOP duration and frequency are determined based on Traffic Specifications (TSPEC IE) Traffic Streams (TS) are locally identified using TSID (part of TID) HC may generate CFP. However it is mandatory for HC to use CFP for QoS data transfers Controlled access phase (CAP) cab be initiated at anytime by the HC Beacon CFP CP CFP Repetition Interval

22 TSPEC IE 22 Element ID Length TS INFO Nominal MSDU Size Maximum MSDU Size Minimum Service Interval Maximum Service Interval Inactivity Interval Suspension Service Interval Start Time Minimum Data Rate Mean Data Rate Peak Data Rate Maximum Burst Size Delay Bound Traffic Type TSID Direction Access Policy User Aggregation APSD TSInfo Priority Ack Policy Schedule Rsvd Minimum Physical Rate Surplus Bandwidth Allowance Medium Time All TSPEC traffic parameters are optional TS INFO field contains information about TSID, UP, and access policy (EDCA, HCCA, or both) Medium Time is used for EDCA admission control Medium Time is the amount of time (in units of 32 microseconds) an AC is admitted to access the medium per 1 sec intervals When Medium Time is exceeded, the QoS station refrains sending a particular AC Medium Time is computed using mean value analysis that may prove to be useless for bursty applications

23 TSPEC Procedure QSTA 23 ADDTS Request (TSPEC) QAP ADDTS Response (TSPEC, Schedule) Elements ID Length Schedule Info Service Start Time Service Interval Maximum TXOP Duration Specification Interval The AP uses the traffic parameters to perform admission control on the incoming request Service Interval is the time between two successive service periods (SP) Directly related to bandwidth reserved

24 WLAN Popularity and Growth From a humble start at 1990 to one of the most successful standards in the history of data communications. Addresses real needs (Mobility) Operates in unlicensed bands Deployments are everywhere Conventions Home Enterprise Municipalities The Wi-Fi Alliance estimates that over 1000,000,000 devices will be sold annually by Laptop computers Game consoles Wi-Fi Phones 24

25 Where to Go From Here? New WLAN application demands the availability of more bandwidth Video streaming at home Smart phones upload 25 STB1 STB2

26 New PHY Specifications: The Road to Gbps WLAN 26 PCF HCCA EDCA STA Common MAC (DCF) AP IEEE a PHY IEEE b PHY IEEE g PHY IEEE n PHY IEEE ac PHY IEEE ad PHY STA From MIMO to MU-MIMO and SDMA Two new PHY layers are in the work: IEEE ac operates in the < 6GHz band IEEE ad operates in the 60 GHz band Chosen by the PC World Magazine as one of technologies that will change everything:

Philippe Klein. avb-phkl-802-11-qos-overview-0811-1

Philippe Klein. avb-phkl-802-11-qos-overview-0811-1 802.11 QoS Overview Philippe Klein IEEE Plenary Meeting Nov 08 Dallas, TX avb-phkl-802-11-qos-overview-0811-1 Disclaimer This presentation is not a highly detailed technical presentation but a crash course

More information

IEEE 802.11e WLANs / WMM. S.Rajesh (rajeshsweb@gmail.com) AU-KBC Research Centre, BroVis Wireless Networks, smartbridges Pte Ltd.

IEEE 802.11e WLANs / WMM. S.Rajesh (rajeshsweb@gmail.com) AU-KBC Research Centre, BroVis Wireless Networks, smartbridges Pte Ltd. IEEE 802.11e WLANs / WMM S.Rajesh (rajeshsweb@gmail.com) AU-KBC Research Centre, BroVis Wireless Networks, smartbridges Pte Ltd. Outline A short review of 802.11 MAC Drawbacks of 802.11 MAC Application

More information

An Overview of Wireless LAN Standards IEEE 802.11 and IEEE 802.11e

An Overview of Wireless LAN Standards IEEE 802.11 and IEEE 802.11e An Overview of Wireless LAN Standards IEEE 802.11 and IEEE 802.11e Jahanzeb Farooq, Bilal Rauf Department of Computing Science Umeå University Sweden Jahanzeb Farooq, 2006 (tipputhegreat@hotmail.com) Chapter

More information

Enhanced TXOP scheme for efficiency improvement of WLAN IEEE 802.11e

Enhanced TXOP scheme for efficiency improvement of WLAN IEEE 802.11e Enhanced TXOP scheme for efficiency improvement of WLAN IEEE 802.11e Jakub Majkowski, Ferran Casadevall Palacio Dept. of Signal Theory and Communications Universitat Politècnica de Catalunya (UPC) C/ Jordi

More information

802.11 standard. Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale

802.11 standard. Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale 802.11 standard Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale IEEE 802.11 Requirements Design for small coverage (e.g. office, home) Low/no mobility High data-rate applications Ability to

More information

... neither PCF nor CA used in practice

... neither PCF nor CA used in practice IEEE 802.11 MAC CSMA/CA with exponential backoff almost like CSMA/CD drop CD CSMA with explicit ACK frame added optional feature: CA (collision avoidance) Two modes for MAC operation: Distributed coordination

More information

Wiereless LAN 802.11

Wiereless LAN 802.11 Tomasz Kurzawa Wiereless LAN 802.11 Introduction The 802.11 Architecture Channels and Associations The 802.11 MAC Protocol The 802.11 Frame Introduction Wireless LANs are most important access networks

More information

CSMA/CA. Information Networks p. 1

CSMA/CA. Information Networks p. 1 Information Networks p. 1 CSMA/CA IEEE 802.11 standard for WLAN defines a distributed coordination function (DCF) for sharing access to the medium based on the CSMA/CA protocol Collision detection is not

More information

802.11 Wireless LAN Protocol CS 571 Fall 2006. 2006 Kenneth L. Calvert All rights reserved

802.11 Wireless LAN Protocol CS 571 Fall 2006. 2006 Kenneth L. Calvert All rights reserved 802.11 Wireless LAN Protocol CS 571 Fall 2006 2006 Kenneth L. Calvert All rights reserved Wireless Channel Considerations Stations may move Changing propagation delays, signal strengths, etc. "Non-transitive"

More information

Video Transmission over Wireless LAN. Hang Liu Hang.liu@thomson.net

Video Transmission over Wireless LAN. Hang Liu Hang.liu@thomson.net Video Transmission over Wireless LAN Hang Liu Hang.liu@thomson.net Page 1 Introduction! Introduction! Wi-Fi Multimedia and IEEE 802.11e for QoS Enhancement! Error Control Techniques Page 2 Introduction!

More information

QOS PROTECTION FOR IEEE 802.11E IN WLAN WITH SHARED EDCA AND DCF ACCESS

QOS PROTECTION FOR IEEE 802.11E IN WLAN WITH SHARED EDCA AND DCF ACCESS QOS PROTECTION FOR IEEE 802.11E IN WLAN WITH SHARED EDCA AND DCF ACCESS Jakub Majkowski, Ferran Casadevall Palacio Dept. of Signal Theory and Communications Universitat Politècnica de Catalunya (UPC) C/

More information

802.11. Markku Renfors. Partly based on student presentation by: Lukasz Kondrad Tomasz Augustynowicz Jaroslaw Lacki Jakub Jakubiak

802.11. Markku Renfors. Partly based on student presentation by: Lukasz Kondrad Tomasz Augustynowicz Jaroslaw Lacki Jakub Jakubiak 802.11 Markku Renfors Partly based on student presentation by: Lukasz Kondrad Tomasz Augustynowicz Jaroslaw Lacki Jakub Jakubiak Contents 802.11 Overview & Architecture 802.11 MAC 802.11 Overview and Architecture

More information

Chapter 7 Low-Speed Wireless Local Area Networks

Chapter 7 Low-Speed Wireless Local Area Networks Wireless# Guide to Wireless Communications 7-1 Chapter 7 Low-Speed Wireless Local Area Networks At a Glance Instructor s Manual Table of Contents Overview Objectives s Quick Quizzes Class Discussion Topics

More information

Department of Computer Science Columbia University

Department of Computer Science Columbia University Towards the Quality of Service for VoIP traffic in IEEE 82.11 Wireless Networks Sangho Shin Henning Schulzrinne Email: sangho, hgs@cs.columbia.edu Department of Computer Science Columbia University 28

More information

IEEE 802.11 Technical Tutorial. Introduction. IEEE 802.11 Architecture

IEEE 802.11 Technical Tutorial. Introduction. IEEE 802.11 Architecture IEEE 802.11 Technical Tutorial Introduction The purpose of this document is to give technical readers a basic overview of the new 802.11 Standard, enabling them to understand the basic concepts, principle

More information

TCP in Wireless Networks

TCP in Wireless Networks Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems

More information

A Software Architecture for Simulating IEEE 802.11e HCCA

A Software Architecture for Simulating IEEE 802.11e HCCA A Software Architecture for Simulating IEEE 802.11e HCCA Claudio Cicconetti, Luciano Lenzini, Enzo Mingozzi, Giovanni Stea Dipartimento di Ingegneria dell'informazione University of Pisa, Italy IPS-MoMe

More information

IEEE 802.11 Wireless LAN Standard. Updated: 5/10/2011

IEEE 802.11 Wireless LAN Standard. Updated: 5/10/2011 IEEE 802.11 Wireless LAN Standard Updated: 5/10/2011 IEEE 802.11 History and Enhancements o 802.11 is dedicated to WLAN o The group started in 1990 o First standard that received industry support was 802.11b

More information

How To Understand Wireless Network Quality Of Service (Qos) In 802.11E

How To Understand Wireless Network Quality Of Service (Qos) In 802.11E WLAN QoS : 802.11e Merle Frédéric Summary Introduction What is QoS? Why do we need QoS in wireless LAN nowadays? 802.11e MAC Protocol Enhanced Distributed Channel Access (EDCA) Presentation How does it

More information

IEEE 802 Protocol Layers. IEEE 802.11 Wireless LAN Standard. Protocol Architecture. Protocol Architecture. Separation of LLC and MAC.

IEEE 802 Protocol Layers. IEEE 802.11 Wireless LAN Standard. Protocol Architecture. Protocol Architecture. Separation of LLC and MAC. IEEE 802.11 Wireless LAN Standard IEEE 802 Protocol Layers Chapter 14 Protocol Architecture Functions of physical layer: Encoding/decoding of signals Preamble generation/removal (for synchronization) Bit

More information

802.11 Arbitration. White Paper. September 2009 Version 1.00. Author: Marcus Burton, CWNE #78 CWNP, Inc. marcus.burton@cwnp.com

802.11 Arbitration. White Paper. September 2009 Version 1.00. Author: Marcus Burton, CWNE #78 CWNP, Inc. marcus.burton@cwnp.com 802.11 Arbitration White Paper September 2009 Version 1.00 Author: Marcus Burton, CWNE #78 CWNP, Inc. marcus.burton@cwnp.com Technical Reviewer: GT Hill, CWNE #21 gt@gthill.com Copyright 2009 CWNP, Inc.

More information

Express Forwarding : A Distributed QoS MAC Protocol for Wireless Mesh

Express Forwarding : A Distributed QoS MAC Protocol for Wireless Mesh Express Forwarding : A Distributed QoS MAC Protocol for Wireless Mesh, Ph.D. benveniste@ieee.org Mesh 2008, Cap Esterel, France 1 Abstract Abundant hidden node collisions and correlated channel access

More information

ECE 358: Computer Networks. Homework #3. Chapter 5 and 6 Review Questions 1

ECE 358: Computer Networks. Homework #3. Chapter 5 and 6 Review Questions 1 ECE 358: Computer Networks Homework #3 Chapter 5 and 6 Review Questions 1 Chapter 5: The Link Layer P26. Let's consider the operation of a learning switch in the context of a network in which 6 nodes labeled

More information

Optimization of VoIP over 802.11e EDCA based on synchronized time

Optimization of VoIP over 802.11e EDCA based on synchronized time Optimization of VoIP over 802.11e EDCA based on synchronized time Padraig O Flaithearta, Dr. Hugh Melvin Discipline of Information Technology, College of Engineering and Informatics, National University

More information

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit

More information

IEEE 802.11 frame format

IEEE 802.11 frame format IEEE 802.11 frame format Pietro Nicoletti www.studioreti.it 802-11-Frame - 1 P. Nicoletti: see note pag. 2 Copyright note These slides are protected by copyright and international treaties. The title and

More information

A Technical Tutorial on the IEEE 802.11 Protocol

A Technical Tutorial on the IEEE 802.11 Protocol A Technical Tutorial on the IEEE 802.11 Protocol By Pablo Brenner Director of Engineering copyright BreezeCOM 1997 Introduction The purpose of this document is to give technical readers a basic overview

More information

Supporting VoIP in IEEE802.11 Distributed WLANs

Supporting VoIP in IEEE802.11 Distributed WLANs Supporting VoIP in IEEE802.11 Distributed WLANs Zuo Liu Supervisor: Dr. Nick Filer July 2012 1 Voice VoIP Applications Constant Streaming Traffic Packetize interval usually 10-30 ms 8 160 bytes each packet

More information

Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks

Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks 1 Mr. Praveen S Patil, 2 Mr. Rabinarayan Panda, 3 Mr. Sunil Kumar R D 1,2,3 Asst. Professor, Department of MCA, The Oxford College of Engineering,

More information

WiFi. Is for Wireless Fidelity Or IEEE 802.11 Standard By Greg Goldman. WiFi 1

WiFi. Is for Wireless Fidelity Or IEEE 802.11 Standard By Greg Goldman. WiFi 1 WiFi Is for Wireless Fidelity Or IEEE 802.11 Standard By Greg Goldman WiFi 1 What is the goal of 802.11 standard? To develop a Medium Access Control (MAC) and Physical Layer (PHY) specification for wireless

More information

Next Generation 802.11 Wireless Local Area Networks

Next Generation 802.11 Wireless Local Area Networks Next Generation 802.11 Wireless Local Area Networks This is a 2 day course technical course intended to give student a solid understanding of the emerging IEEE 802.11 standards, how it works including

More information

Mobility and QoS of 802.11 and 802.11e Wireless LAN Standards

Mobility and QoS of 802.11 and 802.11e Wireless LAN Standards The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009 403 Mobility and QoS of 802.11 and 802.11e Wireless LAN Standards Fedoua Didi 1, Houda Labiod 2, Guy Pujolle 3, and

More information

WLAN 802.11ac Technology White Paper HUAWEI TECHNOLOGIES CO., LTD. Issue V1.0. Date 2014-04-23

WLAN 802.11ac Technology White Paper HUAWEI TECHNOLOGIES CO., LTD. Issue V1.0. Date 2014-04-23 WLAN 802.11ac Technology White Paper Issue V1.0 Date 2014-04-23 HUAWEI TECHNOLOGIES CO., LTD. 2014. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any

More information

IEEE 802.11 WLAN (802.11) ...Copyright. Renato Lo Cigno www.disi.unitn.it/locigno/didattica/nc/

IEEE 802.11 WLAN (802.11) ...Copyright. Renato Lo Cigno www.disi.unitn.it/locigno/didattica/nc/ WLAN (802.11) Renato Lo Cigno www.disi.unitn.it/locigno/didattica/nc/...copyright Quest opera è protetta dalla licenza Creative Commons NoDerivs-NonCommercial. Per vedere una copia di questa licenza, consultare:

More information

Whitepaper. 802.11n The Next Generation in Wireless Technology

Whitepaper. 802.11n The Next Generation in Wireless Technology Whitepaper 802.11n The Next Generation in Wireless Technology Introduction Wireless technology continues to evolve and add value with its inherent characteristics. First came 802.11, then a & b, followed

More information

How To Configure the WLAN with QoS

How To Configure the WLAN with QoS How To Configure the WLAN with QoS Introduction This How to Note explains how to configure Quality of Service (QoS) in a wireless Local Area Network to prioritize traffic under busy conditions. There is

More information

Wireless LAN Services for Hot-Spot

Wireless LAN Services for Hot-Spot Wireless LAN Services for Hot-Spot Woo-Yong Choi Electronics and Telecommunications Research Institute wychoi53@etri.re.kr ETRI Contents Overview Wireless LAN Services Current IEEE 802.11 MAC Protocol

More information

Wireless LAN advantages. Wireless LAN. Wireless LAN disadvantages. Wireless LAN disadvantages WLAN:

Wireless LAN advantages. Wireless LAN. Wireless LAN disadvantages. Wireless LAN disadvantages WLAN: WLAN: Wireless LAN Make use of a wireless transmission medium Tipically restricted in their diameter: buildings, campus, single room etc.. The global goal is to replace office cabling and to introduce

More information

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - III

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - III Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - III CS: 647 Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins

More information

LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs

LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs LAN Switching 15-441 Computer Networking Bridges/Switches, 802.11, PPP Extend reach of a single shared medium Connect two or more segments by copying data frames between them Switches only copy data when

More information

PLUS-DAC: A Distributed Admission Control Scheme for IEEE 802.11e WLANs

PLUS-DAC: A Distributed Admission Control Scheme for IEEE 802.11e WLANs -DAC: A Distributed Admission Control Scheme for IEEE 8.e WLANs Kiran Kumar Gavini, Varsha Apte and Sridhar Iyer Kanwal Rekhi School of Information Technology Indian Institute of Technology Bombay, Powai,

More information

II. IEEE802.11e EDCA OVERVIEW

II. IEEE802.11e EDCA OVERVIEW The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'7) CACITY IMPROVEMENT OF WIRELESS LAN VOIP USING DISTRIBUTED TRANSMISSION SCHEDULING Kei Igarashi,

More information

TCOM 370 NOTES 99-12 LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL

TCOM 370 NOTES 99-12 LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL 1. Local Area Networks TCOM 370 NOTES 99-12 LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL These are networks spanning relatively short distances (e.g. within one building) for local point-to-point and point-to-multipoint

More information

Virtual PCF: Improving VoIP over WLAN performance with legacy clients

Virtual PCF: Improving VoIP over WLAN performance with legacy clients Virtual PCF: Improving VoIP over WLAN performance with legacy clients by Usman Ismail A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master

More information

VoIP in 802.11. Mika Nupponen. S-72.333 Postgraduate Course in Radio Communications 06/04/2004 1

VoIP in 802.11. Mika Nupponen. S-72.333 Postgraduate Course in Radio Communications 06/04/2004 1 VoIP in 802.11 Mika Nupponen S-72.333 Postgraduate Course in Radio Communications 06/04/2004 1 Contents Introduction VoIP & WLAN Admission Control for VoIP Traffic in WLAN Voice services in IEEE 802.11

More information

Wi-Fi Capacity Analysis for 802.11ac and 802.11n: Theory & Practice

Wi-Fi Capacity Analysis for 802.11ac and 802.11n: Theory & Practice Wi-Fi Capacity Analysis for 802.11ac and 802.11n: Theory & Practice By Timo Vanhatupa, Ph.D. Senior Research Scientist at Ekahau Contents Introduction Why capacity matters with Wi-Fi... 3 Part 1: Modeling

More information

Fast Retransmission Mechanism for VoIP in IEEE 802.11e wireless LANs

Fast Retransmission Mechanism for VoIP in IEEE 802.11e wireless LANs Fast Mechanism for VoIP in IEEE 802.11e wireless LANs Gyung-Ho Hwang and Dong-Ho Cho Division of Electrical Engineering, Department of Electrical Engineering and Computer Science, KAIST, 373-1 Guseong-dong

More information

IEEE802.11 Wireless LAN

IEEE802.11 Wireless LAN IEEE802.11 The broadband wireless Internet Maximilian Riegel wlan-tutorial.ppt-1 (28.11.2000) WLAN Dream Finally Seems to Happen... Recently lots of serious WLAN activities have been announced Big players

More information

Main Ways to Enhance Throughput

Main Ways to Enhance Throughput 802.11n Sanna Puha Contents 1. Introduction 2. Ways to Enhance Throughput 3. MIMO operation 4. Structure of Operating Channel 5. MIMO Transmission Modes 6. Modulation Rates 7. Physical Transmission, PLCP:

More information

Advanced Wireless LAN VoIP Technology

Advanced Wireless LAN VoIP Technology Wireless LAN VoIP QoS Advanced Wireless LAN VoIP Technology A technical overview is given of an optimal access point selection method and an autonomous distributed scheduling MAC method that take QoS into

More information

IEEE802.11ac: The Next Evolution of Wi-Fi TM Standards

IEEE802.11ac: The Next Evolution of Wi-Fi TM Standards QUALCOMM, Incorporated May 2012 QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other Countries. Other product and brand names may be trademarks

More information

Aspects of Coexistence Between WiFi and HSDPA

Aspects of Coexistence Between WiFi and HSDPA (Cross-layer design and network planning for B3G systems) Aspects of Coexistence Between WiFi and HSDPA Orlando Cabral Valdemar Monteiro 2005, it - instituto de telecomunicações. Todos os direitos reservados.

More information

Basic processes in IEEE802.11 networks

Basic processes in IEEE802.11 networks Module contents IEEE 802.11 Terminology IEEE 802.11 MAC Frames Basic processes in IEEE802.11 networks Configuration parameters.11 Architect. 1 IEEE 802.11 Terminology Station (STA) Architecture: Device

More information

Wi-Fi CERTIFIED for WMM - Support for Multimedia Applications with Quality of Service in Wi-Fi Networks Wi-Fi Alliance September 1, 2004

Wi-Fi CERTIFIED for WMM - Support for Multimedia Applications with Quality of Service in Wi-Fi Networks Wi-Fi Alliance September 1, 2004 Wi-Fi CERTIFIED for WMM - Support for Multimedia Applications with Quality of Service in Wi-Fi Networks Wi-Fi Alliance September 1, 2004 2004 Wi-Fi Alliance. All rights reserved. Wi-Fi is a registered

More information

Design of QoS and Admission Control for VoIP Services over IEEE 802.11e WLANs

Design of QoS and Admission Control for VoIP Services over IEEE 802.11e WLANs Design of QoS and Admission Control for VoIP Services over IEEE 802.11e WLANs Pei-Yeh Wu, Jen-Jee Chen, Yu-Chee Tseng, and Hung-Wei, Lee Abstract Supporting telephone services using wireless LAN as the

More information

Design of QoS and Admission Control for VoIP Services Over IEEE 802.11e WLANs *

Design of QoS and Admission Control for VoIP Services Over IEEE 802.11e WLANs * JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 1003-1022 (2008) Design of QoS and Admission Control for VoIP Services Over IEEE 802.11e WLANs * PEI-YEH WU 1, JEN-JEE CHEN 1, YU-CHEE TSENG 1,2 AND HUNG-WEI

More information

Modeling and Simulation of Quality of Service in VoIP Wireless LAN

Modeling and Simulation of Quality of Service in VoIP Wireless LAN Journal of Computing and Information Technology - CIT 16, 2008, 2, 131 142 doi:10.2498/cit.1001022 131 Modeling and Simulation of Quality of Service in VoIP Wireless LAN A. Al-Naamany, H. Bourdoucen and

More information

Mustafa Ergen June 2002 ergen@eecs.berkeley.edu. Department of Electrical Engineering and Computer Science University of California Berkeley

Mustafa Ergen June 2002 ergen@eecs.berkeley.edu. Department of Electrical Engineering and Computer Science University of California Berkeley Mustafa Ergen June 2002 ergen@eecs.berkeley.edu Department of Electrical Engineering and Computer Science University of California Berkeley 2 Abstract This document describes IEEE 802.11 Wireless Local

More information

Wi-Fi CERTIFIED n: Longer-Range, Faster-Throughput, Multimedia-Grade Wi-Fi Networks

Wi-Fi CERTIFIED n: Longer-Range, Faster-Throughput, Multimedia-Grade Wi-Fi Networks Wi-Fi CERTIFIED n: Longer-Range, Faster-Throughput, Multimedia-Grade Wi-Fi Networks September 2009 The following document and the information contained herein regarding Wi-Fi Alliance programs and expected

More information

Internet Access and QoS in Ad Hoc Networks

Internet Access and QoS in Ad Hoc Networks Internet Access and QoS in Ad Hoc Networks Ali Hamidian Department of Communication Systems Faculty of Engineering ISSN 1101-3931 ISRN LUTEDX/TETS 1077 SE+118P c Ali Hamidian Printed in Sweden E-kop Lund

More information

Networks. Master of Science (Computer Science and Engineering), December 2004, 45 pp.,

Networks. Master of Science (Computer Science and Engineering), December 2004, 45 pp., Park, Sangtae, Optimal Access Point Selection and Channel Assignment in IEEE 802.11 Networks. Master of Science (Computer Science and Engineering), December 2004, 45 pp., 9 tables, 17 figures, 29 titles.

More information

Bluetooth voice and data performance in 802.11 DS WLAN environment

Bluetooth voice and data performance in 802.11 DS WLAN environment 1 (1) Bluetooth voice and data performance in 802.11 DS WLAN environment Abstract In this document, the impact of a 20dBm 802.11 Direct-Sequence WLAN system on a 0dBm Bluetooth link is studied. A typical

More information

IEEE 802.11 Wireless Local Area Networks

IEEE 802.11 Wireless Local Area Networks ABSTRACT The draft IEEE 82. Wireless Local Area Network (WLAN) specification is approaching completion. In this article, the IEEE 82. protocol is explained, with particular emphasis on the medium access

More information

Enhancing WLAN MAC Protocol performance using Differentiated VOIP and Data Services Strategy

Enhancing WLAN MAC Protocol performance using Differentiated VOIP and Data Services Strategy IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009 89 Enhancing WLAN MAC Protocol performance using Differentiated VOIP and Data Services Strategy S.Vijay

More information

IEEE 802.11E ENHANCEMENT FOR VOICE SERVICE

IEEE 802.11E ENHANCEMENT FOR VOICE SERVICE V OICE OVER WIRELESS LOCAL AREA N ETWORK IEEE 802.11E ENHANCEMENT FOR VOICE SERVICE PING WANG, HAI JIANG, AND WEIHUA ZHUANG, UNIVERSITY OF WATERLOO Wired network IP phone Gateway router Access point Motivated

More information

Voice over WLAN (VoWLAN) A wireless voice alternative?

Voice over WLAN (VoWLAN) A wireless voice alternative? Voice over WLAN (VoWLAN) A wireless voice alternative? Trond Ulseth Paal Engelstad Abstract Voice over WLAN (VoWLAN) is a natural evolution of VoIP. It is also a potential supplement or a potential competitor

More information

EPL 657 Wireless Networks

EPL 657 Wireless Networks EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing

More information

Capacity Evaluation of VoIP in IEEE 802.11e WLAN Environment

Capacity Evaluation of VoIP in IEEE 802.11e WLAN Environment Capacity Evaluation of VoIP in IEEE 802.11e WLAN Environment Abdelbasset Trad, Farukh Munir INIA, Planete Project 4 oute des Lucioles, BP-93 06902 Sophia-Antipolis, France Email: {atrad, mfmunir}@sophia.inria.fr

More information

11/22/2013 1. komwut@siit

11/22/2013 1. komwut@siit 11/22/2013 1 Week3-4 Point-to-Point, LAN, WAN Review 11/22/2013 2 What will you learn? Representatives for Point-to-Point Network LAN Wired Ethernet Wireless Ethernet WAN ATM (Asynchronous Transfer Mode)

More information

QoS-aware MPDU Aggregation of IEEE 802.11n WLANs for VoIP Services

QoS-aware MPDU Aggregation of IEEE 802.11n WLANs for VoIP Services QoS-aware MPDU Aggregation of IEEE 802.11n WLANs for VoIP Services Shinnazar Seytnazarov and Young-Tak Kim Department of Information and Communication Engineering, Graduate School, Yeungnam University

More information

QoS Control and Resource Management in Heterogeneous Wireless Systems

QoS Control and Resource Management in Heterogeneous Wireless Systems QoS Control and Resource Management in Heterogeneous Wireless Systems Fethi Filali Assistant Professor Institut Eurécom http://www.eurecom.fr/~filali Novembre Project - QoS Seminar Telecom Paris, June

More information

Computer Networks xxx (2011) xxx xxx. Contents lists available at ScienceDirect. Computer Networks. journal homepage: www.elsevier.

Computer Networks xxx (2011) xxx xxx. Contents lists available at ScienceDirect. Computer Networks. journal homepage: www.elsevier. Computer Networks xxx (211) xxx xxx Contents lists available at ScienceDirect Computer Networks journal homepage: wwwelseviercom/locate/comnet Integrating SIP and IEEE 211e to support handoff and multi-grade

More information

Introduction to Ad hoc Networks

Introduction to Ad hoc Networks Introduction to Ad hoc Networks CS-647: Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins University Amitabh Mishra & Baruch Awerbuch

More information

Performance Comparison of Dual Queue and EDCA for VoIP over IEEE 802.11 WLAN

Performance Comparison of Dual Queue and EDCA for VoIP over IEEE 802.11 WLAN Performance Comparison of Dual Queue and for VoIP over IEEE 8. WLAN Jeonggyun Yu and Sunghyun Choi Multimedia & Wireless Networking Laboratory (MWNL), School of Electrical Engineering, Seoul National University,

More information

How To Analyze The Security On An Ipa Wireless Sensor Network

How To Analyze The Security On An Ipa Wireless Sensor Network Throughput Analysis of WEP Security in Ad Hoc Sensor Networks Mohammad Saleh and Iyad Al Khatib iitc Stockholm, Sweden {mohsaleh, iyad}@iitc.se ABSTRACT This paper presents a performance investigation

More information

Lecture 6.1 Introduction. Giuseppe Bianchi, Ilenia Tinnirello

Lecture 6.1 Introduction. Giuseppe Bianchi, Ilenia Tinnirello PART 6 IEEE 802.11 Wireless LANs Lecture 6.1 Introduction WLAN History Ł Original goal: Deploy wireless Ethernet First generation proprietary solutions (end 80, begin 90) WaveLAN (AT&T)) HomeRF (Proxim)

More information

GTER 26 tudo o que você. quer saber sobre 802.11n

GTER 26 tudo o que você. quer saber sobre 802.11n GTER 26 tudo o que você (não) quer saber sobre 802.11n Luiz Eduardo Dos Santos CISSP CWNE CEH GISP GCIH Sr. Systems & Security Engineer Americas hello agenda evolution of wi-fi what makes 11n what actually

More information

Measuring the service level in the 2.4 GHz ISM band

Measuring the service level in the 2.4 GHz ISM band Measuring the service level in the 2.4 GHz ISM band Internal report Jan-Willem van Bloem and Roel Schiphorst University of Twente Department of Electrical Engineering, Mathematics & Computer Science (EEMCS)

More information

CWNA Instructor Led Course Outline

CWNA Instructor Led Course Outline CWNA Instructor Led Course Outline Enterprise Wi-Fi Administration, Outline v7.0 Introduction The Enterprise Wireless LAN Administration 7.1 course (which prepares students for the CWNA-106 exam), whether

More information

How To Make A Multi-User Communication Efficient

How To Make A Multi-User Communication Efficient Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8 Multiple Access Scheme Allow many users to share simultaneously a finite amount of radio spectrum Need to be done without severe degradation of the

More information

A Short Look on Power Saving Mechanisms in the Wireless LAN Standard Draft IEEE 802.11

A Short Look on Power Saving Mechanisms in the Wireless LAN Standard Draft IEEE 802.11 A Short Look on Power Saving Mechanisms in the Wireless LAN Standard Draft IEEE 802.11 Christian Röhl, Hagen Woesner, Adam Wolisz * Technical University Berlin Telecommunication Networks Group {roehl,

More information

Introduction VOIP in an 802.11 Network VOIP 3

Introduction VOIP in an 802.11 Network VOIP 3 Solutions to Performance Problems in VOIP over 802.11 Wireless LAN Wei Wang, Soung C. Liew Presented By Syed Zaidi 1 Outline Introduction VOIP background Problems faced in 802.11 Low VOIP capacity in 802.11

More information

EETS 8316 Wireless Networks Fall 2013

EETS 8316 Wireless Networks Fall 2013 EETS 8316 Wireless Networks Fall 2013 Lecture: WiFi Discovery, Powersave, and Beaconing http://lyle.smu.edu/~skangude/eets8316.html Shantanu Kangude skangude@lyle.smu.edu Discovery and Beaconing Discovery?

More information

A TCP-like Adaptive Contention Window Scheme for WLAN

A TCP-like Adaptive Contention Window Scheme for WLAN A TCP-like Adaptive Contention Window Scheme for WLAN Qixiang Pang, Soung Chang Liew, Jack Y. B. Lee, Department of Information Engineering The Chinese University of Hong Kong Hong Kong S.-H. Gary Chan

More information

Overview of 802.11 Networks and Standards

Overview of 802.11 Networks and Standards Overview of 802.11 Networks and Standards Mauri Kangas, Helsinki University of Technology, 17.02.2004 Mauri Kangas 17.2.2004 Page 1 (34) Family of 802.xx Standards ISO/IEC 8802-xx = IEEE 802.xx IEEE 802.1

More information

Collision of wireless signals. The MAC layer in wireless networks. Wireless MAC protocols classification. Evolutionary perspective of distributed MAC

Collision of wireless signals. The MAC layer in wireless networks. Wireless MAC protocols classification. Evolutionary perspective of distributed MAC The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a /space problem Who transmits when?

More information

Configuring QoS in a Wireless Environment

Configuring QoS in a Wireless Environment Configuring QoS in a Wireless Environment This chapter describes how to configure quality of service (QoS) on your Cisco wireless interface. With this feature, you can provide preferential treatment to

More information

Lecture 17: 802.11 Wireless Networking"

Lecture 17: 802.11 Wireless Networking Lecture 17: 802.11 Wireless Networking" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Lili Qiu, Nitin Vaidya Lecture 17 Overview" Project discussion Intro to 802.11 WiFi Jigsaw discussion

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA

More information

Voice Call Quality Using 802.11e On A Wireless Mesh Network

Voice Call Quality Using 802.11e On A Wireless Mesh Network Voice Call Quality Using 802.11e On A Wireless Mesh Network by David Alexander van Geyn A thesis submitted to the School of Computing in conformity with the requirements for the degree of Master of Science

More information

VoIP Session Capacity Expansion with Packet Transmission Suppression Control in Wireless LAN

VoIP Session Capacity Expansion with Packet Transmission Suppression Control in Wireless LAN 1144 PAPER Special Section on Internet Technology and its Architecture for Ambient Information Systems VoIP Session Capacity Expansion with Packet Transmission Suppression Control in Wireless LAN Yasufumi

More information

What is 802.11? Why are standards important?

What is 802.11? Why are standards important? What is 802.11? The 802.11 standards are a group of evolving specifications defined by the Institute of Electrical and Electronic Engineers (IEEE). Commonly referred to as Wi Fi the 802.11 standards define

More information

Asia-Pacific Advanced Network

Asia-Pacific Advanced Network Frame aggregations in the wireless LANs: A review paper Presented by: Anwar Saif Asia-Pacific Advanced Network Wireless communication 2009 Abstract The overhead induced by the IEEE 802.11 PHY and MAC layer

More information

Can I add a VoIP call?

Can I add a VoIP call? Can I add a VoIP call? Sachin Garg Avaya Labs Basking Ridge, NJ 07920 Email: sgarg@avaya.com Martin Kappes Avaya Labs Basking Ridge, NJ 07920 Email: mkappes@avaya.com Abstract In this paper, we study the

More information

ECE 428 Computer Networks and Security

ECE 428 Computer Networks and Security ECE 428 Computer Networks and Security 1 Instructor: Sagar Naik About the Instructor Office: EIT 4174, ECE Dept. Other courses that I teach ECE 355: Software Engineering ECE 453/CS 447/ SE 465: Software

More information

COMP 3331/9331: Computer Networks and Applications

COMP 3331/9331: Computer Networks and Applications COMP 3331/9331: Computer Networks and Applications Week 10 Wireless Networks Reading Guide: Chapter 6: 6.1 6.3 Wireless Networks + Security 1 Wireless and Mobile Networks Background: # wireless (mobile)

More information

Performance Analysis of the IEEE 802.11 Wireless LAN Standard 1

Performance Analysis of the IEEE 802.11 Wireless LAN Standard 1 Performance Analysis of the IEEE. Wireless LAN Standard C. Sweet Performance Analysis of the IEEE. Wireless LAN Standard Craig Sweet and Deepinder Sidhu Maryland Center for Telecommunications Research

More information

Supporting Internet Access and Quality of Service in Distributed Wireless Ad Hoc Networks

Supporting Internet Access and Quality of Service in Distributed Wireless Ad Hoc Networks Supporting Internet Access and Quality of Service in Distributed Wireless Ad Hoc Networks Doctoral dissertation Ali Hamidian Department of Electrical and Information Technology Faculty of Engineering Department

More information

LTE, WLAN, BLUETOOTHB

LTE, WLAN, BLUETOOTHB LTE, WLAN, BLUETOOTHB AND Aditya K. Jagannatham FUTURE Indian Institute of Technology Kanpur Commonwealth of Learning Vancouver 4G LTE LTE (Long Term Evolution) is the 4G wireless cellular standard developed

More information

MAC Algorithms in Wireless Networks

MAC Algorithms in Wireless Networks Department of Computing Science Master Thesis MAC Algorithms in Wireless Networks Applications, Issues and Comparisons Shoaib Tariq Supervisor: Dr. Jerry Eriksson Examiner: Dr. Per Lindström Dedicated

More information