Reasoning Under Uncertainty: Variable Elimination Example

Size: px
Start display at page:

Download "Reasoning Under Uncertainty: Variable Elimination Example"

Transcription

1 Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29 March 26, 2007 Textbook 9.5 Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 1

2 Lecture Overview 1 Recap 2 More Variable Elimination 3 Variable Elimination Example Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 2

3 Summing out variables Our second operation: we can sum out a variable, say X 1 with domain {v 1,..., v k }, from factor f(x 1,..., X j ), resulting in a factor on X 2,..., X j defined by: ( X 1 f)(x 2,..., X j ) = f(x 1 = v 1,..., X j ) + + f(x 1 = v k,..., X j ) Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 3

4 Multiplying factors Our third operation: factors can be multiplied together. The product of factor f 1 (X, Y ) and f 2 (Y, Z), where Y are the variables in common, is the factor (f 1 f 2 )(X, Y, Z) defined by: (f 1 f 2 )(X, Y, Z) = f 1 (X, Y )f 2 (Y, Z). Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 4

5 Probability of a conjunction Suppose the variables of the belief network are X 1,..., X n. {X 1,..., X n } = {Q} {Y 1,..., Y j } {Z 1,..., k } Q is the query variable {Y 1,..., Y j } is the set of observed variables {Z 1,..., k } is the rest of the variables, that are neither queried nor observed What we want to compute: P (Q, Y 1 = v 1,..., Y j = v j ) We can compute P (Q, Y 1 = v 1,..., Y j = v j ) by summing out each variable Z 1,..., Z k We sum out these variables one at a time the order in which we do this is called our elimination ordering. P (Q, Y 1 = v 1,..., Y j = v j ) = Z k Z 1 P (X 1,..., X n ) Y1 = v 1,...,Y j = v j. Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 5

6 Probability of a conjunction What we know: the factors P (X i px i ). Using the chain rule and the definition of a belief network, we can write P (X 1,..., X n ) as n i=1 P (X i px i ). Thus: P (Q, Y 1 = v 1,..., Y j = v j ) = Z k P (X 1,..., X n ) Y1 = v 1,...,Y j = v j. Z 1 = n P (X i px i ) Y1 = v 1,...,Y j = v j. Z k Z 1 i=1 Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 6

7 Computing sums of products Computation in belief networks thus reduces to computing the sums of products. It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently? factor out the a and then the h giving a(b + c + d + h(e + f + g)) this takes only 7 multiplications or additions ( How can we compute n Z 1 i=1 P (X i px i ) efficiently? Factor out those terms that don t involve Z 1 : )( ) P (X i px i ) P (X i px i ) i Z 1 {X i} px i (terms that do not involve Z i ) Z 1 i Z 1 {X i} px i (terms that involve Z i ) Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 7

8 Lecture Overview 1 Recap 2 More Variable Elimination 3 Variable Elimination Example Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 8

9 Summing out a variable efficiently To sum out a variable Z j from a product f 1,..., f k of factors: Partition the factors into those that don t contain Z j, say f 1,..., f i, those that contain Z j, say f i+1,..., f k We know: f 1 f k = (f 1 f i ) f i+1 f k. Z j Zj ( ) f Zj i+1 f k is a new factor; let s call it f. Now we have: Z j f 1 f k = f 1 f i f. Store f explicitly, and discard f i+1,..., f k. Now we ve summed out Z j. Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 9

10 Variable elimination algorithm To compute P (Q Y 1 = v 1... Y j = v j ): Construct a factor for each conditional probability. Set the observed variables to their observed values. For each of the other variables Z i {Z 1,..., Z k }, sum out Z i Multiply the remaining factors. Normalize by dividing the resulting factor f(q) by Q f(q). Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 10

11 Lecture Overview 1 Recap 2 More Variable Elimination 3 Variable Elimination Example Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 11

12 Variable elimination example A Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P P (G, H) = A,B,C,D,E,F,I P (A, B, C, D, E, F, G, H, I) P P (G, H) = A,B,C,D,E,F,I P (A) P (B A) P (C) P (D B, C) P (E C) P (F D) P (G F, E) P (H G) P (I G) B D F C E G H I Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12

13 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P P (G, H) = A,B,C,D,E,F,I P (A) P (B A) P (C) P (D B, C) P (E C) P (F D) P (G F, E) P (H G) P (I G) P Eliminate A: P (G, H) = B,C,D,E,F,I f1(b) P (C) P (D B, C) P (E C) P (F D) P (G F, E) P (H G) P (I G) A P f 1(B) := a dom(a) P (A = a) P (B A = a) B D F C E G H I Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12

14 Variable elimination example Compute P (G H P = h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H) = B,C,D,E,F,I f1(b) P (C) P (D B, C) P (E C) P (F D) P (G F, E) P (H G) P (I G) Eliminate C: P (G, H) = P B,D,E,F,I f1(b) f2(b, D, E) P (F D) P (G F, E) P (H G) P (I G) A B D F C E P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P (C = c) P (D B, C = c) P (E C = c) G H I Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12

15 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P(G, H) = f1(b) f2(b, D, E) P (F D) P (G F, E) P (H G) P (I G) B,D,E,F,I Eliminate E: P P (G, H) = B,D,F,I f1(b) f3(b, D, F, G) P (F D) P (H G) P (I G) A B D F C E P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) G H I Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12

16 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P P (G, H) = B,D,F,I f1(b) f3(b, D, F, G) P (F D) P (H G) P (I G) Observe H = h 1: P P (G, H = h 1) = B,D,F,I f1(b) f3(b, D, F, G) P (F D) f4(g) P (I G) A B D F C E P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) G H I Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12

17 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P P (G, H = h 1) = B,D,F,I f1(b) f3(b, D, F, G) P (F D) f4(g) P (I G) Eliminate I: P P (G, H = h 1) = B,D,F f1(b) f3(b, D, F, G) P (F D) f4(g) f5(g) A B D F C E P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) P f 5(G) := i dom(i) P (I = i G) G H I Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12

18 Variable elimination example Compute P (G H = P h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H = h 1) = B,D,F f1(b) f3(b, D, F, G) P (F D) f4(g) f5(g) Eliminate B: P P (G, H = h 1) = D,F f6(d, F, G) P (F D) f4(g) f5(g) A B D F C E P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) P f 5(G) := i dom(i) P P (I = i G) f 6(D, F, G) := b dom(b) f1(b = b) f3(b = b, D, F, G) G H I Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12

19 Variable elimination example Compute P (G H = P h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H = h 1) = D,F f6(d, F, P G) P (F D) f4(g) f5(g) Eliminate D: P (G, H = h 1) = F f7(f, G) f4(g) f5(g) A B D F H G C E I P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) P f 5(G) := i dom(i) P P (I = i G) f 6(D, F, G) := P b dom(b) f1(b = b) f3(b = b, D, F, G) f 7(F, G) := d dom(d) f6(d = d, F, G) P (F D = d) Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12

20 Variable elimination example Compute P (G H = P h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H = h 1) = F f7(f, G) f4(g) f5(g) Eliminate F : P (G, H = h 1) = f 8(G) f 4(G) f 5(G) A B D F H G C E I P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) P f 5(G) := i dom(i) P P (I = i G) f 6(D, F, G) := P b dom(b) f1(b = b) f3(b = b, D, F, G) f 7(F, G) := d dom(d) f6(d = d, F, G) P (F D = d) P f 8(G) := f dom(f ) f7(f = f, G) Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12

21 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H = h 1) = f 8(G) f 4(G) f 5(G) Normalize: P (G H = h 1) = P (G,H = h 1 ) Pg dom(g) P (G,H = h 1) A B D F H G C E I P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) P f 5(G) := i dom(i) P P (I = i G) f 6(D, F, G) := P b dom(b) f1(b = b) f3(b = b, D, F, G) f 7(F, G) := d dom(d) f6(d = d, F, G) P (F D = d) P f 8(G) := f dom(f ) f7(f = f, G) Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12

22 What good was Conditional Independence? That s great... but it looks incredibly painful for large graphs. And... why did we bother learning conditional independence? Does it help us at all? Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 13

23 What good was Conditional Independence? That s great... but it looks incredibly painful for large graphs. And... why did we bother learning conditional independence? Does it help us at all? yes we use the chain rule decomposition right at the beginning Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 13

24 What good was Conditional Independence? That s great... but it looks incredibly painful for large graphs. And... why did we bother learning conditional independence? Does it help us at all? yes we use the chain rule decomposition right at the beginning Can we use our knowledge of conditional independence to make this calculation even simpler? Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 13

25 What good was Conditional Independence? That s great... but it looks incredibly painful for large graphs. And... why did we bother learning conditional independence? Does it help us at all? yes we use the chain rule decomposition right at the beginning Can we use our knowledge of conditional independence to make this calculation even simpler? yes there are some variables that we don t have to sum out intuitively, they re the ones that are pre-summed-out in our tables example: summing out I on the previous slide Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 13

26 One Last Trick One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point. Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 14

27 One Last Trick One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point. alarm fire smoke Can we justify that on a threenode graph Fire, Alarm, and Smoke when we ask for: P (F ire)? Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 14

28 One Last Trick One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point. alarm fire smoke Can we justify that on a threenode graph Fire, Alarm, and Smoke when we ask for: P (F ire)? P (F ire Alarm)? Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 14

Marginal Independence and Conditional Independence

Marginal Independence and Conditional Independence Marginal Independence and Conditional Independence Computer Science cpsc322, Lecture 26 (Textbook Chpt 6.1-2) March, 19, 2010 Recap with Example Marginalization Conditional Probability Chain Rule Lecture

More information

Section 8.4 - Composite and Inverse Functions

Section 8.4 - Composite and Inverse Functions Math 127 - Section 8.4 - Page 1 Section 8.4 - Composite and Inverse Functions I. Composition of Functions A. If f and g are functions, then the composite function of f and g (written f g) is: (f g)( =

More information

Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Lecture 10: Distinct Degree Factoring

Lecture 10: Distinct Degree Factoring CS681 Computational Number Theory Lecture 10: Distinct Degree Factoring Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi Overview Last class we left of with a glimpse into distant degree factorization.

More information

2.1 Increasing, Decreasing, and Piecewise Functions; Applications

2.1 Increasing, Decreasing, and Piecewise Functions; Applications 2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.

More information

1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some

1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some Section 3.1: First Derivative Test Definition. Let f be a function with domain D. 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some open interval containing c. The number

More information

Galois Fields and Hardware Design

Galois Fields and Hardware Design Galois Fields and Hardware Design Construction of Galois Fields, Basic Properties, Uniqueness, Containment, Closure, Polynomial Functions over Galois Fields Priyank Kalla Associate Professor Electrical

More information

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Average rate of change of y = f(x) with respect to x as x changes from a to a + h: L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

More information

Continuity. DEFINITION 1: A function f is continuous at a number a if. lim

Continuity. DEFINITION 1: A function f is continuous at a number a if. lim Continuity DEFINITION : A function f is continuous at a number a if f(x) = f(a) REMARK: It follows from the definition that f is continuous at a if and only if. f(a) is defined. 2. f(x) and +f(x) exist.

More information

TOPIC 3: CONTINUITY OF FUNCTIONS

TOPIC 3: CONTINUITY OF FUNCTIONS TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let

More information

Lecture Notes on Database Normalization

Lecture Notes on Database Normalization Lecture Notes on Database Normalization Chengkai Li Department of Computer Science and Engineering The University of Texas at Arlington April 15, 2012 I decided to write this document, because many students

More information

Lecture 10: Regression Trees

Lecture 10: Regression Trees Lecture 10: Regression Trees 36-350: Data Mining October 11, 2006 Reading: Textbook, sections 5.2 and 10.5. The next three lectures are going to be about a particular kind of nonlinear predictive model,

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata November 13, 17, 2014 Social Network No introduc+on required Really? We s7ll need to understand

More information

Operations and Supply Chain Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Operations and Supply Chain Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Operations and Supply Chain Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture - 36 Location Problems In this lecture, we continue the discussion

More information

The Basics of Graphical Models

The Basics of Graphical Models The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures

More information

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima. Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =

More information

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

More information

13.3 Inference Using Full Joint Distribution

13.3 Inference Using Full Joint Distribution 191 The probability distribution on a single variable must sum to 1 It is also true that any joint probability distribution on any set of variables must sum to 1 Recall that any proposition a is equivalent

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

Boolean Algebra Part 1

Boolean Algebra Part 1 Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems

More information

Mathematics 31 Pre-calculus and Limits

Mathematics 31 Pre-calculus and Limits Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals

More information

To define function and introduce operations on the set of functions. To investigate which of the field properties hold in the set of functions

To define function and introduce operations on the set of functions. To investigate which of the field properties hold in the set of functions Chapter 7 Functions This unit defines and investigates functions as algebraic objects. First, we define functions and discuss various means of representing them. Then we introduce operations on functions

More information

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

More information

Bayesian Networks. Read R&N Ch. 14.1-14.2. Next lecture: Read R&N 18.1-18.4

Bayesian Networks. Read R&N Ch. 14.1-14.2. Next lecture: Read R&N 18.1-18.4 Bayesian Networks Read R&N Ch. 14.1-14.2 Next lecture: Read R&N 18.1-18.4 You will be expected to know Basic concepts and vocabulary of Bayesian networks. Nodes represent random variables. Directed arcs

More information

Theory behind Normalization & DB Design. Satisfiability: Does an FD hold? Lecture 12

Theory behind Normalization & DB Design. Satisfiability: Does an FD hold? Lecture 12 Theory behind Normalization & DB Design Lecture 12 Satisfiability: Does an FD hold? Satisfiability of FDs Given: FD X Y and relation R Output: Does R satisfy X Y? Algorithm: a.sort R on X b.do all the

More information

5.1 Derivatives and Graphs

5.1 Derivatives and Graphs 5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

More information

Partial Fractions. p(x) q(x)

Partial Fractions. p(x) q(x) Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break

More information

Lecture 7: NP-Complete Problems

Lecture 7: NP-Complete Problems IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit

More information

Lectures 5-6: Taylor Series

Lectures 5-6: Taylor Series Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

More information

Calculus with Analytic Geometry I Exam 5-Take Home Part Due: Monday, October 3, 2011; 12PM

Calculus with Analytic Geometry I Exam 5-Take Home Part Due: Monday, October 3, 2011; 12PM NAME: Calculus with Analytic Geometry I Exam 5-Take Home Part Due: Monday, October 3, 2011; 12PM INSTRUCTIONS. As usual, show work where appropriate. As usual, use equal signs properly, write in full sentences,

More information

MPE Review Section III: Logarithmic & Exponential Functions

MPE Review Section III: Logarithmic & Exponential Functions MPE Review Section III: Logarithmic & Eponential Functions FUNCTIONS AND GRAPHS To specify a function y f (, one must give a collection of numbers D, called the domain of the function, and a procedure

More information

Slope-Intercept Equation. Example

Slope-Intercept Equation. Example 1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

More information

CS 188: Artificial Intelligence. Probability recap

CS 188: Artificial Intelligence. Probability recap CS 188: Artificial Intelligence Bayes Nets Representation and Independence Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore Conditional probability

More information

Databases -Normalization III. (N Spadaccini 2010 and W Liu 2012) Databases - Normalization III 1 / 31

Databases -Normalization III. (N Spadaccini 2010 and W Liu 2012) Databases - Normalization III 1 / 31 Databases -Normalization III (N Spadaccini 2010 and W Liu 2012) Databases - Normalization III 1 / 31 This lecture This lecture describes 3rd normal form. (N Spadaccini 2010 and W Liu 2012) Databases -

More information

Week 2: Exponential Functions

Week 2: Exponential Functions Week 2: Exponential Functions Goals: Introduce exponential functions Study the compounded interest and introduce the number e Suggested Textbook Readings: Chapter 4: 4.1, and Chapter 5: 5.1. Practice Problems:

More information

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

Relational Database Design: FD s & BCNF

Relational Database Design: FD s & BCNF CS145 Lecture Notes #5 Relational Database Design: FD s & BCNF Motivation Automatic translation from E/R or ODL may not produce the best relational design possible Sometimes database designers like to

More information

Decision Trees and Networks

Decision Trees and Networks Lecture 21: Uncertainty 6 Today s Lecture Victor R. Lesser CMPSCI 683 Fall 2010 Decision Trees and Networks Decision Trees A decision tree is an explicit representation of all the possible scenarios from

More information

Part 2: Community Detection

Part 2: Community Detection Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -

More information

Incorporating Evidence in Bayesian networks with the Select Operator

Incorporating Evidence in Bayesian networks with the Select Operator Incorporating Evidence in Bayesian networks with the Select Operator C.J. Butz and F. Fang Department of Computer Science, University of Regina Regina, Saskatchewan, Canada SAS 0A2 {butz, fang11fa}@cs.uregina.ca

More information

Logic Programs for Consistently Querying Data Integration Systems

Logic Programs for Consistently Querying Data Integration Systems IJCAI 03 1 Acapulco, August 2003 Logic Programs for Consistently Querying Data Integration Systems Loreto Bravo Computer Science Department Pontificia Universidad Católica de Chile lbravo@ing.puc.cl Joint

More information

Section 2.7 One-to-One Functions and Their Inverses

Section 2.7 One-to-One Functions and Their Inverses Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers

More information

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y) Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is one-to-one, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function

More information

Consistent Answers from Integrated Data Sources

Consistent Answers from Integrated Data Sources Consistent Answers from Integrated Data Sources Leopoldo Bertossi Carleton University School of Computer Science Ottawa, Canada bertossi@scs.carleton.ca www.scs.carleton.ca/ bertossi Queen s University,

More information

Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.

Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here. Homework 4 - KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 2-1 Since there can be anywhere from 0 to 4 aces, the

More information

Study Guide 2 Solutions MATH 111

Study Guide 2 Solutions MATH 111 Study Guide 2 Solutions MATH 111 Having read through the sample test, I wanted to warn everyone, that I might consider asking questions involving inequalities, the absolute value function (as in the suggested

More information

Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date

Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many

More information

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012 Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

More information

(Refer Slide Time: 2:03)

(Refer Slide Time: 2:03) Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 11 Models of Industrial Control Devices and Systems (Contd.) Last time we were

More information

SYSM 6304: Risk and Decision Analysis Lecture 5: Methods of Risk Analysis

SYSM 6304: Risk and Decision Analysis Lecture 5: Methods of Risk Analysis SYSM 6304: Risk and Decision Analysis Lecture 5: Methods of Risk Analysis M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October 17, 2015 Outline

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

2x 2x 2 8x. Now, let s work backwards to FACTOR. We begin by placing the terms of the polynomial inside the cells of the box. 2x 2

2x 2x 2 8x. Now, let s work backwards to FACTOR. We begin by placing the terms of the polynomial inside the cells of the box. 2x 2 Activity 23 Math 40 Factoring using the BOX Team Name (optional): Your Name: Partner(s): 1. (2.) Task 1: Factoring out the greatest common factor Mini Lecture: Factoring polynomials is our focus now. Factoring

More information

The Mean Value Theorem

The Mean Value Theorem The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

More information

Derivatives and Graphs. Review of basic rules: We have already discussed the Power Rule.

Derivatives and Graphs. Review of basic rules: We have already discussed the Power Rule. Derivatives and Graphs Review of basic rules: We have already discussed the Power Rule. Product Rule: If y = f (x)g(x) dy dx = Proof by first principles: Quotient Rule: If y = f (x) g(x) dy dx = Proof,

More information

3. The Junction Tree Algorithms

3. The Junction Tree Algorithms A Short Course on Graphical Models 3. The Junction Tree Algorithms Mark Paskin mark@paskin.org 1 Review: conditional independence Two random variables X and Y are independent (written X Y ) iff p X ( )

More information

MAC Sublayer. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross

MAC Sublayer. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross MAC Sublayer Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross Collision-Free Protocols v N Stations v Each programmed with a unique address: 0-(N-1). v Propagation

More information

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

More information

6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions 6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

More information

IF The customer should receive priority service THEN Call within 4 hours PCAI 16.4

IF The customer should receive priority service THEN Call within 4 hours PCAI 16.4 Back to Basics Backward Chaining: Expert System Fundamentals By Dustin Huntington Introduction Backward chaining is an incredibly powerful yet widely misunderstood concept, yet it is key to building many

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

More information

Section 6.1 Factoring Expressions

Section 6.1 Factoring Expressions Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what

More information

Lecture 1: Course overview, circuits, and formulas

Lecture 1: Course overview, circuits, and formulas Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik

More information

2.1: MATRIX OPERATIONS

2.1: MATRIX OPERATIONS .: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and

More information

Bayesian Networks. Mausam (Slides by UW-AI faculty)

Bayesian Networks. Mausam (Slides by UW-AI faculty) Bayesian Networks Mausam (Slides by UW-AI faculty) Bayes Nets In general, joint distribution P over set of variables (X 1 x... x X n ) requires exponential space for representation & inference BNs provide

More information

WEEK #22: PDFs and CDFs, Measures of Center and Spread

WEEK #22: PDFs and CDFs, Measures of Center and Spread WEEK #22: PDFs and CDFs, Measures of Center and Spread Goals: Explore the effect of independent events in probability calculations. Present a number of ways to represent probability distributions. Textbook

More information

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous? 36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

63. Graph y 1 2 x and y 2 THE FACTOR THEOREM. The Factor Theorem. Consider the polynomial function. P(x) x 2 2x 15.

63. Graph y 1 2 x and y 2 THE FACTOR THEOREM. The Factor Theorem. Consider the polynomial function. P(x) x 2 2x 15. 9.4 (9-27) 517 Gear ratio d) For a fixed wheel size and chain ring, does the gear ratio increase or decrease as the number of teeth on the cog increases? decreases 100 80 60 40 20 27-in. wheel, 44 teeth

More information

Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON

Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON John Burkardt Information Technology Department Virginia Tech http://people.sc.fsu.edu/ jburkardt/presentations/cg lab fem basis tetrahedron.pdf

More information

1.3 Polynomials and Factoring

1.3 Polynomials and Factoring 1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

COSC344 Database Theory and Applications. Lecture 9 Normalisation. COSC344 Lecture 9 1

COSC344 Database Theory and Applications. Lecture 9 Normalisation. COSC344 Lecture 9 1 COSC344 Database Theory and Applications Lecture 9 Normalisation COSC344 Lecture 9 1 Overview Last Lecture Functional Dependencies This Lecture Normalisation Introduction 1NF 2NF 3NF BCNF Source: Section

More information

The Envelope Theorem 1

The Envelope Theorem 1 John Nachbar Washington University April 2, 2015 1 Introduction. The Envelope Theorem 1 The Envelope theorem is a corollary of the Karush-Kuhn-Tucker theorem (KKT) that characterizes changes in the value

More information

Kevin James. MTHSC 102 Section 1.5 Exponential Functions and Models

Kevin James. MTHSC 102 Section 1.5 Exponential Functions and Models MTHSC 102 Section 1.5 Exponential Functions and Models Exponential Functions and Models Definition Algebraically An exponential function has an equation of the form f (x) = ab x. The constant a is called

More information

Algebra 1 Course Information

Algebra 1 Course Information Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

More information

Database Design and Normalization

Database Design and Normalization Database Design and Normalization Chapter 10 (Week 11) EE562 Slides and Modified Slides from Database Management Systems, R. Ramakrishnan 1 Computing Closure F + Example: List all FDs with: - a single

More information

3 Extending the Refinement Calculus

3 Extending the Refinement Calculus Building BSP Programs Using the Refinement Calculus D.B. Skillicorn? Department of Computing and Information Science Queen s University, Kingston, Canada skill@qucis.queensu.ca Abstract. We extend the

More information

Big Data, Machine Learning, Causal Models

Big Data, Machine Learning, Causal Models Big Data, Machine Learning, Causal Models Sargur N. Srihari University at Buffalo, The State University of New York USA Int. Conf. on Signal and Image Processing, Bangalore January 2014 1 Plan of Discussion

More information

Practice with Proofs

Practice with Proofs Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

More information

Mth 95 Module 2 Spring 2014

Mth 95 Module 2 Spring 2014 Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

More information

Two Fundamental Theorems about the Definite Integral

Two Fundamental Theorems about the Definite Integral Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than

More information

Factoring Trinomials: The ac Method

Factoring Trinomials: The ac Method 6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

More information

3. Equivalence Relations. Discussion

3. Equivalence Relations. Discussion 3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,

More information

Using a table of derivatives

Using a table of derivatives Using a table of derivatives In this unit we construct a Table of Derivatives of commonly occurring functions. This is done using the knowledge gained in previous units on differentiation from first principles.

More information

Chapter 7: Relational Database Design

Chapter 7: Relational Database Design Chapter 7: Relational Database Design Database System Concepts, 5th Ed. See www.db book.com for conditions on re use Chapter 7: Relational Database Design Features of Good Relational Design Atomic Domains

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

Jordan University of Science & Technology Computer Science Department CS 728: Advanced Database Systems Midterm Exam First 2009/2010

Jordan University of Science & Technology Computer Science Department CS 728: Advanced Database Systems Midterm Exam First 2009/2010 Jordan University of Science & Technology Computer Science Department CS 728: Advanced Database Systems Midterm Exam First 2009/2010 Student Name: ID: Part 1: Multiple-Choice Questions (17 questions, 1

More information

Partial Fractions Examples

Partial Fractions Examples Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.

More information

Relational Normalization Theory (supplemental material)

Relational Normalization Theory (supplemental material) Relational Normalization Theory (supplemental material) CSE 532, Theory of Database Systems Stony Brook University http://www.cs.stonybrook.edu/~cse532 2 Quiz 8 Consider a schema S with functional dependencies:

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Unit 7: Radical Functions & Rational Exponents

Unit 7: Radical Functions & Rational Exponents Date Period Unit 7: Radical Functions & Rational Exponents DAY 0 TOPIC Roots and Radical Expressions Multiplying and Dividing Radical Expressions Binomial Radical Expressions Rational Exponents 4 Solving

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework

Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010 - A.1 The student will represent verbal

More information