Reasoning Under Uncertainty: Variable Elimination Example


 Camron Watkins
 2 years ago
 Views:
Transcription
1 Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29 March 26, 2007 Textbook 9.5 Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 1
2 Lecture Overview 1 Recap 2 More Variable Elimination 3 Variable Elimination Example Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 2
3 Summing out variables Our second operation: we can sum out a variable, say X 1 with domain {v 1,..., v k }, from factor f(x 1,..., X j ), resulting in a factor on X 2,..., X j defined by: ( X 1 f)(x 2,..., X j ) = f(x 1 = v 1,..., X j ) + + f(x 1 = v k,..., X j ) Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 3
4 Multiplying factors Our third operation: factors can be multiplied together. The product of factor f 1 (X, Y ) and f 2 (Y, Z), where Y are the variables in common, is the factor (f 1 f 2 )(X, Y, Z) defined by: (f 1 f 2 )(X, Y, Z) = f 1 (X, Y )f 2 (Y, Z). Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 4
5 Probability of a conjunction Suppose the variables of the belief network are X 1,..., X n. {X 1,..., X n } = {Q} {Y 1,..., Y j } {Z 1,..., k } Q is the query variable {Y 1,..., Y j } is the set of observed variables {Z 1,..., k } is the rest of the variables, that are neither queried nor observed What we want to compute: P (Q, Y 1 = v 1,..., Y j = v j ) We can compute P (Q, Y 1 = v 1,..., Y j = v j ) by summing out each variable Z 1,..., Z k We sum out these variables one at a time the order in which we do this is called our elimination ordering. P (Q, Y 1 = v 1,..., Y j = v j ) = Z k Z 1 P (X 1,..., X n ) Y1 = v 1,...,Y j = v j. Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 5
6 Probability of a conjunction What we know: the factors P (X i px i ). Using the chain rule and the definition of a belief network, we can write P (X 1,..., X n ) as n i=1 P (X i px i ). Thus: P (Q, Y 1 = v 1,..., Y j = v j ) = Z k P (X 1,..., X n ) Y1 = v 1,...,Y j = v j. Z 1 = n P (X i px i ) Y1 = v 1,...,Y j = v j. Z k Z 1 i=1 Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 6
7 Computing sums of products Computation in belief networks thus reduces to computing the sums of products. It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently? factor out the a and then the h giving a(b + c + d + h(e + f + g)) this takes only 7 multiplications or additions ( How can we compute n Z 1 i=1 P (X i px i ) efficiently? Factor out those terms that don t involve Z 1 : )( ) P (X i px i ) P (X i px i ) i Z 1 {X i} px i (terms that do not involve Z i ) Z 1 i Z 1 {X i} px i (terms that involve Z i ) Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 7
8 Lecture Overview 1 Recap 2 More Variable Elimination 3 Variable Elimination Example Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 8
9 Summing out a variable efficiently To sum out a variable Z j from a product f 1,..., f k of factors: Partition the factors into those that don t contain Z j, say f 1,..., f i, those that contain Z j, say f i+1,..., f k We know: f 1 f k = (f 1 f i ) f i+1 f k. Z j Zj ( ) f Zj i+1 f k is a new factor; let s call it f. Now we have: Z j f 1 f k = f 1 f i f. Store f explicitly, and discard f i+1,..., f k. Now we ve summed out Z j. Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 9
10 Variable elimination algorithm To compute P (Q Y 1 = v 1... Y j = v j ): Construct a factor for each conditional probability. Set the observed variables to their observed values. For each of the other variables Z i {Z 1,..., Z k }, sum out Z i Multiply the remaining factors. Normalize by dividing the resulting factor f(q) by Q f(q). Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 10
11 Lecture Overview 1 Recap 2 More Variable Elimination 3 Variable Elimination Example Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 11
12 Variable elimination example A Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P P (G, H) = A,B,C,D,E,F,I P (A, B, C, D, E, F, G, H, I) P P (G, H) = A,B,C,D,E,F,I P (A) P (B A) P (C) P (D B, C) P (E C) P (F D) P (G F, E) P (H G) P (I G) B D F C E G H I Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12
13 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P P (G, H) = A,B,C,D,E,F,I P (A) P (B A) P (C) P (D B, C) P (E C) P (F D) P (G F, E) P (H G) P (I G) P Eliminate A: P (G, H) = B,C,D,E,F,I f1(b) P (C) P (D B, C) P (E C) P (F D) P (G F, E) P (H G) P (I G) A P f 1(B) := a dom(a) P (A = a) P (B A = a) B D F C E G H I Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12
14 Variable elimination example Compute P (G H P = h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H) = B,C,D,E,F,I f1(b) P (C) P (D B, C) P (E C) P (F D) P (G F, E) P (H G) P (I G) Eliminate C: P (G, H) = P B,D,E,F,I f1(b) f2(b, D, E) P (F D) P (G F, E) P (H G) P (I G) A B D F C E P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P (C = c) P (D B, C = c) P (E C = c) G H I Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12
15 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P(G, H) = f1(b) f2(b, D, E) P (F D) P (G F, E) P (H G) P (I G) B,D,E,F,I Eliminate E: P P (G, H) = B,D,F,I f1(b) f3(b, D, F, G) P (F D) P (H G) P (I G) A B D F C E P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) G H I Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12
16 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P P (G, H) = B,D,F,I f1(b) f3(b, D, F, G) P (F D) P (H G) P (I G) Observe H = h 1: P P (G, H = h 1) = B,D,F,I f1(b) f3(b, D, F, G) P (F D) f4(g) P (I G) A B D F C E P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) G H I Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12
17 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P P (G, H = h 1) = B,D,F,I f1(b) f3(b, D, F, G) P (F D) f4(g) P (I G) Eliminate I: P P (G, H = h 1) = B,D,F f1(b) f3(b, D, F, G) P (F D) f4(g) f5(g) A B D F C E P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) P f 5(G) := i dom(i) P (I = i G) G H I Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12
18 Variable elimination example Compute P (G H = P h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H = h 1) = B,D,F f1(b) f3(b, D, F, G) P (F D) f4(g) f5(g) Eliminate B: P P (G, H = h 1) = D,F f6(d, F, G) P (F D) f4(g) f5(g) A B D F C E P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) P f 5(G) := i dom(i) P P (I = i G) f 6(D, F, G) := b dom(b) f1(b = b) f3(b = b, D, F, G) G H I Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12
19 Variable elimination example Compute P (G H = P h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H = h 1) = D,F f6(d, F, P G) P (F D) f4(g) f5(g) Eliminate D: P (G, H = h 1) = F f7(f, G) f4(g) f5(g) A B D F H G C E I P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) P f 5(G) := i dom(i) P P (I = i G) f 6(D, F, G) := P b dom(b) f1(b = b) f3(b = b, D, F, G) f 7(F, G) := d dom(d) f6(d = d, F, G) P (F D = d) Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12
20 Variable elimination example Compute P (G H = P h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H = h 1) = F f7(f, G) f4(g) f5(g) Eliminate F : P (G, H = h 1) = f 8(G) f 4(G) f 5(G) A B D F H G C E I P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) P f 5(G) := i dom(i) P P (I = i G) f 6(D, F, G) := P b dom(b) f1(b = b) f3(b = b, D, F, G) f 7(F, G) := d dom(d) f6(d = d, F, G) P (F D = d) P f 8(G) := f dom(f ) f7(f = f, G) Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12
21 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H = h 1) = f 8(G) f 4(G) f 5(G) Normalize: P (G H = h 1) = P (G,H = h 1 ) Pg dom(g) P (G,H = h 1) A B D F H G C E I P f 1(B) := a dom(a) P P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) P f 5(G) := i dom(i) P P (I = i G) f 6(D, F, G) := P b dom(b) f1(b = b) f3(b = b, D, F, G) f 7(F, G) := d dom(d) f6(d = d, F, G) P (F D = d) P f 8(G) := f dom(f ) f7(f = f, G) Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 12
22 What good was Conditional Independence? That s great... but it looks incredibly painful for large graphs. And... why did we bother learning conditional independence? Does it help us at all? Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 13
23 What good was Conditional Independence? That s great... but it looks incredibly painful for large graphs. And... why did we bother learning conditional independence? Does it help us at all? yes we use the chain rule decomposition right at the beginning Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 13
24 What good was Conditional Independence? That s great... but it looks incredibly painful for large graphs. And... why did we bother learning conditional independence? Does it help us at all? yes we use the chain rule decomposition right at the beginning Can we use our knowledge of conditional independence to make this calculation even simpler? Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 13
25 What good was Conditional Independence? That s great... but it looks incredibly painful for large graphs. And... why did we bother learning conditional independence? Does it help us at all? yes we use the chain rule decomposition right at the beginning Can we use our knowledge of conditional independence to make this calculation even simpler? yes there are some variables that we don t have to sum out intuitively, they re the ones that are presummedout in our tables example: summing out I on the previous slide Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 13
26 One Last Trick One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point. Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 14
27 One Last Trick One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point. alarm fire smoke Can we justify that on a threenode graph Fire, Alarm, and Smoke when we ask for: P (F ire)? Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 14
28 One Last Trick One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point. alarm fire smoke Can we justify that on a threenode graph Fire, Alarm, and Smoke when we ask for: P (F ire)? P (F ire Alarm)? Reasoning Under Uncertainty: Variable Elimination Example CPSC 322 Lecture 29, Slide 14
Marginal Independence and Conditional Independence
Marginal Independence and Conditional Independence Computer Science cpsc322, Lecture 26 (Textbook Chpt 6.12) March, 19, 2010 Recap with Example Marginalization Conditional Probability Chain Rule Lecture
More informationLecture 10: Distinct Degree Factoring
CS681 Computational Number Theory Lecture 10: Distinct Degree Factoring Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi Overview Last class we left of with a glimpse into distant degree factorization.
More informationSection 8.4  Composite and Inverse Functions
Math 127  Section 8.4  Page 1 Section 8.4  Composite and Inverse Functions I. Composition of Functions A. If f and g are functions, then the composite function of f and g (written f g) is: (f g)( =
More informationClick on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationArtificial Intelligence Mar 27, Bayesian Networks 1 P (T D)P (D) + P (T D)P ( D) =
Artificial Intelligence 15381 Mar 27, 2007 Bayesian Networks 1 Recap of last lecture Probability: precise representation of uncertainty Probability theory: optimal updating of knowledge based on new information
More informationLecture Notes on Database Normalization
Lecture Notes on Database Normalization Chengkai Li Department of Computer Science and Engineering The University of Texas at Arlington April 15, 2012 I decided to write this document, because many students
More information2.1 Increasing, Decreasing, and Piecewise Functions; Applications
2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.
More informationLecture 10: Regression Trees
Lecture 10: Regression Trees 36350: Data Mining October 11, 2006 Reading: Textbook, sections 5.2 and 10.5. The next three lectures are going to be about a particular kind of nonlinear predictive model,
More informationCritical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.
Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =
More informationALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola
More informationOperations and Supply Chain Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras
Operations and Supply Chain Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture  36 Location Problems In this lecture, we continue the discussion
More information1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some
Section 3.1: First Derivative Test Definition. Let f be a function with domain D. 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some open interval containing c. The number
More informationGalois Fields and Hardware Design
Galois Fields and Hardware Design Construction of Galois Fields, Basic Properties, Uniqueness, Containment, Closure, Polynomial Functions over Galois Fields Priyank Kalla Associate Professor Electrical
More informationThe Basics of Graphical Models
The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures
More informationMathematics 31 Precalculus and Limits
Mathematics 31 Precalculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals
More informationAverage rate of change of y = f(x) with respect to x as x changes from a to a + h:
L151 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,
More informationTOPIC 3: CONTINUITY OF FUNCTIONS
TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let
More informationContinuity. DEFINITION 1: A function f is continuous at a number a if. lim
Continuity DEFINITION : A function f is continuous at a number a if f(x) = f(a) REMARK: It follows from the definition that f is continuous at a if and only if. f(a) is defined. 2. f(x) and +f(x) exist.
More informationTo define function and introduce operations on the set of functions. To investigate which of the field properties hold in the set of functions
Chapter 7 Functions This unit defines and investigates functions as algebraic objects. First, we define functions and discuss various means of representing them. Then we introduce operations on functions
More informationBayesian Networks. Read R&N Ch. 14.114.2. Next lecture: Read R&N 18.118.4
Bayesian Networks Read R&N Ch. 14.114.2 Next lecture: Read R&N 18.118.4 You will be expected to know Basic concepts and vocabulary of Bayesian networks. Nodes represent random variables. Directed arcs
More informationLectures 56: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5: Taylor Series Weeks 5 Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
More informationMA 1125 Lecture 14  Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4  Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
More informationCalculus I Notes. MATH /Richards/
Calculus I Notes MATH 52154/Richards/10.1.07 The Derivative The derivative of a function f at p is denoted by f (p) and is informally defined by f (p)= the slope of the fgraph at p. Of course, the above
More informationMining Social Network Graphs
Mining Social Network Graphs Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata November 13, 17, 2014 Social Network No introduc+on required Really? We s7ll need to understand
More informationSection 6.1 Factoring Expressions
Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what
More information13.3 Inference Using Full Joint Distribution
191 The probability distribution on a single variable must sum to 1 It is also true that any joint probability distribution on any set of variables must sum to 1 Recall that any proposition a is equivalent
More informationDecision Trees and Networks
Lecture 21: Uncertainty 6 Today s Lecture Victor R. Lesser CMPSCI 683 Fall 2010 Decision Trees and Networks Decision Trees A decision tree is an explicit representation of all the possible scenarios from
More informationIncorporating Evidence in Bayesian networks with the Select Operator
Incorporating Evidence in Bayesian networks with the Select Operator C.J. Butz and F. Fang Department of Computer Science, University of Regina Regina, Saskatchewan, Canada SAS 0A2 {butz, fang11fa}@cs.uregina.ca
More information1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
More informationBoolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More informationGrading: A1=90% and above; A=80% to 89%; B1=70% to 79%; B=60% to 69%; C=50% to 59%; D=34% to 49%; E=Repeated; 1 of 55 pages
100001 A1 100002 A1 100003 B 100004 B 100005 B 100006 A 100007 C 100008 C 100009 B1 100010 D 100011 A 100012 B 100013 B 100014 B1 100015 C 100016 B1 100017 A1 100018 A1 100019 A1 100020 B1 100021 A 100022
More informationFactoring Trinomials: The ac Method
6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For
More information5.1 Derivatives and Graphs
5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has
More informationLogic Programs for Consistently Querying Data Integration Systems
IJCAI 03 1 Acapulco, August 2003 Logic Programs for Consistently Querying Data Integration Systems Loreto Bravo Computer Science Department Pontificia Universidad Católica de Chile lbravo@ing.puc.cl Joint
More information1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes
Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.
More informationTheory behind Normalization & DB Design. Satisfiability: Does an FD hold? Lecture 12
Theory behind Normalization & DB Design Lecture 12 Satisfiability: Does an FD hold? Satisfiability of FDs Given: FD X Y and relation R Output: Does R satisfy X Y? Algorithm: a.sort R on X b.do all the
More information63. Graph y 1 2 x and y 2 THE FACTOR THEOREM. The Factor Theorem. Consider the polynomial function. P(x) x 2 2x 15.
9.4 (927) 517 Gear ratio d) For a fixed wheel size and chain ring, does the gear ratio increase or decrease as the number of teeth on the cog increases? decreases 100 80 60 40 20 27in. wheel, 44 teeth
More informationInformation Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture  17 ShannonFanoElias Coding and Introduction to Arithmetic Coding
More informationPartial Fractions. p(x) q(x)
Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break
More informationLecture 7: NPComplete Problems
IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NPComplete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit
More informationCalculus with Analytic Geometry I Exam 5Take Home Part Due: Monday, October 3, 2011; 12PM
NAME: Calculus with Analytic Geometry I Exam 5Take Home Part Due: Monday, October 3, 2011; 12PM INSTRUCTIONS. As usual, show work where appropriate. As usual, use equal signs properly, write in full sentences,
More informationSlopeIntercept Equation. Example
1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the yintercept. Determine
More informationWeek 2: Exponential Functions
Week 2: Exponential Functions Goals: Introduce exponential functions Study the compounded interest and introduce the number e Suggested Textbook Readings: Chapter 4: 4.1, and Chapter 5: 5.1. Practice Problems:
More informationMPE Review Section III: Logarithmic & Exponential Functions
MPE Review Section III: Logarithmic & Eponential Functions FUNCTIONS AND GRAPHS To specify a function y f (, one must give a collection of numbers D, called the domain of the function, and a procedure
More informationCS 188: Artificial Intelligence. Probability recap
CS 188: Artificial Intelligence Bayes Nets Representation and Independence Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore Conditional probability
More informationThe Envelope Theorem 1
John Nachbar Washington University April 2, 2015 1 Introduction. The Envelope Theorem 1 The Envelope theorem is a corollary of the KarushKuhnTucker theorem (KKT) that characterizes changes in the value
More information3.5: Issues in Curve Sketching
3.5: Issues in Curve Sketching Mathematics 3 Lecture 20 Dartmouth College February 17, 2010 Typeset by FoilTEX Example 1 Which of the following are the graphs of a function, its derivative and its second
More informationWEEK #22: PDFs and CDFs, Measures of Center and Spread
WEEK #22: PDFs and CDFs, Measures of Center and Spread Goals: Explore the effect of independent events in probability calculations. Present a number of ways to represent probability distributions. Textbook
More informationMOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu
Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
More informationDatabases Normalization III. (N Spadaccini 2010 and W Liu 2012) Databases  Normalization III 1 / 31
Databases Normalization III (N Spadaccini 2010 and W Liu 2012) Databases  Normalization III 1 / 31 This lecture This lecture describes 3rd normal form. (N Spadaccini 2010 and W Liu 2012) Databases 
More informationRelational Database Design: FD s & BCNF
CS145 Lecture Notes #5 Relational Database Design: FD s & BCNF Motivation Automatic translation from E/R or ODL may not produce the best relational design possible Sometimes database designers like to
More informationBayesian Networks. Mausam (Slides by UWAI faculty)
Bayesian Networks Mausam (Slides by UWAI faculty) Bayes Nets In general, joint distribution P over set of variables (X 1 x... x X n ) requires exponential space for representation & inference BNs provide
More informationINTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H1088 Budapest, Múzeum krt. 68. CONTENTS 1. SETS Set, equal sets, subset,
More informationFactorization in Polynomial Rings
Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important
More informationSome Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.
Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,
More information3 Extending the Refinement Calculus
Building BSP Programs Using the Refinement Calculus D.B. Skillicorn? Department of Computing and Information Science Queen s University, Kingston, Canada skill@qucis.queensu.ca Abstract. We extend the
More informationPart 2: Community Detection
Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection  Social networks 
More informationRelational Normalization Theory (supplemental material)
Relational Normalization Theory (supplemental material) CSE 532, Theory of Database Systems Stony Brook University http://www.cs.stonybrook.edu/~cse532 2 Quiz 8 Consider a schema S with functional dependencies:
More informationEuler Paths and Euler Circuits
Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and
More informationMATH 90 CHAPTER 1 Name:.
MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.
More informationSection 2.7 OnetoOne Functions and Their Inverses
Section. OnetoOne Functions and Their Inverses OnetoOne Functions HORIZONTAL LINE TEST: A function is onetoone if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.
More informationLecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is onetoone, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function
More information2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
More informationOutline. Probability. Random Variables. Joint and Marginal Distributions Conditional Distribution Product Rule, Chain Rule, Bayes Rule.
Probability 1 Probability Random Variables Outline Joint and Marginal Distributions Conditional Distribution Product Rule, Chain Rule, Bayes Rule Inference Independence 2 Inference in Ghostbusters A ghost
More informationJordan University of Science & Technology Computer Science Department CS 728: Advanced Database Systems Midterm Exam First 2009/2010
Jordan University of Science & Technology Computer Science Department CS 728: Advanced Database Systems Midterm Exam First 2009/2010 Student Name: ID: Part 1: MultipleChoice Questions (17 questions, 1
More informationSolve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers
More informationSo today we shall continue our discussion on the search engines and web crawlers. (Refer Slide Time: 01:02)
Internet Technology Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No #39 Search Engines and Web Crawler :: Part 2 So today we
More informationHomework 4  KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.
Homework 4  KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 21 Since there can be anywhere from 0 to 4 aces, the
More informationChapter 7: Relational Database Design
Chapter 7: Relational Database Design Database System Concepts, 5th Ed. See www.db book.com for conditions on re use Chapter 7: Relational Database Design Features of Good Relational Design Atomic Domains
More informationTim Kerins. Leaving Certificate Honours Maths  Algebra. Tim Kerins. the date
Leaving Certificate Honours Maths  Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many
More informationStudy Guide 2 Solutions MATH 111
Study Guide 2 Solutions MATH 111 Having read through the sample test, I wanted to warn everyone, that I might consider asking questions involving inequalities, the absolute value function (as in the suggested
More informationConsistent Answers from Integrated Data Sources
Consistent Answers from Integrated Data Sources Leopoldo Bertossi Carleton University School of Computer Science Ottawa, Canada bertossi@scs.carleton.ca www.scs.carleton.ca/ bertossi Queen s University,
More informationFactoring Polynomials
Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent
More informationAnalysis of Algorithms, I
Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadthfirst search (BFS) 4 Applications
More informationThe Division Algorithm for Polynomials Handout Monday March 5, 2012
The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,
More information(Refer Slide Time: 2:03)
Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture  11 Models of Industrial Control Devices and Systems (Contd.) Last time we were
More informationCOMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
More informationChapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
More informationRolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
More informationSYSM 6304: Risk and Decision Analysis Lecture 5: Methods of Risk Analysis
SYSM 6304: Risk and Decision Analysis Lecture 5: Methods of Risk Analysis M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October 17, 2015 Outline
More informationAppendix A. Appendix. A.1 Algebra. Fields and Rings
Appendix A Appendix A.1 Algebra Algebra is the foundation of algebraic geometry; here we collect some of the basic algebra on which we rely. We develop some algebraic background that is needed in the text.
More information2x 2x 2 8x. Now, let s work backwards to FACTOR. We begin by placing the terms of the polynomial inside the cells of the box. 2x 2
Activity 23 Math 40 Factoring using the BOX Team Name (optional): Your Name: Partner(s): 1. (2.) Task 1: Factoring out the greatest common factor Mini Lecture: Factoring polynomials is our focus now. Factoring
More informationFive 5. Rational Expressions and Equations C H A P T E R
Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.
More informationMath 4310 Handout  Quotient Vector Spaces
Math 4310 Handout  Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
More informationit is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
More information3. The Junction Tree Algorithms
A Short Course on Graphical Models 3. The Junction Tree Algorithms Mark Paskin mark@paskin.org 1 Review: conditional independence Two random variables X and Y are independent (written X Y ) iff p X ( )
More informationDerivatives and Graphs. Review of basic rules: We have already discussed the Power Rule.
Derivatives and Graphs Review of basic rules: We have already discussed the Power Rule. Product Rule: If y = f (x)g(x) dy dx = Proof by first principles: Quotient Rule: If y = f (x) g(x) dy dx = Proof,
More informationThe Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
More informationcorrectchoice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
More informationMAC Sublayer. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross
MAC Sublayer Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross CollisionFree Protocols v N Stations v Each programmed with a unique address: 0(N1). v Propagation
More informationLagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
More informationDATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
More information6.1 Add & Subtract Polynomial Expression & Functions
6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic
More informationIF The customer should receive priority service THEN Call within 4 hours PCAI 16.4
Back to Basics Backward Chaining: Expert System Fundamentals By Dustin Huntington Introduction Backward chaining is an incredibly powerful yet widely misunderstood concept, yet it is key to building many
More information203.4770: Introduction to Machine Learning Dr. Rita Osadchy
203.4770: Introduction to Machine Learning Dr. Rita Osadchy 1 Outline 1. About the Course 2. What is Machine Learning? 3. Types of problems and Situations 4. ML Example 2 About the course Course Homepage:
More informationSpecifications for the SmartCard Operating System for Transport Applications (SCOSTA)
Specifications for the SmartCard Operating System for Transport Applications (SCOSTA) Addendum to Version 1.2b dated March 15, 2002 Dated: January 23, 2003 National Informatics Centre Ministry of Communication
More informationMath 34560 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field
Math 34560 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field 1. Throughout this section, F is a field and F [x] is the ring of polynomials with coefficients in F. We will
More informationPROBLEM SET 6: POLYNOMIALS
PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other
More information