Chapter Outline How do atoms arrange themselves to form solids? Types of Solids


 Conrad Terry
 4 years ago
 Views:
Transcription
1 Chpter Outline How do toms rrnge themselves to form solids? Fundmentl concepts nd lnguge Unit cells Crystl structures Fcecentered cubic Bodycentered cubic Hexgonl closepcked Close pcked crystl structures Density computtions Types of solids Single crystl Polycrystlline Amorphous Types of Solids Crystlline mteril: toms selforgnize in periodic rry Single crystl: toms re in repeting or periodic rry over the entire extent of the mteril Polycrystlline mteril: crystls or grins comprised of mny smll Amorphous: disordered lck of systemtic tomic rrngement Crystlline Amorphous.8.10 Crystllogrphy Not Covered / Not Tested.15 Anisotropy Not Covered / Not Tested.16 Diffrction Not Covered / Not Tested SiO Crystl structures Why do toms ssemble into ordered structures (crystls)? Energy of intertomic bond 0 Intertomic distnce Let s consider nondirectionl bonding (like in metls) Crystl structure To discuss crystlline structures it is useful to consider toms s being hrd spheres with welldefined rdii. In this hrdsphere model, the shortest distnce between two like toms is one dimeter of the hrd sphere. 2R  hrdsphere model We cn lso consider crystlline structure s lttice of points t tom/sphere centers. Energy of the crystl < Energy of the morphous solid 4 1
2 Unit Cell The unit cell is structurl unit or building block tht cn describe the crystl structure. Repetition of the unit cell genertes the entire crystl. Exmple: 2D honeycomb net cn be represented by trnsltion of two djcent toms tht form unit cell for this 2D crystlline structure Exmple of D crystlline structure: Metllic Crystl Structures Metls re usully (poly)crystlline; lthough formtion of morphous metls is possible by rpid cooling As we lerned in Chpter 2, the tomic bonding in metls is nondirectionl no restriction on numbers or positions of nerestneighbor toms lrge number of nerest neighbors nd dense tomic pcking Atomic (hrd sphere) rdius, R, defined by ion core rdius  typiclly nm The most common types of unit cells re fcedcentered cubic (FCC) bodycentered cubic (BCC) hexgonl closepcked (HCP). Different choices of unit cells possible, we will consider prllelepiped unit cell with highest level of symmetry 5 6 FceCentered Cubic (FCC) Crystl Structure (I) FceCentered Cubic Crystl Structure (II) Atoms re locted t ech of the corners nd on the centers of ll the fces of cubic unit cell Cu, Al, Ag, Au hve this crystl structure R The hrd spheres touch one nother cross fce digonl the cube edge length, = 2R 2 The coordintion number, CN = the number of closest neighbors to which n tom is bonded = number of touching toms, CN = 12 Two representtions of the FCC unit cell Number of toms per unit cell, n = 4. (For n tom tht is shred with m djcent unit cells, we only count frction of the tom, 1/m). In FCC unit cell we hve: 6 fce toms shred by two cells: 6 1/2 = 8 corner toms shred by eight cells: 8 1/8 = 1 Atomic pcking fctor, APF = frction of volume occupied by hrd spheres = (Sum of tomic volumes)/(volume of cell) = 0.74 (mximum possible) 7 8 2
3 FceCentered Cubic Crystl Structure (III) Let s clculte the tomic pcking fctor for FCC crystl R = 2R 2 FceCentered Cubic Crystl Structure (IV) Corner nd fce toms in the unit cell re equivlent FCC crystl hs APF of 0.74, the mximum pcking for system equlsized spheres FCC is closepcked structure FCC cn be represented by stck of closepcked plnes (plnes with highest density of toms) APF = (Sum of tomic volumes)/(volume of unit cell) 4 4 πr Volume of 4 hrd spheres in the unit cell: Volume of the unit cell: = 16 R 2 16 APF = πr 16R 2 = π 2 = 0.74 mximum possible pcking of hrd spheres 9 10 BodyCentered Cubic (BCC) Crystl Structure (I) BodyCentered Cubic Crystl Structure (II) Atom t ech corner nd t center of cubic unit cell Cr, αfe, Mo hve this crystl structure The hrd spheres touch one nother long cube digonl the cube edge length, = 4R/ The coordintion number, CN = 8 Number of toms per unit cell, n = 2 Center tom (1) shred by no other cells: 1 x 1 = 1 8 corner toms shred by eight cells: 8 x 1/8 = 1 Atomic pcking fctor, APF = 0.68 Corner nd center toms re equivlent 11 12
4 Hexgonl ClosePcked Crystl Structure (I) HCP is one more common structure of metllic crystls Six toms form regulr hexgon, surrounding one tom in center. Another plne is situted hlfwy up unit cell (cxis), with dditionl toms situted t interstices of hexgonl (closepcked) plnes Cd, Mg, Zn, Ti hve this crystl structure Hexgonl ClosePcked Crystl Structure (II) Unit cell hs two lttice prmeters nd c. Idel rtio c/ = 1.6 The coordintion number, CN = 12 (sme s in FCC) Number of toms per unit cell, n = 6. midplne toms shred by no other cells: x 1 = 12 hexgonl corner toms shred by 6 cells: 12 x 1/6 = 2 2 top/bottom plne center toms shred by 2 cells: 2 x 1/2 = 1 Atomic pcking fctor, APF = 0.74 (sme s in FCC) All toms re equivlent c 1 14 Closepcked Structures (FCC nd HCP) Both FCC nd HCP crystl structures hve tomic pcking fctors of 0.74 (mximum possible vlue) Both FCC nd HCP crystl structures my be generted by the stcking of closepcked plnes The difference between the two structures is in the stcking sequence FCC: Stcking Sequence ABCABCABC... Third plne is plced bove the holes of the first plne not covered by the second plne HCP: ABABAB... FCC: ABCABCABC
5 HCP: Stcking Sequence ABABAB... Density Computtions Since the entire crystl cn be generted by the repetition of the unit cell, the density of crystlline mteril, ρ = the density of the unit cell = (toms in the unit cell, n ) (mss of n tom, M) / (the volume of the cell, V c ) Atoms in the unit cell, n = 2 (BCC); 4 (FCC); 6 (HCP) Mss of n tom, M = Atomic weight, A, in mu (or g/mol) is given in the periodic tble. To trnslte mss from mu to grms we hve to divide the tomic weight in mu by the Avogdro number N A = toms/mol The volume of the cell, V c = (FCC nd BCC) = 2R 2 (FCC); = 4R/ (BCC) where R is the tomic rdius Third plne is plced directly bove the first plne of toms Thus, the formul for the density is: na ρ = V c N A Atomic weight nd tomic rdius of mny elements you cn find in the tble t the bck of the textbook front cover Polymorphism nd Allotropy Some mterils my exist in more thn one crystl structure, this is clled polymorphism. If the mteril is n elementl solid, it is clled llotropy. An exmple of llotropy is crbon, which cn exist s dimond, grphite, nd morphous crbon. Single Crystls nd Polycrystlline Mterils Single crystl: toms re in repeting or periodic rry over the entire extent of the mteril Polycrystlline mteril: comprised of mny smll crystls or grins. The grins hve different crystllogrphic orienttion. There exist tomic mismtch within the regions where grins meet. These regions re clled grin boundries. Pure, solid crbon occurs in three crystlline forms dimond, grphite; nd lrge, hollow fullerenes. Two kinds of fullerenes re shown here: buckminsterfullerene (buckybll) nd crbon nnotube. Grin Boundry
6 Polycrystlline Mterils Polycrystlline Mterils Atomistic model of nnocrystlline solid by Mo Li, JHU Simultion of nneling of polycrystlline grin structure from (link is ded) Anisotropy Different directions in crystl hve different pcking. For instnce, toms long the edge of FCC unit cell re more seprted thn long the fce digonl. This cuses nisotropy in the properties of crystls, for instnce, the deformtion depends on the direction in which stress is pplied. NonCrystlline (Amorphous) Solids In morphous solids, there is no longrnge order. But morphous does not men rndom, in mny cses there is some form of shortrnge order. In some polycrystlline mterils, grin orienttions re rndom, so bulk mteril properties re isotropic Some polycrystlline mterils hve grins with preferred orienttions (texture), so properties re dominted by those relevnt to the texture orienttion nd the mteril exhibits nisotropic properties Schemtic picture of morphous SiO 2 structure Amorphous structure from simultions by E. H. Brndt
7 Summry Mke sure you understnd lnguge nd concepts: Allotropy Amorphous Anisotropy Atomic pcking fctor (APF) Bodycentered cubic (BCC) Coordintion number Crystl structure Crystlline Fcecentered cubic (FCC) Grin Grin boundry Hexgonl closepcked (HCP) Isotropic Lttice prmeter Noncrystlline Polycrystlline Polymorphism Single crystl Unit cell Homework #1: 2.14, 2.15, 2.20,.7, nd.17 Due dte: Mondy, September 6. Reding for next clss: Chpter 4: Imperfections in Solids Point defects (vcncies, interstitils) Disloctions (edge, screw) Grin boundries (tilt, twist) Weight nd tomic composition Optionl reding (Prts tht re not covered / not tested): Microscopy 4.11 Grin size determintion
LECTURE #05. Learning Objectives. How does atomic packing factor change with different atom types? How do you calculate the density of a material?
LECTURE #05 Chpter : Pcking Densities nd Coordintion Lerning Objectives es How does tomic pcking fctor chnge with different tom types? How do you clculte the density of mteril? 2 Relevnt Reding for this
More informationChapter Outline. How do atoms arrange themselves to form solids?
Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Simple cubic Facecentered cubic Bodycentered cubic Hexagonal closepacked
More informationSection 1: Crystal Structure
Phsics 927 Section 1: Crstl Structure A solid is sid to be crstl if toms re rrnged in such w tht their positions re ectl periodic. This concept is illustrted in Fig.1 using twodimensionl (2D) structure.
More informationLECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.
LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 6483.
More information3.091 Introduction to Solid State Chemistry. Lecture Notes No. 4 THE NATURE OF CRYSTALLINE SOLIDS
3.091 Introduction to Solid Stte Chemistry Lecture Notes No. 4 THE NATURE OF CRYSTALLINE SOLIDS In n ssembly of toms or molecules solid phse is formed whenever the intertomic (intermoleculr) ttrctive forces
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More informationBrillouin Zones. Physics 3P41 Chris Wiebe
Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction
More informationPHY 140A: Solid State Physics. Solution to Homework #2
PHY 140A: Solid Stte Physics Solution to Homework # TA: Xun Ji 1 October 14, 006 1 Emil: jixun@physics.ucl.edu Problem #1 Prove tht the reciprocl lttice for the reciprocl lttice is the originl lttice.
More information(a) The atomic number is the number of protons contained in the nucleus of an atom.
CHAPTER ATOMIC STRUCTURE AND BONDING. Wht is the mss in grms of () proton, (b) neutron, nd (c) n electron? () mss of proton.67 04 g (b) mss of neutron.675 04 g (c) mss of electron 9.09 08 g. Wht is
More informationBinary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse rel number to its binry representtion,. convert binry number to n equivlent bse number. In everydy
More informationPROBLEM 4.1 SOLUTION. Knowing that the couple shown acts in a vertical plane, determine the stress at (a) point A, (b) point B.
PROBLEM.1 Knowing tht the couple shown cts in verticl plne, determine the stress t () point A, (b) point B. SOLUTON () (b) For rectngle: For cross sectionl re: 1 = bh 1 1 = 1 + + = ()(1.5) + ()(5.5) +
More informationRotating DC Motors Part II
Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More informationGraphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
More informationPhysics 43 Homework Set 9 Chapter 40 Key
Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nmwide region t x
More informationReview guide for the final exam in Math 233
Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered
More informationCOMPONENTS: COMBINED LOADING
LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of
More informationLecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
More informationModule 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur
Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives
More information6.2 Volumes of Revolution: The Disk Method
mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine soclled volumes of
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More informationExperiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
More informationLINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
More informationCypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:
Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationDistributions. (corresponding to the cumulative distribution function for the discrete case).
Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive
More informationVectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments  they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
More informationChapter 3: Structure of Metals and Ceramics. Chapter 3: Structure of Metals and Ceramics. Learning Objective
Chapter 3: Structure of Metals and Ceramics Chapter 3: Structure of Metals and Ceramics Goals Define basic terms and give examples of each: Lattice Basis Atoms (Decorations or Motifs) Crystal Structure
More informationBasic Analysis of Autarky and Free Trade Models
Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently
More informationMathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
More informationRadius of the Earth  Radii Used in Geodesy James R. Clynch February 2006
dius of the Erth  dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.
More information, and the number of electrons is 19. e e 1.60 10 C. The negatively charged electrons move in the direction opposite to the conventional current flow.
Prolem 1. f current of 80.0 ma exists in metl wire, how mny electrons flow pst given cross section of the wire in 10.0 min? Sketch the directions of the current nd the electrons motion. Solution: The chrge
More informationMath 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
More information5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.
5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous relvlued
More informationEQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in pointdirection nd twopoint
More informationExample A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
More information9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes
The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is soclled becuse when the sclr product of two vectors
More informationUnit 6: Exponents and Radicals
Eponents nd Rdicls : The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N):  counting numers. {,,,,, } Whole Numers (W):  counting numers with 0. {0,,,,,, } Integers (I): 
More informationThe Velocity Factor of an Insulated TwoWire Transmission Line
The Velocity Fctor of n Insulted TwoWire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the
More information2 DIODE CLIPPING and CLAMPING CIRCUITS
2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of
More informationLectures 8 and 9 1 Rectangular waveguides
1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves
More informationPHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS
PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,
More informationA.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324
A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................
More informationIntegration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
More informationHomework 3 Solutions
CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.
More informationApplications to Physics and Engineering
Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics
More informationSection 74 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 74 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
More informationAnisotropic Interfacial Free Energies of the HardSphere CrystalMelt Interfaces
6500 J. Phys. Chem. B 2005, 109, 65006504 Anisotropic Interfcil Free Energies of the HrdSphere CrystlMelt Interfces Yn Mu, Andrew Houk, nd Xueyu Song* Deprtment of Chemistry, Iow Stte UniVersity, Ames,
More informationRIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is
More informationaddition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.
APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The
More information9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
More informationFactoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
More information1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply?
Assignment 3: Bohr s model nd lser fundmentls 1. In the Bohr model, compre the mgnitudes of the electron s kinetic nd potentil energies in orit. Wht does this imply? When n electron moves in n orit, the
More informationAlgebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
More information4. DC MOTORS. Understand the basic principles of operation of a DC motor. Understand the operation and basic characteristics of simple DC motors.
4. DC MOTORS Almost every mechnicl movement tht we see round us is ccomplished by n electric motor. Electric mchines re mens o converting energy. Motors tke electricl energy nd produce mechnicl energy.
More informationChapter 1 ( ) + 6.97 10 96. Second Edition ( 2001 McGrawHill) 1.2 Ionic bonding and NaCl. Solution
EE45 Spring 2002 Hmewrk Slutin Prf. li Shkuri hpter.2 Inic bnding nd Nl Secnd Editin ( 200 McGrwHill) The interctin energy between N + nd l  ins in the Nl crystl cn be written s 4.0 0 28 E(r) r + 6.97
More informationPROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
More informationPhysics 2102 Lecture 2. Physics 2102
Physics 10 Jonthn Dowling Physics 10 Lecture Electric Fields ChrlesAugustin de Coulomb (17361806) Jnury 17, 07 Version: 1/17/07 Wht re we going to lern? A rod mp Electric chrge Electric force on other
More information200506 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration
Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 256 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting
More informationPentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simplelooking set of objects through which some powerful
Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this
More informationOr more simply put, when adding or subtracting quantities, their uncertainties add.
Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re
More information15.6. The mean value and the rootmeansquare value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style
The men vlue nd the rootmensqure vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time
More informationRegular Sets and Expressions
Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite
More informationModule Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials
MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic
More informationwww.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)
www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input
More informationTreatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.
The nlysis of vrince (ANOVA) Although the ttest is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the ttest cn be used to compre the mens of only
More informationHelicopter Theme and Variations
Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the
More informationNuclear reactions determine element abundance. Is the earth homogeneous though? Is the solar system?? Is the universe???
Nuclear reactions determine element abundance Is the earth homogeneous though? Is the solar system?? Is the universe??? Earth = anion balls with cations in the spaces View of the earth as a system of anions
More informationSpace Vector Pulse Width Modulation Based Induction Motor with V/F Control
Interntionl Journl of Science nd Reserch (IJSR) Spce Vector Pulse Width Modultion Bsed Induction Motor with V/F Control Vikrmrjn Jmbulingm Electricl nd Electronics Engineering, VIT University, Indi Abstrct:
More informationAn Undergraduate Curriculum Evaluation with the Analytic Hierarchy Process
An Undergrdute Curriculum Evlution with the Anlytic Hierrchy Process Les Frir Jessic O. Mtson Jck E. Mtson Deprtment of Industril Engineering P.O. Box 870288 University of Albm Tuscloos, AL. 35487 Abstrct
More informationI calculate the unemployment rate as (In Labor Force Employed)/In Labor Force
Introduction to the Prctice of Sttistics Fifth Edition Moore, McCbe Section 4.5 Homework Answers to 98, 99, 100,102, 103,105, 107, 109,110, 111, 112, 113 Working. In the lnguge of government sttistics,
More informationLECTURE SUMMARY September 30th 2009
LECTURE SUMMARY September 30 th 2009 Key Lecture Topics Crystal Structures in Relation to Slip Systems Resolved Shear Stress Using a Stereographic Projection to Determine the Active Slip System Slip Planes
More informationWarmup for Differential Calculus
Summer Assignment Wrmup for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:
More informationMATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
More informationPROBLEMS 13  APPLICATIONS OF DERIVATIVES Page 1
PROBLEMS  APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.
More informationWeek 11  Inductance
Week  Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n
More informationSample Exercise 12.1 Calculating Packing Efficiency
Sample Exercise 12.1 Calculating Packing Efficiency It is not possible to pack spheres together without leaving some void spaces between the spheres. Packing efficiency is the fraction of space in a crystal
More informationHW 9. Problem 14.5. a. To Find:
HW 9 Problem 14.5. To Find: ( The numberverge moleulr weight (b The weightverge moleulr weight ( The degree of polymeriztion for the given polypropylene mteril Moleulr Weight Rnge (g/mol x i w i 8,000
More informationDesign Example 1 Special Moment Frame
Design Exmple 1 pecil Moment Frme OVERVIEW tructurl steel specil moment frmes (MF) re typiclly comprised of wideflnge bems, columns, nd bemcolumn connections. Connections re proportioned nd detiled to
More informationOne Minute To Learn Programming: Finite Automata
Gret Theoreticl Ides In Computer Science Steven Rudich CS 15251 Spring 2005 Lecture 9 Fe 8 2005 Crnegie Mellon University One Minute To Lern Progrmming: Finite Automt Let me tech you progrmming lnguge
More informationNQF Level: 2 US No: 7480
NQF Level: 2 US No: 7480 Assessment Guide Primry Agriculture Rtionl nd irrtionl numers nd numer systems Assessor:.......................................... Workplce / Compny:.................................
More informationChapter 2 The Number System (Integers and Rational Numbers)
Chpter 2 The Number System (Integers nd Rtionl Numbers) In this second chpter, students extend nd formlize their understnding of the number system, including negtive rtionl numbers. Students first develop
More informationSPECIAL PRODUCTS AND FACTORIZATION
MODULE  Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come
More informationProtocol Analysis. 17654/17764 Analysis of Software Artifacts Kevin Bierhoff
Protocol Anlysis 17654/17764 Anlysis of Softwre Artifcts Kevin Bierhoff TkeAwys Protocols define temporl ordering of events Cn often be cptured with stte mchines Protocol nlysis needs to py ttention
More informationAAPT UNITED STATES PHYSICS TEAM AIP 2010
2010 F = m Exm 1 AAPT UNITED STATES PHYSICS TEAM AIP 2010 Enti non multiplicnd sunt preter necessittem 2010 F = m Contest 25 QUESTIONS  75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD
More information** Dpt. Chemical Engineering, Kasetsart University, Bangkok 10900, Thailand
Modelling nd Simultion of hemicl Processes in Multi Pulse TP Experiment P. Phnwdee* S.O. Shekhtmn +. Jrungmnorom** J.T. Gleves ++ * Dpt. hemicl Engineering, Ksetsrt University, Bngkok 10900, Thilnd + Dpt.hemicl
More informationProject 6 Aircraft static stability and control
Project 6 Aircrft sttic stbility nd control The min objective of the project No. 6 is to compute the chrcteristics of the ircrft sttic stbility nd control chrcteristics in the pitch nd roll chnnel. The
More informationLecture 5. Inner Product
Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right
More information1.00/1.001 Introduction to Computers and Engineering Problem Solving Fall 2011  Final Exam
1./1.1 Introduction to Computers nd Engineering Problem Solving Fll 211  Finl Exm Nme: MIT Emil: TA: Section: You hve 3 hours to complete this exm. In ll questions, you should ssume tht ll necessry pckges
More informationSection 54 Trigonometric Functions
5 Trigonometric Functions Section 5 Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form
More informationTITLE THE PRINCIPLES OF COINTAP METHOD OF NONDESTRUCTIVE TESTING
TITLE THE PRINCIPLES OF COINTAP METHOD OF NONDESTRUCTIVE TESTING Sung Joon Kim*, DongChul Che Kore Aerospce Reserch Institute, 45 EoeunDong, YouseongGu, Dejeon, 35333, Kore Phone : 824286231 FAX
More informationCHAPTER 6 MAGNETIC EFFECT OF AN ELECTRIC CURRENT
CHAPTER 6 MAGNETIC EFFECT OF AN ELECTRIC CURRENT 6. Introduction Most of us re fmilir with the more obvious properties of mgnets nd compss needles. A mgnet, often in the form of short iron br, will ttrct
More informationLec 2: Gates and Logic
Lec 2: Gtes nd Logic Kvit Bl CS 34, Fll 28 Computer Science Cornell University Announcements Clss newsgroup creted Posted on wepge Use it for prtner finding First ssignment is to find prtners Due this
More informationCOMPARISON OF SOME METHODS TO FIT A MULTIPLICATIVE TARIFF STRUCTURE TO OBSERVED RISK DATA BY B. AJNE. Skandza, Stockholm ABSTRACT
COMPARISON OF SOME METHODS TO FIT A MULTIPLICATIVE TARIFF STRUCTURE TO OBSERVED RISK DATA BY B. AJNE Skndz, Stockholm ABSTRACT Three methods for fitting multiplictive models to observed, crossclssified
More informationVectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.
Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles
More informationOperations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
More informationAREA OF A SURFACE OF REVOLUTION
AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.
More informationChem 106 Thursday Feb. 3, 2011
Chem 106 Thursday Feb. 3, 2011 Chapter 13: The Chemistry of Solids Phase Diagrams  (no BornHaber cycle) 2/3/2011 1 Approx surface area (Å 2 ) 253 258 Which C 5 H 12 alkane do you think has the highest
More informationAP STATISTICS SUMMER MATH PACKET
AP STATISTICS SUMMER MATH PACKET This pcket is review of Algebr I, Algebr II, nd bsic probbility/counting. The problems re designed to help you review topics tht re importnt to your success in the clss.
More information