# 01 The Nature of Fluids

Size: px
Start display at page:

Transcription

1 01 The Nature of Fluids WRI 1/17 01 The Nature of Fluids (Water Resources I) Dave Morgan Prepared using Lyx, and the Beamer class in L A TEX 2ε, on September 12, 2007

2 Recommended Text 01 The Nature of Fluids WRI 2/17 A recommended text to accompany these notes is Applied Fluid Mechanics by Mott: Read sections: 1.3, 1.4, 1.6 (omit US units), 1.7, 1.8, 1.9, 1.11 Study Example Problems:

3 Elementary Properties of Fluids 01 The Nature of Fluids WRI 3/17 Fluids can be either liquid or gas A liquid tends to ow and conform to the shape of its container Liquids are not readily compressible (for the purpose of this course, we consider them to be imcompressible) A gas tends to expand to ll the closed container it is in (or to disperse if not contained). Gases are readily compressible We shall be primarily concerned with liquids

4 Primary Units 01 The Nature of Fluids WRI 4/17 SI units are used. Four primary units will be used extensively in this course: Quantity SI unit Dimension Length metre, m L Mass kilogram, kg M Time second, s T Temperature Kelvin, K θ (Current and luminosity are the two other primary SI units.)

5 Derived Units 01 The Nature of Fluids WRI 5/17 Quantity SI Unit Dimensions velocity m/s LT 1 acceleration m/s 2 LT 2 force N, newton MLT 2 kg m/s 2 energy J, joule (work) N m ML 2 T 2 kg m 2 /s 2 power N m/s ML 2 T 3 J/s pressure Pa, pascal ML 1 T 2 (stress) N/m 2 kg/m/s 2

6 Derived Units: 01 The Nature of Fluids WRI 6/17 Quantity SI Unit Dimensions Volume ow rate, Q m 3 /s L 3 T 1 L/s Weight ow rate, W N/s ML 1 S 2 kg/m/s 2 Mass ow rate, M kg/s MT 1 Specic weight, γ N/m 3 ML 2 T 2 Density, ρ kg/m 3 ML 3

7 Pressure 01 The Nature of Fluids WRI 7/17 Pressure is given by: p = F A It is the force per unit area on a surface, where 1 N/m 2 = 1 Pa (pascal)

8 Pressure 01 The Nature of Fluids WRI 7/17 Pressure is given by: p = F A It is the force per unit area on a surface, where 1 N/m 2 = 1 Pa (pascal) Blaise Pascal ( ), after whom the Pascal programming language was named, determined the following principles: 1 Pressure acts uniformly in all directions on a small volume of a uid at rest 2 In a uid conned by solid boundaries, pressure acts perpendicularly to the boundaries

9 Pascal's Laws 01 The Nature of Fluids WRI 8/17 Pressure acts uniformly in all directions on a small volume of a uid at rest. The forces must balance out (i.e. Σ F x = Σ F y = 0); otherwise the volume of uid will not be in equilibrium and cannot remain at rest. Also, the volume must be suciently small that we do not have to consider the mass, and therefore the weight, of the volume of uid. If the weight is not negligible, the upward pressure on the bottom of the volume will have to be greater than the downward pressure on the top of the volume so that Σ F y = F up W F down = 0.

10 Pascal's Laws 01 The Nature of Fluids WRI 9/17 In a uid conned by solid boundaries, pressure acts perpendicularly to the boundaries. Why is this true? (Consider a small volume of uid at rest against one of the boundaries? If this volume remains at rest, what are the forces that act upon it?)

11 Density 01 The Nature of Fluids WRI 10/17 Density is mass per unit volume: ρ = m V

12 Density 01 The Nature of Fluids WRI 10/17 Density is mass per unit volume: ρ = m V The density of water between 0 C and 15 C is close to 1000 kg/m 3. It has a maximum density at 4 C. Above 15 C, the density drops steadily to a density of 958 kg/m 3 at 100 C. (There is a table of values for the properties of water at the back of Applied Fluid Mechanics by Mott, or from numerous other sources)

13 Specic Weight 01 The Nature of Fluids WRI 11/17 Specic weight is weight per unit volume: γ = w V

14 Specic Weight 01 The Nature of Fluids WRI 11/17 Specic weight is weight per unit volume: γ = w V Water has a specic weight of 9.81 kn/m 3 between 0 C and 15 C.

15 Specic Weight 01 The Nature of Fluids WRI 11/17 Specic weight is weight per unit volume: γ = w V Water has a specic weight of 9.81 kn/m 3 between 0 C and 15 C. Since w = mg, it follows that: γ = w V = mg V = ρg

16 Specic Gravity 01 The Nature of Fluids WRI 12/17 Specic gravity is the ratio of the density (or specic weight) of a substance to the density (or specic weight) of water at 4 C. Then, the specic gravity of a substance s is given by sg = γ s γ w@4 C = ρ s ρ w@4 C

17 Specic Gravity 01 The Nature of Fluids WRI 12/17 Specic gravity is the ratio of the density (or specic weight) of a substance to the density (or specic weight) of water at 4 C. Then, the specic gravity of a substance s is given by sg = γ s γ w@4 C = ρ s ρ w@4 C The density of gasoline at 25 C is 680 kg/m 3 and the density of water at 4 C is 1000 kg/m 3. Therefore, the specic gravity of gasoline at 25 C is sg= 680/1000 = 0.68.

18 Specic Gravity 01 The Nature of Fluids WRI 12/17 Specic gravity is the ratio of the density (or specic weight) of a substance to the density (or specic weight) of water at 4 C. Then, the specic gravity of a substance s is given by sg = γ s γ w@4 C = ρ s ρ w@4 C The density of gasoline at 25 C is 680 kg/m 3 and the density of water at 4 C is 1000 kg/m 3. Therefore, the specic gravity of gasoline at 25 C is sg= 680/1000 = The specic weight of mercury at 25 C is kn/m 3 and the specic weight of water at 4 C is 9.81 kn/m 3 so the specic gravity of mercury at 25 C is sg = 13.54

19 Nature of Fluids 01 The Nature of Fluids WRI 13/17 Example Calculate the pressure produced in the oil in a closed cylinder by a piston with diameter 7.5 cm exerting a force of N

20 Nature of Fluids 01 The Nature of Fluids WRI 13/17 Example Calculate the pressure produced in the oil in a closed cylinder by a piston with diameter 7.5 cm exerting a force of N N 7.5 cm

21 Nature of Fluids 01 The Nature of Fluids WRI 13/17 Example Calculate the pressure produced in the oil in a closed cylinder by a piston with diameter 7.5 cm exerting a force of N N Solution 7.5 cm p = F A = N π(0.075) 2 /4 m 2 = Pa = 2.53 MPa

22 Nature of Fluids 01 The Nature of Fluids WRI 14/17 Example Calculate the weight of 1 m 3 of kerosene if it has a mass of 823 kg

23 Nature of Fluids 01 The Nature of Fluids WRI 14/17 Example Calculate the weight of 1 m 3 of kerosene if it has a mass of 823 kg Solution W = mg = 823 kg 9.81 m/s 2 = 8070 N Note: In general, use 5 signicant gures for interim calculations and 3 signicant gures for displayed solutions.

24 Nature of Fluids 01 The Nature of Fluids WRI 15/17 Example Calculate the density and the specic weight of benzene if its specic gravity is

25 Nature of Fluids 01 The Nature of Fluids WRI 15/17 Example Calculate the density and the specic weight of benzene if its specic gravity is Solution = ρ b ρ water@4 C ρ b = kg/m 3 = 876 kg/m = γ b γ water@4 C γ b = kn/m 3 = 8.59 kn/m 3

26 Nature of Fluids 01 The Nature of Fluids WRI 16/17 Example A cylindrical tank with diameter 12.0 m contains water at 20 C to a depth of 4.0 m. If the water is heated to 65 C, what is the depth of the water? (Assume that the tank dimensions remain constant and that there are no losses due to evaporation.)

27 Nature of Fluids Example A cylindrical tank with diameter 12.0 m contains water at 20 C to a depth of 4.0 m. If the water is heated to 65 C, what is the depth of the water? (Assume that the tank dimensions remain constant and that there are no losses due to evaporation.) Solution Volume at 20 C: V 20 = πd 2 h 20 4 Mass of water in the tank: = π(12.0 m)2 (4.0 m) 4 = m 3 m = ρv 20 = 998 kg/m m 3 = kg...continued 01 The Nature of Fluids WRI 16/17

28 Nature of Fluids 01 The Nature of Fluids WRI 17/17 Solution (continued) V 20 = πd 2 h 20 4 = π(12.0 m)2 (4.0 m) 4 = m 3 m = ρ 20 V 20 = 998 kg/m m 3 = kg Volume at 65 C: Depth at 65 C: V 65 = m kg = = m3 3 ρ kg/m h 65 = 4V 65 πd m3 = = m π(12.0) 2 The depth at 65 C is 4.06 m

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### XI / PHYSICS FLUIDS IN MOTION 11/PA

Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS

1 P a g e Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS The comparison of any physical quantity with its standard unit is called measurement. Physical Quantities All the quantities in terms of

### = 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

### p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh

IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: P..Sleigh@leeds.ac.uk r J Noakes:.J.Noakes@leeds.ac.uk January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1

### HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

### Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle

Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle 1 Purpose 1. To determine the density of a fluid, such as water, by measurement of its mass when

### OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS

Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS 1. Be able to determine the behavioural characteristics and parameters

### Physics 1114: Unit 6 Homework: Answers

Physics 1114: Unit 6 Homework: Answers Problem set 1 1. A rod 4.2 m long and 0.50 cm 2 in cross-sectional area is stretched 0.20 cm under a tension of 12,000 N. a) The stress is the Force (1.2 10 4 N)

### METRIC CONVERSION TABLE Multiply By To Obtain Millimetres 0.03937 Inches Millimetres 0.003281 Feet Metres 3.281 Feet Kilometres 0.

Linear Measure Square Measure or Area Volume or Capacity Mass Density Force* Pressure* or Stress* Temperature METRIC CONVERSION TABLE Multiply By To Obtain Millimetres 0.03937 Inches Millimetres 0.003281

### Chapter 27 Static Fluids

Chapter 27 Static Fluids 27.1 Introduction... 1 27.2 Density... 1 27.3 Pressure in a Fluid... 2 27.4 Pascal s Law: Pressure as a Function of Depth in a Fluid of Uniform Density in a Uniform Gravitational

### CE 204 FLUID MECHANICS

CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:

### WEEK 1. Engineering Calculations Processes Process Variables

WEEK 1 Engineering Calculations Processes Process Variables 2.1 Units and Dimensions Units and dimensions are important in science and engineering A measured quantity has a numerical value and a unit (ex:

### Chapter 15. FLUIDS. 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg. ρ = = ; ρ = 5.

Chapter 15. FLUIDS Density 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg ρ = ; = = ; = 5.06 x 10-4 m ρ 790 kg/m W = D = ρg = 790 kg/m )(9.8 m/s )(5.06 x

### Grade 8 Science Chapter 9 Notes

Grade 8 Science Chapter 9 Notes Force Force - Anything that causes a change in the motion of an object. - usually a push or a pull. - the unit for force is the Newton (N). Balanced Forces - forces that

### Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional

Chapter 14 Fluid Mechanics. Solutions of Selected Problems 14.1 Problem 14.18 (In the text book) Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional area

### Three Methods for Calculating the Buoyant Force Gleue: Physics

Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed

### CHAPTER 3: FORCES AND PRESSURE

CHAPTER 3: FORCES AND PRESSURE 3.1 UNDERSTANDING PRESSURE 1. The pressure acting on a surface is defined as.. force per unit. area on the surface. 2. Pressure, P = F A 3. Unit for pressure is. Nm -2 or

### Chapter 13 - Solutions

= Chapter 13 - Solutions Description: Find the weight of a cylindrical iron rod given its area and length and the density of iron. Part A On a part-time job you are asked to bring a cylindrical iron rod

### a cannonball = (P cannon P atmosphere )A cannon m cannonball a cannonball = (P cannon P atmosphere ) πd 2 a cannonball = 5.00 kg

2.46 A piston/cylinder with a cross-sectional area of 0.01 m 3 has a mass of 100 resting on the stops as shown in the figure. With an outside atmospheric pressure of 100 kpa what should the water pressure

### CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and

### Buoyant Force and Archimedes Principle

Buoyant Force and Archimedes Principle Predict the behavior of fluids as a result of properties including viscosity and density Demonstrate why objects sink or float Apply Archimedes Principle by measuring

### Fundamental Concepts in Fluid Mechanics

A significant portion of these notes summarizes various sections of Massey, but additional material from other sources is also included. Note that the notes are incomplete; they will be completed during

### CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

### An Introduction to Fluid Mechanics

0. Contents of the Course Notes For the First Year Lecture Course: An Introduction to Fluid Mechanics School of Civil Engineering, University of Leeds. CIVE1400 FLUID MECHANICS Dr Andrew Sleigh January

### PHYS-2010: General Physics I Course Lecture Notes Section XIII

PHYS-2010: General Physics I Course Lecture Notes Section XIII Dr. Donald G. Luttermoser East Tennessee State University Edition 2.5 Abstract These class notes are designed for use of the instructor and

### OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

### Pump Formulas Imperial and SI Units

Pump Formulas Imperial and Pressure to Head H = head, ft P = pressure, psi H = head, m P = pressure, bar Mass Flow to Volumetric Flow ṁ = mass flow, lbm/h ρ = fluid density, lbm/ft 3 ṁ = mass flow, kg/h

### SURFACE TENSION. Definition

SURFACE TENSION Definition In the fall a fisherman s boat is often surrounded by fallen leaves that are lying on the water. The boat floats, because it is partially immersed in the water and the resulting

### Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar)

Vatten(byggnad) Vätskors egenskaper (1) Hydrostatik (3) Grundläggande ekvationer (5) Rörströmning (4) 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vätska som kontinuerligt medium

### Notes on Polymer Rheology Outline

1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity

### Scalars, Vectors and Tensors

Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector

### Properties of Fluids

CHAPTER Properties of Fluids 1 1.1 INTRODUCTION A fluid can be defined as a substance which deforms or yields continuously when shear stress is applied to it, no matter how small it is. Fluids can be subdivided

### 39th International Physics Olympiad - Hanoi - Vietnam - 2008. Theoretical Problem No. 3

CHANGE OF AIR TEMPERATURE WITH ALTITUDE, ATMOSPHERIC STABILITY AND AIR POLLUTION Vertical motion of air governs many atmospheric processes, such as the formation of clouds and precipitation and the dispersal

### Archimedes Principle. Biological Systems

Archimedes Principle Introduction Many of the substances we encounter in our every day lives do not have rigid structure or form. Such substances are called fluids and can be divided into two categories:

### Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

### EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

### 1 Wetting your feet. 2 Scaling. 8.298 Lies / Check your understanding: Solutions

1 Wetting your feet 1.1 Estimate how many liters are in a barrel of oil and how many barrels of oil the United States imports every year. A: A barrel may be a few feet high, so h 1m, and have a diameter

### Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

### Physical Quantities, Symbols and Units

Table 1 below indicates the physical quantities required for numerical calculations that are included in the Access 3 Physics units and the Intermediate 1 Physics units and course together with the SI

### INTERIM UNITS OF MEASURE As suggested by Federal Standard 376B January 27, 1993. hectare (ha) Hundred for traffic buttons.

SI - The Metrics International System of Units The International System of Units (SI) is a modernized version of the metric system established by international agreement. The metric system of measurement

### Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

### Unit 1 INTRODUCTION 1.1.Introduction 1.2.Objectives

Structure 1.1.Introduction 1.2.Objectives 1.3.Properties of Fluids 1.4.Viscosity 1.5.Types of Fluids. 1.6.Thermodynamic Properties 1.7.Compressibility 1.8.Surface Tension and Capillarity 1.9.Capillarity

### Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6

Gases Petrucci, Harwood and Herring: Chapter 6 CHEM 1000A 3.0 Gases 1 We will be looking at Macroscopic and Microscopic properties: Macroscopic Properties of bulk gases Observable Pressure, volume, mass,

### Buoyancy Problem Set

Buoyancy Problem Set 1) A stone weighs 105 lb in air. When submerged in water, it weighs 67.0 lb. Find the volume and specific gravity of the stone. (Specific gravity of an object: ratio object density

### When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

### Preferred SI (Metric) Units

Quantity Unit Symbol LENGTH meter m Preferred SI (Metric) Units Metric-U.S. Customary Unit Equivalents 1 m = 1000 mm = 39.37 in. = millimeter mm 25.4 mm = 1 inch micrometer μm 1 μm = 10-6 m Remarks 3.281

### Solution for Homework #1

Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

### MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

### Pressure in Fluids. Introduction

Pressure in Fluids Introduction In this laboratory we begin to study another important physical quantity associated with fluids: pressure. For the time being we will concentrate on static pressure: pressure

### PHYSICAL QUANTITIES AND UNITS

1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them

### FXA 2008. Candidates should be able to : Define and apply the concept of specific heat capacity. Select and apply the equation : E = mcδθ

UNIT G484 Module 3 4.3.3 Thermal Properties of Materials 1 Candidates should be able to : Define and apply the concept of specific heat capacity. Select and apply the equation : E = mcδθ The MASS (m) of

### Name Class Date. F 2 2269 N A 1 88.12 cm 2 A 2 1221 cm 2 Unknown: Step 2: Write the equations for Pascal s principle and pressure, force, and area.

Skills Worksheet Math Skills Pascal s Principle After you study each sample problem and solution, work out the practice problems on a separate sheet of paper. Write your answers in the spaces provided.

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### 9460218_CH06_p069-080.qxd 1/20/10 9:44 PM Page 69 GAS PROPERTIES PURPOSE

9460218_CH06_p069-080.qxd 1/20/10 9:44 PM Page 69 6 GAS PROPERTIES PURPOSE The purpose of this lab is to investigate how properties of gases pressure, temperature, and volume are related. Also, you will

### 2.016 Hydrodynamics Reading #2. 2.016 Hydrodynamics Prof. A.H. Techet

Pressure effects 2.016 Hydrodynamics Prof. A.H. Techet Fluid forces can arise due to flow stresses (pressure and viscous shear), gravity forces, fluid acceleration, or other body forces. For now, let us

### Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)

### Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:

Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force

### So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.

Name: MULTIPLE CHOICE: Questions 1-11 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,

### Homework 9. Problems: 12.31, 12.32, 14.4, 14.21

Homework 9 Problems: 1.31, 1.3, 14.4, 14.1 Problem 1.31 Assume that if the shear stress exceeds about 4 10 N/m steel ruptures. Determine the shearing force necessary (a) to shear a steel bolt 1.00 cm in

### Dimensional Analysis

Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

### Column Design. Gavin Duffy School of Electrical Engineering Systems DIT, Kevin Street

Column Design Gavin Duffy School of Electrical Engineering Systems DIT, Kevin Street Learning Outcomes After this lecture you should be able to. Explain why the ratio of vapour and liquid velocities is

### Fluids I. Level : Conceptual Physics/Physics I. Q1) Order the following materials from lowest to greatest according to their densities.

Fluids I Level : Conceptual Physics/Physics I Teacher : Kim 1. Density One of the properties of any substances (solids, liquids and gases) is the measure of how tightly the material is packed together.

### ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those

### APPLIED FLUID MECHANICS. TUTORIAL No.6 DIMENSIONAL ANALYSIS. When you have completed this tutorial you should be able to do the following.

APPLIED FLUID MECHANICS TUTORIAL No.6 DIMENSIONAL ANALYSIS When you have completed this tutorial you should be able to do the following. Explain the basic system of dimensions. Find the relationship between

### W i f(x i ) x. i=1. f(x i ) x = i=1

Work Force If an object is moving in a straight line with position function s(t), then the force F on the object at time t is the product of the mass of the object times its acceleration. F = m d2 s dt

### 1Physical quantities and units

1Physical quantities and units By the end of this chapter you should be able to: explain what is meant by a in physics; state the five fundamental quantities recognised and used in physics; explain the

### Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

### Thermodynamics AP Physics B. Multiple Choice Questions

Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium

### Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 5:Chapter 5 5 1C Name four physical

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

### FLUID FORCES ON CURVED SURFACES; BUOYANCY

FLUID FORCES ON CURVED SURFCES; BUOYNCY The principles applicable to analysis of pressure-induced forces on planar surfaces are directly applicable to curved surfaces. s before, the total force on the

### Concept Questions Archimedes Principle. 8.01t Nov 24, 2004

Concept Questions Archimedes Principle 8.01t Nov 24, 2004 Pascal s Law Pressure applied to an enclosed fluid is transmitted undiminished to every portion of the fluid and the walls of the containing vessel

### THE KINETIC THEORY OF GASES

Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

### The value of the wastewater flow used for sewer design is the daily peak flow. This can be estimated as follows:

This Section presents the theory of simplified sewer design. Firstly, in Section 2.1, the peak daily wastewater flow in the length of sewer being designed is described. Section 2.2 presents the trigonometric

### The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics

Lecture 2: Atmospheric Thermodynamics Ideal Gas Law (Equation of State) Hydrostatic Balance Heat and Temperature Conduction, Convection, Radiation Latent Heating Adiabatic Process Lapse Rate and Stability

### Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

### LAB #3: MEASURING SPECIFIC GRAVITY AND DENSITY. Set-up and Materials for Experiment

Set-up and Materials for Experiment 1 OVERVIEW The mass density of a substance is a measure of the mass that that substance contains in a given volume. Mathematically is written: ρ = m V ( Density = Volume

### UNIT (1) MEASUREMENTS IN CHEMISTRY

UNIT (1) MEASUREMENTS IN CHEMISTRY Measurements are part of our daily lives. We measure our weights, driving distances, and gallons of gasoline. As a health professional you might measure blood pressure,

### Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

### The ratio of inertial to viscous forces is commonly used to scale fluid flow, and is called the Reynolds number, given as:

12.001 LAB 3C: STOKES FLOW DUE: WEDNESDAY, MARCH 9 Lab Overview and Background The viscosity of a fluid describes its resistance to deformation. Water has a very low viscosity; the force of gravity causes

### CHEMISTRY GAS LAW S WORKSHEET

Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The volume of a fixed mass of gas is

### Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

### L r = L m /L p. L r = L p /L m

NOTE: In the set of lectures 19/20 I defined the length ratio as L r = L m /L p The textbook by Finnermore & Franzini defines it as L r = L p /L m To avoid confusion let's keep the textbook definition,

### PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,

### Phys222 W11 Quiz 1: Chapters 19-21 Keys. Name:

Name:. In order for two objects to have the same temperature, they must a. be in thermal equilibrium.

### CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION

CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat

### Chemistry 13: States of Matter

Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

### ENGINEERING INFORMATION Hot water and steam service

ENGINEERING INFORMTION Hot water and steam service WHT IS STEM? Like other substances, water can exist in the form of a solid, when we call it ice; as a liquid when we call it water or as a gas when we

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### Density. Density is how concentrated or compact matter is.

Density Density is how concentrated or compact matter is. Packing snow into snowballs increases its density. You are squeezing large amounts of matter into small volumes of space. Equation for Density

### TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

### Physics 101 Hour Exam 3 December 1, 2014

Physics 101 Hour Exam 3 December 1, 2014 Last Name: First Name ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Calculators cannot be shared. Please keep

### Ponce de Leon Middle School Physical Science 2016 Summer Instructional Packet

Ponce de Leon Middle School Physical Science 2016 Summer Instructional Packet DIRECTIONS: 1. You are required to complete the Summer Instructional Packet. 2. Turn in your completed package to your teacher,

### STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable