Angle: An angle is the union of two line segments (or two rays) with a common endpoint, called a vertex.


 Hillary Cobb
 2 years ago
 Views:
Transcription
1 MATH 008: Angles Angle: An angle is the union of two line segents (or two rays) with a coon endpoint, called a vertex. A B C α Adjacent angles: Adjacent angles are two angles that share a vertex, have a coon side, but whose interiors do not intersect. A B D C Classification of Angles according to their easureents: Acute angle: angle easuring less than 90 Right angle: angle easuring 90 Obtuse angle: angle easuring ore than 90 but less than 80 Straight angle: angle easuring 80 Reflex angle: angle easuring ore than 80
2 2 MATH 008: ANGLES Vertical Angles: Opposite angles fored by two intersecting lines are called vertical angles. IMPORTANT: Vertical angles always have the sae easureent. 2 4 In the above figure, and are vertical angles; 2 and 4 are vertical angles. Copleentary Angles: Two angles whose su is 90 are called copleentary angles. If A and B are copleentary angles, then A is the copleent of B and B is the copleent of A. 2 In the above figure, and 2 are copleentary angles. Suppleentary Angles: Two angles whose su is 80 are called suppleentary angles. If A and B are suppleentary angles, then A is the suppleent of B and B is the suppleent of A. 2 In the above figure, and 2 are suppleentary angles.
3 MATH 008: ANGLES Exaple : Find the easure of each arked angle. (a) (x  4) (4x +9) (b) (x + 25) (6x  7) (c) (x0) (6x+)
4 4 MATH 008: ANGLES ANGLES ASSOCIATED WITH PARALLEL LINES: Corresponding Angles have the sae location relative to lines l, and transversal t. (IMPORTANT: l if and only if corresponding angles fored by l,, and t are congruent.) In Figure A, and 5 are corresponding angles. The following pairs are also corresponding angles: 2 and 6; and 7; 4 and 8. t l Figure A Alternate Interior Angles are nonadjacent angles fored by lines l,, and transversal t, the union of whose interiors contain the region between l and. (IMPORTANT: l if and only if alternate interior angles fored by l, and t are congruent.) In Figure A, and 6 are alternate interior angles. Likewise, 4 and 5 are also alternate interior angles. Alternate Exterior Angles are angles on the outer sides of two lines cut by a transversal, but on opposite sides of the transversal (IMPORTANT: l if and only if alternate exterior angles fored by l, and t are congruent.) In Figure A, 2 and 7 are alternate exterior angles. Siilarly, and 8 are alternate exterior angles. Interior Angles on the sae side of the transversal are interior angles whose interiors are the sae. (IMPORTANT: l if and only if the interior angles on the sae side of the transversal are suppleentary.) In Figure A, and 5, as well as 4 and 6, are interior angles on the sae side of the transversal.
5 MATH 008: ANGLES 5 Exaple 2: In the diagra below, l and r s. Find the easureent of each nubered angle l r s NOTES: The su of the angles inside a triangle is 80. The su of the angles inside a quadrilateral is 60. Exaple : In the diagra below, BG EF. Find the easure of each angle. B E C A H G F
6 6 MATH 008: ANGLES Exercises In # #6 find the easure of each arked angle.. 4. (x  7) (7x+27) (5x + ) (4x + 6) (x+) (4x  56) (8x + 7) (x  4). (x  5) (5x + ) 6. (x) (4x+7)
7 MATH 008: ANGLES 7 7. Using the diagra below, nae the relationship between the following pairs of angles, given l and n p n p l a) and 5 b) and 5 c) and 9 d) and 0 e) 2 and 6 f) 6 and 8 g) and 7 h) 4 and 0 i) 7 and 0 8. In the diagra below, n. Find the easure of each nubered angle n 9. In the diagra below, t s and n. Find the easureent of each nubered angle. t s n
8 8 MATH 008: ANGLES 0. In the diagra below, l and r s. Find the easureent of each nubered angle l t r s. In the following figure, n and r s. Given the angle easures indicated on the figure, find the easure of each lettered angle. r 50 n 05 a b c e d s f 2. Find the easure of x x. In the following figure, AB CD. Find the easure of x and y. B x D 70 A y 50 C
9 MATH 008: ANGLES 9 4. In the figure below, n. Find the easure of each labeled angle. n e d c f b a 6 5. Find the easure of a and b. b a Find the of each labeled angle. 50 a b c i 60 d 0 0 e f g h In the figure below, ( BF C) = 55, ( AF D) = 50, and ( BF E) = 20. Deterine the easures of AF B and CF D. B C D A F E
10 0 MATH 008: ANGLES ANSWERS. Both angles are , 2. 54, , Both angles are , (a) alternate exterior angles (b) alternate exterior angles (c) corresponding angles (d) interior angles on the sae side of the transversal (suppleentary angles) (e) alternate interior angles (f) corresponding angles (g) alternate interior angles (h) alternate interior angles (i) interior angles on the sae side of the transversal (suppleentary angles) 8. ( ) = 82, ( 2) = 58, ( ) = 58, ( 4) = 82, ( 5) = 40, ( 6) = 58, ( 7) = 40, ( 8) = ( ) = 65, ( 2) = 5, ( ) = 65, ( 4) = 5, ( 5) = 5, ( 6) = ( ) = 05, ( 2) = 75, ( ) = 05, ( 4) = 05, ( 5) = 9, ( 6) = 6, ( 7) = 05, ( 8) = 9, ( 9) = 6, ( 0) = 05. ( a) = 40, ( b) = 75, ( c) = 55, ( d) = 45, ( e) = 5, ( f) = ( x) = 8. ( x) = 50, ( y) = ( a) = 8, ( b) = 64, ( c) = 08, ( d) = 72, ( e) = 55, ( f) = 5 5. ( a) = 58, ( b) = ( a) = 70, ( b) = 0, ( c) = 00, ( d) = 20, ( e) = 20, ( f) = 20, ( g) = 80, ( h) = 60, ( i) = ( AF B) = 60, ( CF D) = 5
Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.
Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.
More information73 Parallel and Perpendicular Lines
Learn to identify parallel, perpendicular, and skew lines, and angles formed by a transversal. 73 Parallel Insert Lesson and Perpendicular Title Here Lines Vocabulary perpendicular lines parallel lines
More information#2. Isosceles Triangle Theorem says that If a triangle is isosceles, then its BASE ANGLES are congruent.
1 Geometry Proofs Reference Sheet Here are some of the properties that we might use in our proofs today: #1. Definition of Isosceles Triangle says that If a triangle is isosceles then TWO or more sides
More informationGeometry Review Flash Cards
point is like a star in the night sky. However, unlike stars, geometric points have no size. Think of them as being so small that they take up zero amount of space. point may be represented by a dot on
More informationA convex polygon is a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon.
hapter 7 Polygons A polygon can be described by two conditions: 1. No two segments with a common endpoint are collinear. 2. Each segment intersects exactly two other segments, but only on the endpoints.
More informationIntermediate Math Circles October 10, 2012 Geometry I: Angles
Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,
More informationA geometric construction is a drawing of geometric shapes using a compass and a straightedge.
Geometric Construction Notes A geometric construction is a drawing of geometric shapes using a compass and a straightedge. When performing a geometric construction, only a compass (with a pencil) and a
More informationDEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
More informationA summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:
summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of midpoint and segment bisector M If a line intersects another line segment
More informationAlgebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
More informationLine. A straight path that continues forever in both directions.
Geometry Vocabulary Line A straight path that continues forever in both directions. Endpoint A point that STOPS a line from continuing forever, it is a point at the end of a line segment or ray. Ray A
More informationGrade 4  Module 4: Angle Measure and Plane Figures
Grade 4  Module 4: Angle Measure and Plane Figures Acute angle (angle with a measure of less than 90 degrees) Angle (union of two different rays sharing a common vertex) Complementary angles (two angles
More informationChapter 1. Foundations of Geometry: Points, Lines, and Planes
Chapter 1 Foundations of Geometry: Points, Lines, and Planes Objectives(Goals) Identify and model points, lines, and planes. Identify collinear and coplanar points and intersecting lines and planes in
More informationChapters 4 and 5 Notes: Quadrilaterals and Similar Triangles
Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles IMPORTANT TERMS AND DEFINITIONS parallelogram rectangle square rhombus A quadrilateral is a polygon that has four sides. A parallelogram is
More informationA segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. Perpendicular Bisector Theorem
Perpendicular Bisector Theorem A segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. Converse of the Perpendicular Bisector Theorem If a
More informationGeometry Vocabulary. Created by Dani Krejci referencing:
Geometry Vocabulary Created by Dani Krejci referencing: http://mrsdell.org/geometry/vocabulary.html point An exact location in space, usually represented by a dot. A This is point A. line A straight path
More informationSec 1.1 CC Geometry  Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB.
Sec 1.1 CC Geometry  Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB. A B C **Using a ruler measure the two lengths to make sure they have
More information3.1. Angle Pairs. What s Your Angle? Angle Pairs. ACTIVITY 3.1 Investigative. Activity Focus Measuring angles Angle pairs
SUGGESTED LEARNING STRATEGIES: Think/Pair/Share, Use Manipulatives Two rays with a common endpoint form an angle. The common endpoint is called the vertex. You can use a protractor to draw and measure
More informationObjective. Cabri Jr. Tools
Objective To measure the interior and exterior angles of a triangle and find their relationships Activity 4 Cabri Jr. Tools Introduction Angles of a Triangle Interior angles of a triangle are the angles
More informationLines, Segments, Rays, and Angles
Line and Angle Review Thursday, July 11, 2013 10:22 PM Lines, Segments, Rays, and Angles Slide Notes Title Lines, Segment, Ray A line goes on forever, so we use an arrow on each side to indicate that.
More information1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
More informationGeometry: 11 Day 1 Points, Lines and Planes
Geometry: 11 Day 1 Points, Lines and Planes What are the Undefined Terms? The Undefined Terms are: What is a Point? How is a point named? Example: What is a Line? A line is named two ways. What are the
More informationFinal Review Geometry A Fall Semester
Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over
More information**The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle.
Geometry Week 7 Sec 4.2 to 4.5 section 4.2 **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Protractor Postulate:
More informationABC is the triangle with vertices at points A, B and C
Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry  symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the
More information11.3 Curves, Polygons and Symmetry
11.3 Curves, Polygons and Symmetry Polygons Simple Definition A shape is simple if it doesn t cross itself, except maybe at the endpoints. Closed Definition A shape is closed if the endpoints meet. Polygon
More informationparallel lines perpendicular lines intersecting lines vertices lines that stay same distance from each other forever and never intersect
parallel lines lines that stay same distance from each other forever and never intersect perpendicular lines lines that cross at a point and form 90 angles intersecting lines vertices lines that cross
More informationChapter 3. Chapter 3 Opener. Section 3.1. Big Ideas Math Blue WorkedOut Solutions. Try It Yourself (p. 101) So, the value of x is 112.
Chapter 3 Opener Try It Yourself (p. 101) 1. The angles are vertical. x + 8 120 x 112 o, the value of x is 112. 2. The angles are adjacent. ( x ) + 3 + 43 90 x + 46 90 x 44 o, the value of x is 44. 3.
More informationacute angle adjacent angles angle bisector between axiom Vocabulary Flash Cards Chapter 1 (p. 39) Chapter 1 (p. 48) Chapter 1 (p.38) Chapter 1 (p.
Vocabulary Flash ards acute angle adjacent angles hapter 1 (p. 39) hapter 1 (p. 48) angle angle bisector hapter 1 (p.38) hapter 1 (p. 42) axiom between hapter 1 (p. 12) hapter 1 (p. 14) collinear points
More informationAngles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
More informationRules of angles (7 9)
Rules of angles (7 9) Contents asic rules of angles Angles in parallel lines (7 9) 3 Angles in polygons (year 9) 4 3. The central angle in a regular polygon...................... 4 3. The exterior angle
More informationGeometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment
Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points
More information2 feet Opposite sides of a rectangle are equal. All sides of a square are equal. 2 X 3 = 6 meters = 18 meters
GEOMETRY Vocabulary 1. Adjacent: Next to each other. Side by side. 2. Angle: A figure formed by two straight line sides that have a common end point. A. Acute angle: Angle that is less than 90 degree.
More informationLesson 10.1 Skills Practice
Lesson 0. Skills Practice Name_Date Location, Location, Location! Line Relationships Vocabulary Write the term or terms from the box that best complete each statement. intersecting lines perpendicular
More informationThe angle sum property of triangles can help determine the sum of the measures of interior angles of other polygons.
Interior Angles of Polygons The angle sum property of triangles can help determine the sum of the measures of interior angles of other polygons. The sum of the measures of the interior angles of a triangle
More information1.2 Informal Geometry
1.2 Informal Geometry Mathematical System: (xiomatic System) Undefined terms, concepts: Point, line, plane, space Straightness of a line, flatness of a plane point lies in the interior or the exterior
More informationPOTENTIAL REASONS: Definition of Congruence:
Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides
More informationChapter 1: Essentials of Geometry
Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,
More informationSession 4 Angle Measurement
Key Terms in This Session Session 4 Angle Measurement New in This Session acute angle adjacent angles central angle complementary angles congruent angles exterior angle interior (vertex) angle irregular
More informationGeometry. Unit 6. Quadrilaterals. Unit 6
Geometry Quadrilaterals Properties of Polygons Formed by three or more consecutive segments. The segments form the sides of the polygon. Each side intersects two other sides at its endpoints. The intersections
More informationName: 22K 14A 12T /48 MPM1D Unit 7 Review True/False (4K) Indicate whether the statement is true or false. Show your work
Name: _ 22K 14A 12T /48 MPM1D Unit 7 Review True/False (4K) Indicate whether the statement is true or false. Show your work 1. An equilateral triangle always has three 60 interior angles. 2. A line segment
More information1 of 69 Boardworks Ltd 2004
1 of 69 2 of 69 Intersecting lines 3 of 69 Vertically opposite angles When two lines intersect, two pairs of vertically opposite angles are formed. a d b c a = c and b = d Vertically opposite angles are
More informationStudent Name: Teacher: Date: District: MiamiDade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1
Student Name: Teacher: Date: District: MiamiDade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the
More informationThis is a tentative schedule, date may change. Please be sure to write down homework assignments daily.
Mon Tue Wed Thu Fri Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Introductions, Expectations, Course Outline and Carnegie Review summer packet Topic: (11) Points, Lines, & Planes Topic: (12) Segment Measure Quiz
More information2. Sketch and label two different isosceles triangles with perimeter 4a + b. 3. Sketch an isosceles acute triangle with base AC and vertex angle B.
Section 1.5 Triangles Notes Goal of the lesson: Explore the properties of triangles using Geometer s Sketchpad Define and classify triangles and their related parts Practice writing more definitions Learn
More informationNCERT. not to be republished LINES AND ANGLES UNIT 5. (A) Main Concepts and Results
UNIT 5 LINES AND ANGLES (A) Main Concepts and Results An angle is formed when two lines or rays or line segments meet or intersect. When the sum of the measures of two angles is 90, the angles are called
More informationDefinitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
More informationCentroid: The point of intersection of the three medians of a triangle. Centroid
Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:
More informationChapter Three. Parallel Lines and Planes
Chapter Three Parallel Lines and Planes Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately
More information2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?
MATH 206  Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of
More informationGeometry. Kellenberg Memorial High School
20152016 Geometry Kellenberg Memorial High School Undefined Terms and Basic Definitions 1 Click here for Chapter 1 Student Notes Section 1 Undefined Terms 1.1: Undefined Terms (we accept these as true)
More informationInscribed Angle Theorem and Its Applications
: Student Outcomes Prove the inscribed angle theorem: The measure of a central angle is twice the measure of any inscribed angle that intercepts the same arc as the central angle. Recognize and use different
More informationTopics Covered on Geometry Placement Exam
Topics Covered on Geometry Placement Exam  Use segments and congruence  Use midpoint and distance formulas  Measure and classify angles  Describe angle pair relationships  Use parallel lines and transversals
More informationAngles formed by 2 Lines being cut by a Transversal
Chapter 4 Anges fored by 2 Lines being cut by a Transversa Now we are going to nae anges that are fored by two ines being intersected by another ine caed a transversa. 1 2 3 4 t 5 6 7 8 If I asked you
More informationName: Chapter 4 Guided Notes: Congruent Triangles. Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester
Name: Chapter 4 Guided Notes: Congruent Triangles Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester CH. 4 Guided Notes, page 2 4.1 Apply Triangle Sum Properties triangle polygon
More informationGEOMETRY: TRIANGLES COMMON MISTAKES
GEOMETRY: TRIANGLES COMMON MISTAKES 1 GeometryClassifying Triangles How Triangles are Classified TypesTriangles are classified by Angles or Sides By Angles Obtuse Trianglestriangles with one obtuse
More informationUnit 3: Triangle Bisectors and Quadrilaterals
Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties
More information37 Basic Geometric Shapes and Figures
37 Basic Geometric Shapes and Figures In this section we discuss basic geometric shapes and figures such as points, lines, line segments, planes, angles, triangles, and quadrilaterals. The three pillars
More informationActivity Set 4. Trainer Guide
Geometry and Measurement of Plane Figures Activity Set 4 Trainer Guide Int_PGe_04_TG GEOMETRY AND MEASUREMENT OF PLANE FIGURES Activity Set #4 NGSSS 3.G.3.1 NGSSS 3.G.3.3 NGSSS 4.G.5.1 NGSSS 5.G.3.1 Amazing
More informationChapter 1 Line and Angle Relationships
Chapter 1 Line and Angle Relationships SECTION 1.1: Sets, Statements, and Reasoning 1. a. Not a statement. b. Statement; true c. Statement; true d. Statement; false. a. Statement; true b. Not a statement.
More informationDuplicating Segments and Angles
CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty
More informationThreeDimensional Figures or Space Figures. Rectangular Prism Cylinder Cone Sphere. TwoDimensional Figures or Plane Figures
SHAPE NAMES ThreeDimensional Figures or Space Figures Rectangular Prism Cylinder Cone Sphere TwoDimensional Figures or Plane Figures Square Rectangle Triangle Circle Name each shape. [triangle] [cone]
More informationCongruence. Set 5: Bisectors, Medians, and Altitudes Instruction. Student Activities Overview and Answer Key
Instruction Goal: To provide opportunities for students to develop concepts and skills related to identifying and constructing angle bisectors, perpendicular bisectors, medians, altitudes, incenters, circumcenters,
More informationTImath.com. Geometry. Triangle Sides & Angles
Triangle Sides & Angles ID: 8792 Time required 40 minutes Activity Overview In this activity, students will explore side and angle relationships in a triangle. First, students will discover where the longest
More informationBASIC GEOMETRY GLOSSARY
BASIC GEOMETRY GLOSSARY Acute angle An angle that measures between 0 and 90. Examples: Acute triangle A triangle in which each angle is an acute angle. Adjacent angles Two angles next to each other that
More informationGeometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
More informationMATH STUDENT BOOK. 8th Grade Unit 6
MATH STUDENT BOOK 8th Grade Unit 6 Unit 6 Measurement Math 806 Measurement Introduction 3 1. Angle Measures and Circles 5 Classify and Measure Angles 5 Perpendicular and Parallel Lines, Part 1 12 Perpendicular
More informationWinter 2016 Math 213 Final Exam. Points Possible. Subtotal 100. Total 100
Winter 2016 Math 213 Final Exam Name Instructions: Show ALL work. Simplify wherever possible. Clearly indicate your final answer. Problem Number Points Possible Score 1 25 2 25 3 25 4 25 Subtotal 100 Extra
More informationMaths Toolkit Teacher s notes
Angles turtle Year 7 Identify parallel and perpendicular lines; know the sum of angles at a point, on a straight line and in a triangle; recognise vertically opposite angles. Use a ruler and protractor
More informationChapter One. Points, Lines, Planes, and Angles
Chapter One Points, Lines, Planes, and Angles Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately
More informationSTUDY OF THE LINE: THE PERPENDICULAR BISECTOR
STUDY OF THE LINE: THE PERPENDICULR ISECTOR Study of the Line, Second Series: The Perpendicular isector (4: 20) Material Geometry Classified Nomenclature 4 (20) Paper Pencil Compass Ruler Presentation
More informationThe Four Centers of a Triangle. Points of Concurrency. Concurrency of the Medians. Let's Take a Look at the Diagram... October 25, 2010.
Points of Concurrency Concurrent lines are three or more lines that intersect at the same point. The mutual point of intersection is called the point of concurrency. Example: x M w y M is the point of
More informationMath 330A Class Drills All content copyright October 2010 by Mark Barsamian
Math 330A Class Drills All content copyright October 2010 by Mark Barsamian When viewing the PDF version of this document, click on a title to go to the Class Drill. Drill for Section 1.3.1: Theorems about
More informationMost popular response to
Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles
More informationObjectives. Cabri Jr. Tools
^Åíáîáíó=NU Objectives To investigate the special properties of an altitude, a median, and an angle bisector To reinforce the differences between an altitude, a median, and an angle bisector Cabri Jr.
More informationPicture. Right Triangle. Acute Triangle. Obtuse Triangle
Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from
More informationPicture. Right Triangle. Acute Triangle. Obtuse Triangle
Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from
More information100 Math Facts 6 th Grade
100 Math Facts 6 th Grade Name 1. SUM: What is the answer to an addition problem called? (N. 2.1) 2. DIFFERENCE: What is the answer to a subtraction problem called? (N. 2.1) 3. PRODUCT: What is the answer
More informationNCERT. In examples 1 and 2, write the correct answer from the given four options.
MTHEMTIS UNIT 2 GEOMETRY () Main oncepts and Results line segment corresponds to the shortest distance between two points. The line segment joining points and is denoted as or as. ray with initial point
More informationGeometry Unit 1. Basics of Geometry
Geometry Unit 1 Basics of Geometry Using inductive reasoning  Looking for patterns and making conjectures is part of a process called inductive reasoning Conjecture an unproven statement that is based
More information55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points.
Geometry Core Semester 1 Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which topics you need to review most carefully. The unit
More informationGeometry 1. Unit 3: Perpendicular and Parallel Lines
Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples
More informationThe Protractor Postulate and the SAS Axiom. Chapter The Axioms of Plane Geometry
The Protractor Postulate and the SAS Axiom Chapter 3.43.7 The Axioms of Plane Geometry The Protractor Postulate and Angle Measure The Protractor Postulate (p51) defines the measure of an angle (denoted
More informationHow Do You Measure a Triangle? Examples
How Do You Measure a Triangle? Examples 1. A triangle is a threesided polygon. A polygon is a closed figure in a plane that is made up of segments called sides that intersect only at their endpoints,
More informationacute angle acute triangle Cartesian coordinate system concave polygon congruent figures
acute angle acute triangle Cartesian coordinate system concave polygon congruent figures convex polygon coordinate grid coordinates dilatation equilateral triangle horizontal axis intersecting lines isosceles
More informationSum of the interior angles of a nsided Polygon = (n2) 180
5.1 Interior angles of a polygon Sides 3 4 5 6 n Number of Triangles 1 Sum of interiorangles 180 Sum of the interior angles of a nsided Polygon = (n2) 180 What you need to know: How to use the formula
More information1.1. Building Blocks of Geometry EXAMPLE. Solution a. P is the midpoint of both AB and CD. Q is the midpoint of GH. CONDENSED
CONDENSED LESSON 1.1 Building Blocks of Geometry In this lesson you will Learn about points, lines, and planes and how to represent them Learn definitions of collinear, coplanar, line segment, congruent
More informationSOLVED PROBLEMS REVIEW COORDINATE GEOMETRY. 2.1 Use the slopes, distances, line equations to verify your guesses
CHAPTER SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY For the review sessions, I will try to post some of the solved homework since I find that at this age both taking notes and proofs are still a burgeoning
More informationChapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
More informationChapter 4.1 Parallel Lines and Planes
Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about
More informationGeometer s Sketch Pad Instructions Basic Constructions
Geometer s Sketch Pad Instructions Basic Constructions Tool Menu Basic constructions will use the Selection Arrow Tool, Point Tool, Compass Tool, and Straightedge Tool. Familiarize yourself with the location
More informationA Different Look at Trapezoid Area Prerequisite Knowledge
Prerequisite Knowledge Conditional statement an ifthen statement (If A, then B) Converse the two parts of the conditional statement are reversed (If B, then A) Parallel lines are lines in the same plane
More information22.1 Interior and Exterior Angles
Name Class Date 22.1 Interior and Exterior ngles Essential Question: What can you say about the interior and exterior angles of a triangle and other polygons? Resource Locker Explore 1 Exploring Interior
More information6. Angles. a = AB and b = AC is called the angle BAC.
6. Angles Two rays a and b are called coterminal if they have the same endpoint. If this common endpoint is A, then there must be points B and C such that a = AB and b = AC. The union of the two coterminal
More informationFeatured Mathematical Practice: MP.5. Use appropriate tools strategically. MP.6. Attend to precision.
Domain: Geometry 4.G Mathematical Content Standard: 1. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in twodimensional figures.
More informationGEOMETRY. Constructions OBJECTIVE #: G.CO.12
GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic
More information1 Solution of Homework
Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,
More informationChapters 6 and 7 Notes: Circles, Locus and Concurrence
Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of
More informationChapter 5.1 and 5.2 Triangles
Chapter 5.1 and 5.2 Triangles Students will classify triangles. Students will define and use the Angle Sum Theorem. A triangle is formed when three noncollinear points are connected by segments. Each
More informationEuclidean Geometry. We start with the idea of an axiomatic system. An axiomatic system has four parts:
Euclidean Geometry Students are often so challenged by the details of Euclidean geometry that they miss the rich structure of the subject. We give an overview of a piece of this structure below. We start
More information