Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung

Size: px
Start display at page:

Download "Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung"

Transcription

1 Advaced Topics i Digital Commuicatios Spezielle Methode der digitale Dateübertragug Dr.-Ig. Dirk Wübbe Istitute for Telecommuicatios ad igh-frequecy Techiques Departmet of Commuicatios Egieerig Room: N300, Phoe: 041/ wuebbe@at.ui-breme.de Lecture Thursday, 08:30 10:00 i S170 Eercise Wedesday, 14:00 16:00 i N40 Dates for eercises will be aouced durig lectures. Tutor Yidog Lag Room: N350 Phoe lag@at.ui-breme.de

2 Aim of Course ad Requiremets Bridgig the gap betwee courses ad theses Course focuses o state-of-the-art topics beig subect of curret research Iteractive eercises Eecuted i small groups Solve little problems with Matlab autoomously Presetatio ad discussio durig eercises Requiremets for course attedace (recommeded) Commuicatios Techology I + II Chael Codig I + II Basics of Digital Sigal Processig I Outlie

3 Outlie Eigevalues ad eigevectors, pseudo iverse Decompositios (QR, uitary matrices, sigular value, Cholesky ) Part : Basics ad Prelimiaries Motivatig systems with Multiple Iputs ad Multiple Outputs (multiple access techiques) Geeral classificatio ad descriptio of MIMO systems (SIMO, MISO, MIMO) Mobile Radio Chael Part 3: Iformatio Theory for MIMO Systems Repetitio of IT basics, chael capacity for SISO AWGN chael Etesio to SISO fadig chaels Geeralizatio for the MIMO case Part 4: Multiple Atea Systems SIMO: diversity gai, beamformig at receiver MISO: space-time codig, beamformig at trasmitter MIMO: BLAST with detectio strategies Ifluece of chael (correlatio) Part 5: Relayig Systems Basic relayig structures Relayig protocols ad eemplary cofiguratios Outlie 3

4 Liear Algebra Notatios ad defiitios Vectors ad matrices Special Matrices Elemetary operatios, Matri multiplicatio, Traspose, ermitia Traspose Determiats, Vector ad Matri orm Liear combiatio (rage, ull space) Liear equatio systems Cramer s rule, Gaussia elimiatio, iterative methods Iverse matri, matri iversio lemma, iverse of a block matri Matri factorizatios LU, Cholesky, QR (Gram-Schmidt, ouseholder, Gives) Eigevalues ad eigevectors Sigular Value Decompositio SVD (pseudo-iverse, coditio umber) Least squares 4

5 Notatios ad Defiitios (1) Vectors Colum vectors (preferred): boldface lower case Row vectors: uderlied boldface lower case 1 1 Matrices Boldface capital letters (m matri) a1,1 a1, a1, a1 a,1 a, a, a A a1 a a am,1 am, a m, am Colum vectors are ust m 1matrices Row vectors are ust 1 matrices 5

6 Notatios ad Defiitios () Some special matrices Idetity matri ad zero matri I Diagoal, lower ad upper triagular matrices d , d 0 D,1, 0 L 0 0 d,1,, U Eplicit dimesios: I m : m m idetity matri 0 m, : m zero matri u u u 0 u u 0 0 u 1,1 1, 1,,,, 6

7 Let A, B, C be m matrices ad, be scalars Additio ad scalar multiplicatio are defied elemet-wise Properties Basic Operatios ad Properties a1,1 b1,1 a1, b1, AB am,1 bm,1 am, b m, a1,1 a1, A am,1 a m, A BBA Additio is commutative A BCABC Additio is associative A0A Neutral elemet of additio AA 0 Iverse elemet of additio A A Scalar multiplicatio is associative 1A A Neutral elemet of scalar multiplicatio AAA Scalar multiplicatio is distributive AB AB Scalar multiplicatio is distributive 7

8 Let A be a m matri ad B be a p matri The product C=AB is a m p matri with elemets row times colum Matri Multiplicatio (1) a1,1 a1, a1 b1,1 b 1, p b1 A a1 a B b1 b p am,1 a m, am b,1 b, p b Note: umber of colums of A has to equal umber of rows of B Equivalet formulatios of the matri multiplicatio: c a b a b i, i i, k k, k 1 a1, k bk,1 a1, k bk, p k1 k1 ab 1 1 ab 1 p ab 1 C Ab Ab a b 1 p k k k 1 m 1 m p m amk, bk,1 amk, b ab ab ab k, p k1 k1 8

9 Matri Multiplicatio () Special cases m = 1, > 1, p = 1 (row vector times colum vector) cab k 1 a b k k m = 1, > 1, p > 1 (row vector times matri) k 1 c ab a b k k m > 1, > 1, p = 1 (matri times colum vector) k 1 cab a k b k scalar row vector colum vector m > 1, = 1, p > 1 (colum vector times row vector) a1,1b1,1 a1,1b 1, p Cab matri am,1b1,1 am,1 b 1, p Ier or scalar product Matri-vector products Outer or dyadic product 9

10 Properties A B CACBC Matri multiplicatio is distributive AB CABAC Matri multiplicatio is distributive ABAB AB Mied scalar / matri multiplicatio is associative AB C A BC Matri multiplicatio is associative Note: matri multiplicatio is ot commutative i geeral Eample 6 A 1 7 B Matri Multiplicatio (3) C AB 11 6 BA 5 19 AB BA AC 146 CA 146 AC CA 10

11 Traspose of a matri Traspose ad ermitia Traspose T a1,1 a1, a1 a1,1 am,1 a 1 T T T A a1 a A a1 am T am,1 a m, am a1, a m, a Row vectors become colum vectors ad vice versa ermitia traspose of a comple matri * * * * a1,1 a 1, a1,1 a m,1 a 1 T * A A a1 a m * * * * am,1 a m, a1, a m, a Traspose of the comple cougate matri Properties T A T A A A T T T A B A B ad AB A B AB B A AB B A T T T T 11

12 Determiat of a matri det A a1,1 a1, A a a a a a a,1, Determiat of a 3 3 matri (Sarrus rule) det A a a a 1,1 1, 1,3 Determiat of a matri Determiats (1) 1,1,,1 1, a a 1,1 1, a a a a a a a a a a a a a a,1,,3,1, 1,1, 3,3 1,,3 3,1 1,3,1 3, a a a a a a a a a a a a a 3,1 3, 3,3 3,1 3, 3,1, 1,3 3,,3 1,1 3,3, 1 1, Let the (-1) (-1) matri A i, equal A without the i-th row ad -th colum Recursive defiitio of determiat by cofactor epasio colum epasio row epasio A i, : mior matri i i A ai, A i, det A( 1) ai, det Ai, i1 1 det ( 1) det a det A i, : mior 1

13 Determiats () Fudametal properties Liearity i colums (rows) Echagig two colums (rows) Determiat of idetity matri a a a a a a a a a1 a1 a det I 1 Some additioal properties Symmetry i colums ad rows Zero colum (row) Two equal colums (rows) Multiple of oe colum (row) Scalar multiplicatio Addig two colums (rows) Determiat of matri product det A 0 a det T det A 0 1 a1 0 a a a a a 1 1 a1 a a det A det AB det A det B All properties valid for arbitrary matrices A det A 13

14 Determiat of diagoal or triagular matri At least oe factor is zero for all det D d i1 ii, Determiats (3) det L ii, det U uii, i1 i1 Efficiet calculatio of determiat Determiat uaffected by addig multiples of rows (colums) to rows (colums) Trasform A ito triagular matri by elemetary row (colum) operatios Practical meaig of the determiat If det A = 0 the matri A is sigular det A equals volume of parallelepiped with edges give by rows (colums) of A Gives formulas for the pivots used for solvig liear equatio systems 14

15 Trace ad diag operatio tr A a, i1 Vector ad Matri Norm Vector orm ( -orm, Euclidia legth) Matri orm ( -orm, spectral orm) Frobeius orm ii diag A a a 1,1, diag * i i i i1 i1 tr A A sup A A A F 0 m m tr AA a i, i1 1 i1 i 1 sup ma A 1 mi A A A i : sigular value of A ma (A) : largest sigular value of A mi (A) : smallest sigular value of A 15

16 Liear Combiatio Matri A m describes liear mappig of vector oto vector y m AA A m A: A Vector y is give by liear combiatio of the colum vectors a i y Aa11a am aii Importat subspaces Liearity: i1 Rage (spa, image): Subspace cosistig of all liear combiatios of a 1,, a is called the subspace spaed by A A spa A y y A, If the colums of A are liear idepedet, they form a basis of the spaed space Null space (kerel): The ull space cosists of all vectors such that A = 0 Aker A A0, a a 1 a 1a 1 y 16

17 Liear Combiatio Eample 1 3 y1 a1,1 y y a a y a, ,1 a 1 y y Lie i 3 Eample 3 a1,1 a1, 1 a,1 a, 11 a3,1 a 3, y a a a a 1 y a 1 a Plae i 3 Eample 3 3 a1,1 a1, a1,3 1 y a a a a a a a a a,1,, ,1 3, 3,3 3 a 3 a 1 a 17

18 System of m liear equatios i ukows Matri-vector otatio Geometric iterpretatios Liear Equatio Systems (1) a a a b 1,1 1 1, 1, 1 a a a b,1 1,, a a a b m,1 1 m, m, m a1,1 a1, a1, 1 b1 a,1 a, a, b am,1 am, a m, bm is the itersectio of m hyperplaes A b a b b is a liear combiatio of the colum vectors i Eteded coefficiet matri [A b] i a a a b a a a b a a a b 1,1 1, 1, 1,1,, m,1 m, m, m iai i1 b 18

19 Liear Equatio Systems () Illustratio for system (hyperplaes straight lies) itersectig straight lies parallel straight lies idetical straight lies a 1 b1 a b a 1 b1 a b a 1 b1 a b a 1, a liearly idepedet a 1, a parallel a 1, a, b parallel a a b b b a a 1 a1 1 a 1a 1 a uique solutio o solutio ifiite umber of solutios 19

20 Liear Equatio Systems (3) Elemetary operatios that result i equivalet liear equatio systems Iterchage two colums Multiply a equatio by a ozero scalar Add a costat multiple of oe equatio to aother As equatios correspod to rows of the eteded coefficiet matri [A b], the elemetary operatios are performed o the rows of this matri Apply elemetary operatios to solve task Apply operatios to the rows of the eteded coefficiet matri [A b] to simplify the calculatio of the solutio Calculatio of the iverse by Gauss-Jorda method Cholesky ad QR decompositio of matrices 0

21 Square liear equatio system A = b with equatios i ukows Cramer s rule Eample for =5 ad =3 det A Let A equal A with the -th colum 3 a1 a b a4 a5 5 replaced by b a a 1 iai a a i A a1 a 1 b a 1 a a1 a 3a3 a4 a5 The the -th elemet of is 3 a1 a a3 a4 a5 det A 3 deta det A Proof: substitute ito A ad use liearity i colums Three possibilities Liear Equatio Systems (4) b iai i1 det A 0 uique solutio det A 0 ad det A 0 for some o solutio det A 0 ad det A 0 for all ifiite umber of solutios

22 Gaussia Elimiatio (1) Eample: 33 system (1) Elimiatio Subtractig multiples of rows to create zeros Trasform system ito upper triagular form () Back-substitutio Solve for ukows Computatio i reverse order l a,1,1 / a1,1 3,1 3,1 / a1,1 l a l a / a (1) (1) 3, 3,, Pivot elemets Reduced systems a a a 1,1,1 3,1 1, 1,3 1,,3 3, 3,3 3 1,1 1, 1,3 1 (1) (1) (1) a, a,3 b (1) (1) (1) a3, a3,3 b , 1 1, 1,3 1 (1) (1) (1) a, a,3 b () () a3, 3 b a a b a a b a a b a a a b a a a b b / a () () 3 3 3,3 b a / a (1) (1) (1),3 3, b a a / a 1 1 1, 1,3 3 1,1 Etesio to (1): If ( 1) If a k, 0 for some k > echage rows ( 1) If a k, 0 for all k > move to et colum ( 1) a, 0

23 Special cases All diagoal elemets ozero 0 uique solutio 0 0 Gaussia Elimiatio () Zero row i coefficiet matri, correspodig right had side ozero o solutio Zero rows i coefficiet matri, correspodig right had sides zero ifiite umber of solutios Free parameters 3

24 Gaussia Elimiatio (3) Geeral formulatio of the algorithm (1) Iitializatio ad elimiatio (0) (0) A : A, b : b for : 1to m1do fid pivot elemet a for i: 1to m do ed ed l a / a ( 1) ( 1) i, i,, ( 1), for k: 1to do ed a a l a ( ) ( 1) ( 1) ik, ik, i, k, b b l b ( ) ( 1) ( 1) i i i, Pivot search : ide of first ozero colum if o the r: 1, break echage rows, so that Back-substitutio choose values for free parameters for : r dowto 1do b a ed ( 1) a, ( 1) ( 1), k k ( 1) k 1 a, 0 1 4

25 Result after Elimiatio Step Number of ozero rows o left had side: Rak of Matri A (umber of liear idepedet equatios) ( r) ( r) r m r m ad b b Solutio eists oly if or Gaussia Elimiatio (4) a * * * * 0 0 a * * (0) (0) 1, (1) (1) a, * * * b ( r1) ( r1) r, r r ( r) br 1 Uique solutio if r o free parameters Ifiite umber of solutios if r r free parameters b b b ( r ) m r m r r1 m 0 rak A r 5

26 Liear equatio system A b Basic idea of iterative algorithms (0) Start with iitial estimate of the solutio vector ( 1) Fid improved approimatio k from previous approimatio Stop after covergece Jacobi Iterative Solutio of Liear Equatio Systems Solve row i for ukow i Parallel implemetatio possible Gauss-Seidel Use already updated values Better covergece behavior tha Jacobi No parallel implemetatio possible Cougate Gradiet a b for 1i i, i More complicated implemetatio, but usually fast covergece 1 i1 ( k 1) ( k ) ( k ) 1 i bi ai, ai, 1 i1 ai, i i1 ( k 1) ( k 1) ( k ) 1 i bi ai, ai, 1 i1 ai, i ( k ) 6

27 Iverse Matri (1) Iverse A -1 of a square matri A 1 1 A A AA I Relatio of iverse to liear equatio systems 1 A b A b Calculatio of the iverse by Gauss-Jorda method simultaeous liear equatio systems A1 A AX I A I 1 Forward elimiatio A I U L 1 1 Backward elimiatio U L I A Iverse eists oly if AX = I has a uique solutio ( A osigular) Coditio: Properties 1 A 1 AB 1 A B A A A rak 1 A det A 0 7

28 Iverse Matri () Matri Iversio Lemma (A m m, B m, C, D m ) A BCD A A B C DA B DA A A B I CDA B CDA Iverse of block matri E: A B E with A m m, B m, C m, D C D E E F F BD DCF D D CF BD A A BG CA A BG G CA G Schur complemet of A w.r.t E 1 F A BD C Schur complemet of D w.r.t E 1 G D CA B 8

29 LU Decompositio Every ivertible matri A ca be writte as the product of a lower triagular matri L ad a upper triagular matri U Applicatio: Solutio of liear equatio system A LU b with costat coefficiet matri A for differet right had sides Iversio of triagular matrices easy solve Ly b ad the U y Calculatio of LU decompositio by Gaussia elimiatio 1 Forward elimiatio: ALU I U L ( 1) ( 1) L cotais factors l a / a from the elimiatio steps i, i,, Direct calculatio of LU decompositio (eample: 33 matri) a1,1 a1, a1, r1,1 r1, r1,3 r1,1 r1, r1,3 a,1 a, a,3 l, r, r,3 l,1r1,1 l,1r1, r, l,1r1,3 r,3 a3,1 a3, a 3,3 l3,1 l3, r 3,3 l3,1r1,1 l3,1r1, l3,r, l3,1r1,3 l3,r,3 r 3,3 Calculatio order: r r r l l r r l r 1,1 1, 1,3,1 3,1,,3 3, 3,3 A LU 9

30 Cholesky Decompositio Let A be hermitia A A positive defiite A0 the A is fully characterized by a lower triagular matri L Cholesky decompositio A LL Similar to LU decompositio But computatioal compleity reduced by factor Eample: 3 3 matri * * l1,1 l1,1l,1 l1,1l 3,1 a1,1 a1, a1,3 * * * a,1 a, a,3 l,1l1,1 l,1 l, l,1l3,1 l,l 3, a * * * 3,1 a3, a 3,3 l3,1l1,1 l3,1l,1 l3,l, l3,1 l3, l3,3 Calculatio order: l1,1 l,1 l3,1 l, l3, l3,3 Algorithm (0) A : A for k: 1to do l a ( k 1) kk, kk, for i: k 1to do ed ed ed l a / l ( k 1) * ik, ik, kk, for : k 1to i do a a l l ( k) ( k1) * i, i, i, k, k 30

31 Every m matri A ca be writte as A QR where Q is a m matri with orthoormal colums q q i 1 0 for i for i R is a upper triagular matri Colums of A are represeted i the orthoormal base defied by Q a k r k i, k i i1 Illustratio for the m case q a a q q 1 1 QR Decompositio (1) r1,1 r1, 0 r, r q r q r q 1,1 1 1, 1, Q Q q r,q I q 1 a r q r q 1, 1, r1,q1 a r q 1 1,1 1 31

32 Calculatio of QR decompositio by modified Gram-Schmidt algorithm Calculate legth (Euclidea orm) of a 1 r 1,1 Normalize a 1 to have uit legth q 1 Proectio of a,...,a oto q 1 r 1, (1) Subtract compoets of a,...,a parallel to q 1 q Cotiue with et colum Q is computed colum by colum from left to right R is computed row by row from top to bottom Illustratio for the m case r1,1 r1, 0 r, r q r q r q a a q q 1 1 QR Decompositio () 1,1 1 1, 1, q r,q for k: 1to do r a kk, q / r k k k, k for i: k 1to do r ed ed q1 r1,q1 a k q a ki, k i a a r q i i k, i k a r q r q 1, 1, a r q 1 1,1 1 3

33 ouseholder reflectio for real valued sigals Reflectio of vector across the plai surface whose ormal vector is u ( u =1) is achieved by orthoormal matri u Θ Iuu Reflected vector with y = ouseholder matri is symmetric (Q = Q T ) ad orthogoal (Q -1 = Q T ) Reflectio ito specific directio T y Θuu T u Reflected vector should cotai oly oe o-dimiishig elemet reflectio creates -1 elemets equal to zero T Θ Iuu with Applicatio with respect to matri A QR Decompositio (3) u u y y T u u 1 y Θ y * * * a1 * * ΘA Θ * * * 0 * * * * * 0 * * u u 0 33

34 QR Decompositio (4) ouseholder reflectios for comple valued sigals Θ I(1 w) uu with u y ad w u y u y 0 Special case: create zeros i a vector Applicatio to QR decompositio of m matri A R: A, Q: Im for k: 1to do R( k: m, k) T y [ 0] calculate u, w, Θ R( k: m, k: ) Θ R( k: m, k: ) T Iitializatio Loop through all colums Create zeros below the mai diagoal i k-th colum of R u y uu uu y ed Q(:, k: m) Q(:, k: m) Θ Update uitary matri Q 34

35 (0) (0) (0) a1,1 a1, a 1,3 (0) (0) (0) A a,1 a, a1,3 Q0 R 0 (0) (0) (0) a3,1 a3, a1,3 * * * a a a QR Decompositio (5) (1) (1) (1) 1,1 1, 1,3 (1) (1) * * * 0 a, a1,3 1 1 (1) (1) * * * 0 a3, a1,3 Q Θ Θ R Q R * * * a a a QR decompositio of 3 3 matri A (1) () () 1,1 1, 1, () () 1 1 * * * 0 a, a 1,3 0 0 Θ Θ () * * * 0 0 a 1,3 Q R Q R * * * (1) () (3) 1,1 1, 1,3 I 0 I 0 ( ) (3) * * * 0 a, a 1, (3) * * * 0 0 a 13, Q R Q R a a Step 0: Iitializatio of Q ad R a Step 1: Create zeros i first colum of R Step : Create zeros i secod colum of R Step 3: Create real-valued lower right elemet i R 35

36 Gives rotatios G(, ik, ) G(, ik, ) Let equal a idetity matri ecept for is uitary ad describes a rotatio Special choices for c ad s: c Liear trasformatio y G(, ik, ) QR Decompositio (6) g g cosc * ii, kk, g g si s * ik, ki, i k ad s i k i k Gives rotatio ca create zero while chagig oly oe other elemet Eample * * * * * * * * * * * * (,3, 1) (1,, ) (,3, 3 * * * G * * * G 0 * * G A ) 0 * * R * * * 0 * * 0 * * 0 0 * y, y 0, y i, k i i k k R G(,3, 3) G(1,, ) G(,3, 1) A QG(,3, 1) G(1,, ) G(,3, 3) 36

37 Eample for Gives Rotatio Applicatio of ratio matri to vector 4 y G(,4, ) c 0 s c s 4 c s s 0 c 4 s c4 s c4 0 with c s s 4 4 c

38 Special eigevalue problem for arbitrary matrices A A I0 Coditio for eistece of otrivial solutios 0 Characteristic polyomial of degree has to be zero Zeros i of polyomial are the eigevalues of A with algebraic multiplicity k i Eigevectors Solve liear equatio systems i i for all eigevalues i Dimesio of solutio space is called geometric multiplicity g i (1 g i k i ) Eigevectors belogig to differet eigevalues are liearly idepedet Diagoalizatio of a matri A Eigevalues ad Eigevectors (1) 1 k k l A A I 1 l p ( ) det 0 Defie the matri X = [ 1 ] ad the diagoal matri = diag( 1,, ) 1 AX XΛ X AXΛ Oly possible for liearly idepedet eigevectors A I 0 38

39 Eigevalues ad Eigevectors () Some useful geeral properties A A T i * i A, i i A ivertible all A positive defiite all i 0 0 Properties for hermitia matrices, i.e. A = A A All eigevalues are real Eigevectors belogig to differet eigevalues are orthogoal Algebraic ad geometric multiplicities are idetical Cosequece: all eigevectors ca be chose to be mutually orthogoal A hermitia matri A ca be diagoalized by a uitary matri V V AV Λ AVΛV m 1 X AX i m i A I, i i,, i i 1 X i det A trace A i1 i1 Eigevalue decompositio i i 39

40 Sigular Value Decompositio (SVD) (1) Every m matri A of rak r ca be writte as Σ0 0 AUΣV U V 0 0 Sigular values i of A = square roots of ozero eigevalues of A A or AA Uitary m m matri U cotais left sigular vectors of A = eigevectors of AA Uitary matri V cotais right sigular vectors of A = eigevectors of A A Verificatio with eigevalue decompositio Σ0 0 Σ0 0 A AVΣ U UΣV V V AA UΣV VΣU U U Four fudametal subspaces: the vectors u 1,...,u r spa the colum space of A u r+1,...,u m spa the left ullspace of A v 1,...,v r spa the row space of A v r+1,...,v spa the right ullspace of A with the matri of sigular values orthogoal orthogoal Σ diag(,, r ) diag( S,, S ) r 40

41 Sigular Value Decompositio (SVD) () Illustratio of the fudametal subspaces Cosider liear mappig A with orthogoal decompositio r rowspace r columspace A A r 0 A 0 right ullspace left ullspace 41

42 Pseudo Iverse ad Least Squares Solutio (1) Iverse A -1 eists oly for square matrices with full rak Geeralizatio: (Moore-Perose) pseudo iverse A + 1 Σ0 0 Σ0 0 AUΣV U V A VΣ U V U Special cases for full rak matrices 1 for rak m A AA A A spa{a} 1 A A A for raka Applicatio: Least squares solutio of a liear equatio system Problem: fid vector that miimizes the euclidea distace betwee A ad b Solutio: proect b oto the colum space of A ad solve A=b c If o uique solutio eists take solutio vector with shortest legth mi A b A b b c b e 4

43 Pseudo Iverse ad Least Squares Solutio () Illustratio of the least squares solutio of a liear equatio system rowspace A b columspace b c A Ab 0 b 0 right ullspace b left ullspace 43

44 Coditio Number Coditio umber is a idicator for the orthogoality of a matri A cod Solutio of the liear equatio system b=a is give by =A -1 b The coditio umber cod(a) describes the impact of a error b i the observatio data b (e.g. measuremet errors, oise, ) to the solutio Usig two estimatios the followig relatio is achieved 1 ma A mi A A A A 1 cod A 1 A b b 1 error A b 1 1 A b A b b / mi A b A b A ma A Relative error A b b cod A b b ma A mi cod (A) =1 for uitary matri b b ma A A mi Eample: cod(a)=100 ad b/b= 0.1% / = =10% 44

45 Olie: Selected Literature Gutkecht: Lieare Algebra effero: Elemetary Liear Algebra Matthews: Elemetary Liear Algebra Wedderbur: Lectures o matrices The Matri Cookbook Prited: B. Bradie: A Friedly Itroductio to Numerical Aalysis, Pearso 006 G. Strag: Liear Algebra ad its Applicatios, ardcourt 1988 Johso, Riess, Arold: Itroductio to Liear Algebra, Addiso Wesley 00 K. ardy: Liear Algebra for Egieers ad Scietists usig Matlab, Pearso

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2 4. Basic feasible solutios ad vertices of polyhedra Due to the fudametal theorem of Liear Programmig, to solve ay LP it suffices to cosider the vertices (fiitely may) of the polyhedro P of the feasible

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

Overview on S-Box Design Principles

Overview on S-Box Design Principles Overview o S-Box Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA -721302 What is a S-Box? S-Boxes are Boolea

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Systems Design Project: Indoor Location of Wireless Devices

Systems Design Project: Indoor Location of Wireless Devices Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: bcm1@cec.wustl.edu Supervised

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

, a Wishart distribution with n -1 degrees of freedom and scale matrix.

, a Wishart distribution with n -1 degrees of freedom and scale matrix. UMEÅ UNIVERSITET Matematisk-statistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

More information

2 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS

2 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS 2 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS 1. The group rig k[g] The mai idea is that represetatios of a group G over a field k are the same as modules over the group rig k[g]. First I

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

How To Solve The Homewor Problem Beautifully

How To Solve The Homewor Problem Beautifully Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Permutations, the Parity Theorem, and Determinants

Permutations, the Parity Theorem, and Determinants 1 Permutatios, the Parity Theorem, ad Determiats Joh A. Guber Departmet of Electrical ad Computer Egieerig Uiversity of Wiscosi Madiso Cotets 1 What is a Permutatio 1 2 Cycles 2 2.1 Traspositios 4 3 Orbits

More information

Probabilistic Engineering Mechanics. Do Rosenblatt and Nataf isoprobabilistic transformations really differ?

Probabilistic Engineering Mechanics. Do Rosenblatt and Nataf isoprobabilistic transformations really differ? Probabilistic Egieerig Mechaics 4 (009) 577 584 Cotets lists available at ScieceDirect Probabilistic Egieerig Mechaics joural homepage: wwwelseviercom/locate/probegmech Do Roseblatt ad Nataf isoprobabilistic

More information

Interference Alignment and the Generalized Degrees of Freedom of the X Channel

Interference Alignment and the Generalized Degrees of Freedom of the X Channel Iterferece Aligmet ad the Geeralized Degrees of Freedom of the X Chael Chiachi Huag, Viveck R. Cadambe, Syed A. Jafar Electrical Egieerig ad Computer Sciece Uiversity of Califoria Irvie Irvie, Califoria,

More information

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis Ruig Time ( 3.) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

MATH 083 Final Exam Review

MATH 083 Final Exam Review MATH 08 Fial Eam Review Completig the problems i this review will greatly prepare you for the fial eam Calculator use is ot required, but you are permitted to use a calculator durig the fial eam period

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

Review: Classification Outline

Review: Classification Outline Data Miig CS 341, Sprig 2007 Decisio Trees Neural etworks Review: Lecture 6: Classificatio issues, regressio, bayesia classificatio Pretice Hall 2 Data Miig Core Techiques Classificatio Clusterig Associatio

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

Problem Solving with Mathematical Software Packages 1

Problem Solving with Mathematical Software Packages 1 C H A P T E R 1 Problem Solvig with Mathematical Software Packages 1 1.1 EFFICIENT PROBLEM SOLVING THE OBJECTIVE OF THIS BOOK As a egieerig studet or professioal, you are almost always ivolved i umerical

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

A gentle introduction to Expectation Maximization

A gentle introduction to Expectation Maximization A getle itroductio to Expectatio Maximizatio Mark Johso Brow Uiversity November 2009 1 / 15 Outlie What is Expectatio Maximizatio? Mixture models ad clusterig EM for setece topic modelig 2 / 15 Why Expectatio

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Coordinating Principal Component Analyzers

Coordinating Principal Component Analyzers Coordiatig Pricipal Compoet Aalyzers J.J. Verbeek ad N. Vlassis ad B. Kröse Iformatics Istitute, Uiversity of Amsterdam Kruislaa 403, 1098 SJ Amsterdam, The Netherlads Abstract. Mixtures of Pricipal Compoet

More information

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 6-12 pages of text (ca be loger with appedix) 6-12 figures (please

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Finding the circle that best fits a set of points

Finding the circle that best fits a set of points Fidig the circle that best fits a set of poits L. MAISONOBE October 5 th 007 Cotets 1 Itroductio Solvig the problem.1 Priciples............................... Iitializatio.............................

More information

COMPUTING EFFICIENCY METRICS FOR SYNERGIC INTELLIGENT TRANSPORTATION SYSTEMS

COMPUTING EFFICIENCY METRICS FOR SYNERGIC INTELLIGENT TRANSPORTATION SYSTEMS Trasport ad Teleuicatio Vol, No 4, 200 Trasport ad Teleuicatio, 200, Volume, No 4, 66 74 Trasport ad Teleuicatio Istitute, Lomoosova, Riga, LV-09, Latvia COMPUTING EFFICIENCY METRICS FOR SYNERGIC INTELLIGENT

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

1 The Gaussian channel

1 The Gaussian channel ECE 77 Lecture 0 The Gaussia chael Objective: I this lecture we will lear about commuicatio over a chael of practical iterest, i which the trasmitted sigal is subjected to additive white Gaussia oise.

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

Metric, Normed, and Topological Spaces

Metric, Normed, and Topological Spaces Chapter 13 Metric, Normed, ad Topological Spaces A metric space is a set X that has a otio of the distace d(x, y) betwee every pair of poits x, y X. A fudametal example is R with the absolute-value metric

More information

Fast Fourier Transform and MATLAB Implementation

Fast Fourier Transform and MATLAB Implementation Fast Fourier Trasform ad MATLAB Implemetatio by aju Huag for Dr. Duca L. MacFarlae Sigals I the fields of commuicatios, sigal processig, ad i electrical egieerig moregeerally, a sigalisay time varyig or

More information

Chapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity

More information

DAME - Microsoft Excel add-in for solving multicriteria decision problems with scenarios Radomir Perzina 1, Jaroslav Ramik 2

DAME - Microsoft Excel add-in for solving multicriteria decision problems with scenarios Radomir Perzina 1, Jaroslav Ramik 2 Itroductio DAME - Microsoft Excel add-i for solvig multicriteria decisio problems with scearios Radomir Perzia, Jaroslav Ramik 2 Abstract. The mai goal of every ecoomic aget is to make a good decisio,

More information

Escola Federal de Engenharia de Itajubá

Escola Federal de Engenharia de Itajubá Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica Pós-Graduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Chapter 04.05 System of Equations

Chapter 04.05 System of Equations hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

Queuing Systems: Lecture 1. Amedeo R. Odoni October 10, 2001

Queuing Systems: Lecture 1. Amedeo R. Odoni October 10, 2001 Queuig Systems: Lecture Amedeo R. Odoi October, 2 Topics i Queuig Theory 9. Itroductio to Queues; Little s Law; M/M/. Markovia Birth-ad-Death Queues. The M/G/ Queue ad Extesios 2. riority Queues; State

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Research Article Sign Data Derivative Recovery

Research Article Sign Data Derivative Recovery Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length

A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 49-60 A Faster Clause-Shorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k. 18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: Courat-Fischer formula ad Rayleigh quotiets The

More information

MARTINGALES AND A BASIC APPLICATION

MARTINGALES AND A BASIC APPLICATION MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measure-theoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this

More information

Convention Paper 6764

Convention Paper 6764 Audio Egieerig Society Covetio Paper 6764 Preseted at the 10th Covetio 006 May 0 3 Paris, Frace This covetio paper has bee reproduced from the author's advace mauscript, without editig, correctios, or

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

Polarization Degrees of Freedom

Polarization Degrees of Freedom Polarizatio Degrees of Freedom Ada Poo Electrical ad Computer Egieerig Uiversity of Illiois, Urbaa-Champaig poo@uiucedu David Tse Electrical Egieerig ad Computer Sciece Uiversity of Califoria, Berkeley

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

Baan Service Master Data Management

Baan Service Master Data Management Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :

More information

Heinrich Voss. Abstract. rational and polynomial approximations of the secular equation f() = 0, the

Heinrich Voss. Abstract. rational and polynomial approximations of the secular equation f() = 0, the ouds for the Miimum Eigevalue of a Symmetric Toeplitz Matrix Heirich Voss Techical Uiversity Hamburg{Harburg, Sectio of Mathematics, D{27 Hamburg, Federal Republic of Germay, e-mail: voss tu-harburg.de

More information

CS100: Introduction to Computer Science

CS100: Introduction to Computer Science I-class Exercise: CS100: Itroductio to Computer Sciece What is a flip-flop? What are the properties of flip-flops? Draw a simple flip-flop circuit? Lecture 3: Data Storage -- Mass storage & represetig

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis

Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis Joural of Machie Learig Research 8 (2007) 1027-1061 Submitted 3/06; Revised 12/06; Published 5/07 Dimesioality Reductio of Multimodal Labeled Data by Local Fisher Discrimiat Aalysis Masashi Sugiyama Departmet

More information

Complex Numbers. where x represents a root of Equation 1. Note that the ± sign tells us that quadratic equations will have

Complex Numbers. where x represents a root of Equation 1. Note that the ± sign tells us that quadratic equations will have Comple Numbers I spite of Calvi s discomfiture, imagiar umbers (a subset of the set of comple umbers) eist ad are ivaluable i mathematics, egieerig, ad sciece. I fact, i certai fields, such as electrical

More information

Notes on exponential generating functions and structures.

Notes on exponential generating functions and structures. Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the

More information

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4 GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

More information

Function factorization using warped Gaussian processes

Function factorization using warped Gaussian processes Fuctio factorizatio usig warped Gaussia processes Mikkel N. Schmidt ms@imm.dtu.dk Uiversity of Cambridge, Departmet of Egieerig, Trumpigto Street, Cambridge, CB2 PZ, UK Abstract We itroduce a ew approach

More information

Elements of Dirac Notation

Elements of Dirac Notation Elemets of Dirac Notatio Frak Rioux I the early days of quatum theory, P. A. M. (Paul Adria Maurice) Dirac created a powerful ad cocise formalism for it which is ow referred to as Dirac otatio or bra-ket

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

NATIONAL SENIOR CERTIFICATE GRADE 11

NATIONAL SENIOR CERTIFICATE GRADE 11 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 007 MARKS: 50 TIME: 3 hours This questio paper cosists of pages, 4 diagram sheets ad a -page formula sheet. Please tur over Mathematics/P DoE/Exemplar

More information

Chatpun Khamyat Department of Industrial Engineering, Kasetsart University, Bangkok, Thailand ocpky@hotmail.com

Chatpun Khamyat Department of Industrial Engineering, Kasetsart University, Bangkok, Thailand ocpky@hotmail.com SOLVING THE OIL DELIVERY TRUCKS ROUTING PROBLEM WITH MODIFY MULTI-TRAVELING SALESMAN PROBLEM APPROACH CASE STUDY: THE SME'S OIL LOGISTIC COMPANY IN BANGKOK THAILAND Chatpu Khamyat Departmet of Idustrial

More information

Heat (or Diffusion) equation in 1D*

Heat (or Diffusion) equation in 1D* Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire

More information

THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK

THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E MCCARTHY, SANDRA POTT, AND BRETT D WICK Abstract We provide a ew proof of Volberg s Theorem characterizig thi iterpolatig sequeces as those for

More information

5.3. Generalized Permutations and Combinations

5.3. Generalized Permutations and Combinations 53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

More information