# Random-Number Generation

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Random-Number Generation Raj Jain Washington University Saint Louis, MO Audio/Video recordings of this lecture are available at:

2 Overview! Desired properties of a good generator! Linear-congruential generators! Tausworthe generators! Survey of random number generators! Seed selection! Myths about random number generation 26-2

3 Random-Number Generation! Random Number = Uniform (0, 1)! Random Variate = Other distributions = Function(Random number) 26-3

4 A Sample Generator! For example,! Starting with x 0 =5:! The first 32 numbers obtained by the above procedure 10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5 10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5.! By dividing x's by 16: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

5 Terminology! Seed = x 0! Pseudo-Random: Deterministic yet would pass randomness tests! Fully Random: Not repeatable! Cycle length, Tail, Period 26-5

6 Desired Properties of a Good Generator! It should be efficiently computable.! The period should be large.! The successive values should be independent and uniformly distributed 26-6

7 Types of Random-number number Generators! Linear congruential generators! Tausworthe generators! Extended Fibonacci generators! Combined generators 26-7

8 Linear-Congruential Generators! Discovered by D. H. Lehmer in 1951! The residues of successive powers of a number have good randomness properties. Equivalently, a = multiplier m = modulus 26-8

9 Linear-Congruential Generators (Cont)! Lehmer's choices: a = 23 and m = ! Good for ENIAC, an 8-digit decimal machine.! Generalization:! Can be analyzed easily using the theory of congruences Mixed Linear-Congruential Generators or Linear-Congruential Generators (LCG)! Mixed = both multiplication by a and addition of b 26-9

10 Selection of LCG Parameters! a, b, and m affect the period and autocorrelation! The modulus m should be large.! The period can never be more than m.! For mod m computation to be efficient, m should be a power of 2 Mod m can be obtained by truncation

11 Selection of LCG Parameters (Cont)! If b is nonzero, the maximum possible period m is obtained if and only if: " Integers m and b are relatively prime, that is, have no common factors other than 1. " Every prime number that is a factor of m is also a factor of a-1. " If integer m is a multiple of 4, a-1 should be a multiple of 4. " Notice that all of these conditions are met if m=2 k, a = 4c + 1, and b is odd. Here, c, b, and k are positive integers

12 Period vs. Autocorrelation! A generator that has the maximum possible period is called a full-period generator.! Lower autocorrelations between successive numbers are preferable.! Both generators have the same full period, but the first one has a correlation of 0.25 between x n-1 and x n, whereas the second one has a negligible correlation of less than

13 ! Multiplicative LCG: b=0 Multiplicative LCG! Two types: m = 2 k m 2 k 26-13

14 Multiplicative LCG with m=2 k! m = 2 k trivial division Maximum possible period 2 k-2! Period achieved if multiplier a is of the form 8i± 3, and the initial seed is an odd integer! One-fourth the maximum possible may not be too small! Low order bits of random numbers obtained using multiplicative LCG's with m=2 k have a cyclic pattern 26-14

15 Example 26.1a! Using a seed of x 0 =1: 5, 25, 29, 17, 21, 9, 13, 1, 5, Period = 8 = 32/4! With x 0 = 2, the sequence is: 10, 18, 26, 2, 10, Here, the period is only

16 Example 26.1b! Multiplier not of the form 8i ± 3:! Using a seed of x 0 = 1, we get the sequence: 7, 17, 23, 1, 7,! The period is only

17 Multiplicative LCG with m m 2 k! Modulus m = prime number With a proper multiplier a, period = m-1 Maximum possible period = m! If and only if the multiplier a is a primitive root of the modulus m! a is a primitive root of m if and only if a n mod m 1 for n = 1, 2,, m

18 Example 26.2! Starting with a seed of x 0 =1: 1, 3, 9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15, 14, 11, 2, 6, 18, 23, 7, 21, 1, The period is 30 3 is a primitive root of 31! With a multiplier of a = 5: 1, 5, 25, 1, The period is only 3 5 is not a primitive root of 31! Primitive roots of 31= 3, 11, 12, 13, 17, 21, 22, and

19 ! PRN computation assumes: Schrage's Method " No round-off errors, integer arithmetic and no overflows Can't do it in BASIC " Product a x n-1 > Largest integer Overflow! Identity: Where: And: Here, q = m div a, r = m mod a `A div B' = dividing A by B and truncating the result.! For all x's in the range 1, 2,, m-1, computing g(x) involves numbers less than m-1.! If r < q, h(x) is either 0 or 1, and it can be inferred from g(x); h(x) is 1 if and only if g(x) is negative

20 Example 26.3! = = prime number! 7 5 = is one of its 534,600,000 primitive roots! The product a x n-1 can be as large as ! Need 46-bit integers! For a correct implementation, x 0 = 1 x = 1,043,618,

21 Generator Using Integer Arithmetic 26-21

22 Generator Using Real Arithmetic 26-22

23 Tausworthe Generators! Need long random numbers for cryptographic applications! Generate random sequence of binary digits (0 or 1)! Divide the sequence into strings of desired length! Proposed by Tausworthe (1965) Where c i and b i are binary variables with values of 0 or 1, and is the exclusive-or (mod 2 addition) operation.! Uses the last q bits of the sequence autoregressive sequence of order q or AR(q).! An AR(q) generator can have a maximum period of 2 q

24 Tausworthe Generators (Cont)! D = delay operator such that! Characteristic polynomial:! The period is the smallest positive integer n for which x n -1 is divisible by the characteristic polynomial.! The maximum possible period with a polynomial of order q is 2 q -1. The polynomials that give this period are called primitive polynomials

25 x 7 +x 3 +1 Example 26.4! Using D operator in place of x: Or:! Using the exclusive-or operator Or:! Substituting n-7 for n: 26-25

26 Example 26.4 (Cont)! Starting with b 0 = b 1 = L = b 6 = 1:! The complete sequence is: ! Period = 127 or bits The polynomial x 7 +x 3 +1 is a primitive polynomial

27 Combined Generators 1. Adding random numbers obtained by two or more generators. w n =(x n +y n ) mod m For example, L'Ecuyer (1986): This would produce: Period =

28 Combined Generators (Cont) Another Example: For 16-bit computers: Use: This generator has a period of

29 Combined Generators (Cont) 2. Exclusive-or random numbers obtained by two or more generators. 3. Shuffle. Use one sequence as an index to decide which of several numbers generated by the second sequence should be returned

30 ! Algorithm M: Combined Generators (Cont) a) Fill an array of size, say, 100. b) Generate a new y n (between 0 and m-1) c) Index i=1+100 y n /m d) ith element of the array is returned as the next random number e) A new value of x n is generated and stored in the ith location 26-44

31 Survey of Random-Number Generators! A currently popular multiplicative LCG is: " Used in:! SIMPL/I system (IBM 1972),! APL system from IBM (Katzan 1971),! PRIMOS operating system from Prime Computer (1984), and! Scientific library from IMSL (1980) " is a prime number and 7 5 is a primitive root of it Full period of " This generator has been extensively analyzed and shown to be good. " Its low-order bits are uniformly distributed

32 Survey of RNG s (Cont)! Fishman and Moore (1986)'s exhaustive search of m=2 31-1:! SIMSCRIPT II.5 and in DEC-20 FORTRAN: 26-46

33 Survey of RNG s (Cont)! ``RANDU'' (IBM 1968): Very popular in the 1960s: " Modulus and the multiplier were selected primarily to facilitate easy computation. " Multiplication by =65539 can be easily accomplished by a few shift and add instructions. " Does not have a full period and has been shown to be flawed in many respects. " Does not have good randomness properties (Knuth, p 173). " Triplets lie on a total of 15 planes Unsatisfactory three-distributivity " Like all LCGs with m=2 k, the lower order bits of this generator have a small period. RANDU is no longer used 26-47

34 Survey of RNG s (Cont)! Analog of RANDU for 16-bit microprocessors: " This generator shares all known problems of RANDU " Period = only a few thousand numbers not suitable for any serious simulation study! University of Sheffield Pascal system for Prime Computers: " i± 3 Does not have the maximum possible period of " Used with a shuffle technique in the subroutine UNIFORM of the SAS statistical package 26-48

35 Survey of RNG s (cont)! SIMULA on UNIVAC uses the following generator: " Has maximum possible period of 2 33, Park and Miller (1988) claim that it does not have good randomness properties.! The UNIX operating system: " Like all LCGs with m=2 k, the binary representation of x n 's has a cyclic bit pattern 26-49

36 Seed Selection! Multi-stream simulations: Need more than one random stream " Single queue Two streams = Random arrival and random service times 1. Do not use zero. Fine for mixed LCGs. But multiplicative LCG or a Tausworthe LCG will stick at zero. 2. Avoid even values. For multiplicative LCG with modulus m=2 k, the seed should be odd. Better to avoid generators that have too many conditions on seed values or whose performance (period and randomness) depends upon the seed value. 3. Do not subdivide one stream

37 Seed Selection (Cont) 4. Do not generate successive seeds: u 1 to generate inter-arrival times, u 2 to generate service time Strong correlation 5. Use non-overlapping streams. Overlap Correlation, e.g., Same seed same stream 6. Reuse seeds in successive replications. 7. Do not use random seeds: Such as the time of day. Can't reproduce. Can't guaranteed non-overlap. 8. Select 26-51

38 Table of Seeds 26-52

39 Myths About Random-Number Generation 1. A complex set of operations leads to random results. It is better to use simple operations that can be analytically evaluated for randomness. 2. A single test, such as the chi-square test, is sufficient to test the goodness of a random-number generator. The sequence 0,1,2,...,m-1 will pass the chi-square test with a perfect score, but will fail the run test Use as many tests as possible. 3. Random numbers are unpredictable. Easy to compute the parameters, a, c, and m from a few numbers LCGs are unsuitable for cryptographic applications 26-53

40 Myths (Cont) 4. Some seeds are better than others. May be true for some. " Works correctly for all seeds except x 0 = " Stuck at x n = forever " Such generators should be avoided. " Any nonzero seed in the valid range should produce an equally good sequence. " For some, the seed should be odd. " Generators whose period or randomness depends upon the seed should not be used, since an unsuspecting user may not remember to follow all the guidelines

41 Myths (Cont) 5. Accurate implementation is not important. " RNGs must be implemented without any overflow or truncation For example, " In FORTRAN: " The AND operation is used to clear the sign bit " Straightforward multiplication above will produce overflow. 6. Bits of successive words generated by a random-number generator are equally randomly distributed. " If an algorithm produces l-bit wide random numbers, the randomness is guaranteed only when all l bits are used to form successive random numbers

42 Example 26.7 Notice that: a) Bit 1 (the least significant bit) is always 1. b) Bit 2 is always 0. c) Bit 3 alternates between 1 and 0, thus, it has a cycle of length 2. d) Bit 4 follows a cycle (0110) of length 4. e) Bit 5 follows a cycle ( ) of length

43 Example 26.7 (Cont)! The least significant bit is either always 0 or always 1.! The lth bit has a period at most 2 l. (l=1 is the least significant bit)! For all mixed LCGs with m=2 k : " The lth bit has a period at most 2 l. " In general, the high-order bits are more randomly distributed than the low-order bits. Better to take the high-order l bits than the low-order l bits

44 Summary! Pseudo-random numbers are used in simulation for repeatability, non-overlapping sequences, long cycle! It is important to implement PRNGs in integer arithmetic without overflow => Schrage s method! For multi-stream simulations, it is important to select seeds that result in non-overlapping sequences! Two or more generators can be combined for longer cycles! Bits of random numbers may not be random 26-58

45 Homework 26! Submit answer to Exercise Submit code and report x 20,

46 Exercise 26.5 Implement the following LCG using Schrage's method to avoid overflow: Using a seed of x 0 =1, determine x

### Testing Random- Number Generators

Testing Random- Number Generators Raj Jain Washington University Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-08/

### 12.0 Statistical Graphics and RNG

12.0 Statistical Graphics and RNG 1 Answer Questions Statistical Graphics Random Number Generators 12.1 Statistical Graphics 2 John Snow helped to end the 1854 cholera outbreak through use of a statistical

### 2WB05 Simulation Lecture 5: Random-number generators

2WB05 Simulation Lecture 5: Random-number generators Marko Boon http://www.win.tue.nl/courses/2wb05 December 6, 2012 Random-number generators It is important to be able to efficiently generate independent

### RANDOM NUMBER GEUERATORS: GOOD ONES ARE HARD TO FIN

COMPUTING PRACTICES Edgar H. Sibley Panel Editor Practical and theoretical issues are presented concerning the design, implementation, and use of a good, minimal standard random number generator that will

### Portable Random Number Generators ABSTRACT

Portable Random Number Generators Gerald P. Dwyer, Jr.* a K. B. Williams b a. Research Department, Federal Reserve Bank of Atlanta, 104 Marietta St., N.W., Atlanta GA 30303 USA b. Melbourne Beach, Florida

### SECURITY EVALUATION OF EMAIL ENCRYPTION USING RANDOM NOISE GENERATED BY LCG

SECURITY EVALUATION OF EMAIL ENCRYPTION USING RANDOM NOISE GENERATED BY LCG Chung-Chih Li, Hema Sagar R. Kandati, Bo Sun Dept. of Computer Science, Lamar University, Beaumont, Texas, USA 409-880-8748,

### Raj Boppana, Ph.D. Professor and Interim Chair. University of Texas at San Antonio

Raj Boppana, Ph.D. Professor and Interim Chair Computer Science Department University of Texas at San Antonio Terminology RN: pseudorandom number RN stream: a sequence of RNs Cycle: the maximum number

### Digital Signature. Raj Jain. Washington University in St. Louis

Digital Signature Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/

### Network Security. Chapter 6 Random Number Generation

Network Security Chapter 6 Random Number Generation 1 Tasks of Key Management (1)! Generation:! It is crucial to security, that keys are generated with a truly random or at least a pseudo-random generation

### Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

### Integers: applications, base conversions.

CS 441 Discrete Mathematics for CS Lecture 14 Integers: applications, base conversions. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Modular arithmetic in CS Modular arithmetic and congruencies

### COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

### Let s just do some examples to get the feel of congruence arithmetic.

Basic Congruence Arithmetic Let s just do some examples to get the feel of congruence arithmetic. Arithmetic Mod 7 Just write the multiplication table. 0 1 2 3 4 5 6 0 0 0 0 0 0 0 0 1 0 1 2 3 4 5 6 2 0

### General Principles in Random Variates Generation

General Principles in Random Variates Generation E. Moulines Ecole Nationale Supérieure des Télécommunications 20 mai 2007 Why use random numbers? Random numbers lie at the heart of many scientific and

### Aachen Summer Simulation Seminar 2014

Aachen Summer Simulation Seminar 2014 Lecture 07 Input Modelling + Experimentation + Output Analysis Peer-Olaf Siebers pos@cs.nott.ac.uk Motivation 1. Input modelling Improve the understanding about how

### Types of Workloads. Raj Jain. Washington University in St. Louis

Types of Workloads Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse567-08/ 4-1 Overview!

### Network Protocol Design and Evaluation

Network Protocol Design and Evaluation 07 - Simulation, Part I Stefan Rührup Summer 2009 Overview In the last chapters: Formal Specification, Validation, Design Techniques Implementation Software Engineering,

### Software: how we tell the machine what to do

Software: how we tell the machine what to do hardware is a general purpose machine capable of doing instructions repetitively and very fast doesn't do anything itself unless we tell it what to do software:

### Measures of Error: for exact x and approximation x Absolute error e = x x. Relative error r = (x x )/x.

ERRORS and COMPUTER ARITHMETIC Types of Error in Numerical Calculations Initial Data Errors: from experiment, modeling, computer representation; problem dependent but need to know at beginning of calculation.

### Outline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures

Outline Computer Science 418 Digital Signatures Mike Jacobson Department of Computer Science University of Calgary Week 12 1 Digital Signatures 2 Signatures via Public Key Cryptosystems 3 Provable 4 Mike

### The finite field with 2 elements The simplest finite field is

The finite field with 2 elements The simplest finite field is GF (2) = F 2 = {0, 1} = Z/2 It has addition and multiplication + and defined to be 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 0 0 = 0 0 1 = 0

### Network Security. Chapter 6 Random Number Generation. Prof. Dr.-Ing. Georg Carle

Network Security Chapter 6 Random Number Generation Prof. Dr.-Ing. Georg Carle Chair for Computer Networks & Internet Wilhelm-Schickard-Institute for Computer Science University of Tübingen http://net.informatik.uni-tuebingen.de/

### Information Science 1

Information Science 1 - Representa*on of Data in Memory- Week 03 College of Information Science and Engineering Ritsumeikan University Topics covered l Basic terms and concepts of The Structure of a Computer

### Coursework 3: Pseudo-Random Numbers and Monte Carlo Methods

Coursework 3: Pseudo-Random Numbers and Monte Carlo Methods The aim of this project is to explore random number generation and its use in simulation. It is, of course, impossible to generate a truly random

### CSE 1400 Applied Discrete Mathematics Conversions Between Number Systems

CSE 400 Applied Discrete Mathematics Conversions Between Number Systems Department of Computer Sciences College of Engineering Florida Tech Fall 20 Conversion Algorithms: Decimal to Another Base Conversion

### Floating-point computation

Real values and floating point values Floating-point representation IEEE 754 standard representation rounding special values Floating-point computation 1 Real values Not all values can be represented exactly

### Number Systems and. Data Representation

Number Systems and Data Representation 1 Lecture Outline Number Systems Binary, Octal, Hexadecimal Representation of characters using codes Representation of Numbers Integer, Floating Point, Binary Coded

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

### Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem)

Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem) In order to understand the details of the Fingerprinting Theorem on fingerprints of different texts from Chapter 19 of the

### Factoring Algorithms

Institutionen för Informationsteknologi Lunds Tekniska Högskola Department of Information Technology Lund University Cryptology - Project 1 Factoring Algorithms The purpose of this project is to understand

### MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins

MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins The RSA encryption scheme works as follows. In order to establish the necessary public

### Random and Pseudorandom Bit Generators

Random and Pseudorandom Bit Generators! Random bit generators! Pseudorandom bit generators! Cryptographically Secure PRBG! Statistical tests Unpredictable quantities! The security of many cryptographic

### Network Security: Cryptography CS/SS G513 S.K. Sahay

Network Security: Cryptography CS/SS G513 S.K. Sahay BITS-Pilani, K.K. Birla Goa Campus, Goa S.K. Sahay Network Security: Cryptography 1 Introduction Network security: measure to protect data/information

### ECE 0142 Computer Organization. Lecture 3 Floating Point Representations

ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,

### Data Structure. Lecture 3

Data Structure Lecture 3 Data Structure Formally define Data structure as: DS describes not only set of objects but the ways they are related, the set of operations which may be applied to the elements

### Notes on Factoring. MA 206 Kurt Bryan

The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

### Floating-Point Numbers. Floating-point number system characterized by four integers: base or radix precision exponent range

Floating-Point Numbers Floating-point number system characterized by four integers: β p [L, U] base or radix precision exponent range Number x represented as where x = ± ( d 0 + d 1 β + d 2 β 2 + + d p

### Determining the Optimal Combination of Trial Division and Fermat s Factorization Method

Determining the Optimal Combination of Trial Division and Fermat s Factorization Method Joseph C. Woodson Home School P. O. Box 55005 Tulsa, OK 74155 Abstract The process of finding the prime factorization

### Data Representation Binary Numbers

Data Representation Binary Numbers Integer Conversion Between Decimal and Binary Bases Task accomplished by Repeated division of decimal number by 2 (integer part of decimal number) Repeated multiplication

### OPENING THE BLACK BOX OF RANDOM NUMBERS

International Journal of Pure and Applied Mathematics Volume 81 No. 6 2012, 831-839 ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu PA ijpam.eu OPENING THE BLACK BOX OF RANDOM NUMBERS Yutaka

### Integer and Real Numbers Representation in Microprocessor Techniques

Brno University of Technology Integer and Real Numbers Representation in Microprocessor Techniques Microprocessor Techniques and Embedded Systems Lecture 1 Dr. Tomas Fryza 30-Sep-2011 Contents Numerical

### Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer.

Digital Logic 1 Data Representations 1.1 The Binary System The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. The system we

### CSC 1103: Digital Logic. Lecture Six: Data Representation

CSC 1103: Digital Logic Lecture Six: Data Representation Martin Ngobye mngobye@must.ac.ug Mbarara University of Science and Technology MAN (MUST) CSC 1103 1 / 32 Outline 1 Digital Computers 2 Number Systems

### Number Systems and Number Representation

Number Systems and Number Representation 1 For Your Amusement Question: Why do computer programmers confuse Christmas and Halloween? Answer: Because 25 Dec = 31 Oct -- http://www.electronicsweekly.com

### West Windsor-Plainsboro Regional School District Algebra I Part 2 Grades 9-12

West Windsor-Plainsboro Regional School District Algebra I Part 2 Grades 9-12 Unit 1: Polynomials and Factoring Course & Grade Level: Algebra I Part 2, 9 12 This unit involves knowledge and skills relative

### Faster deterministic integer factorisation

David Harvey (joint work with Edgar Costa, NYU) University of New South Wales 25th October 2011 The obvious mathematical breakthrough would be the development of an easy way to factor large prime numbers

### The Fundamentals of C++

The Fundamentals of C++ Basic programming elements and concepts JPC and JWD 2002 McGraw-Hill, Inc. Program Organization Program statement Definition Declaration Action Executable unit Named set of program

### 3 SIMULATION BASICS. 3.1 Introduction. 3.2 Types of Simulation. Zeal without knowledge is fi re without light.

C H A P T E R 3 SIMULATION BASICS Zeal without knowledge is fi re without light. Dr. Thomas Fuller 3.1 Introduction Simulation is much more meaningful when we understand what it is actually doing. Understanding

### Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards

### MEP Y9 Practice Book A

1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,

### Discrete Mathematics: Homework 7 solution. Due: 2011.6.03

EE 2060 Discrete Mathematics spring 2011 Discrete Mathematics: Homework 7 solution Due: 2011.6.03 1. Let a n = 2 n + 5 3 n for n = 0, 1, 2,... (a) (2%) Find a 0, a 1, a 2, a 3 and a 4. (b) (2%) Show that

### March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions

MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

### Consequently, for the remainder of this discussion we will assume that a is a quadratic residue mod p.

Computing square roots mod p We now have very effective ways to determine whether the quadratic congruence x a (mod p), p an odd prime, is solvable. What we need to complete this discussion is an effective

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### Network Security Part II: Standards

Network Security Part II: Standards Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse473-05/ 18-1 Overview

### CHAPTER 3 Number System and Codes

CHAPTER 3 Number System and Codes 3.1 Introduction On hearing the word number, we immediately think of familiar decimal number system with its 10 digits; 0,1, 2,3,4,5,6, 7, 8 and 9. these numbers are called

### Authentication, digital signatures, PRNG

Multimedia Security Authentication, digital signatures, PRNG Mauro Barni University of Siena Beyond confidentiality Up to now, we have been concerned with protecting message content (i.e. confidentiality)

### CUNSHENG DING HKUST, Hong Kong. Computer Security. Computer Security. Cunsheng DING, HKUST COMP4631

Cunsheng DING, HKUST Lecture 08: Key Management for One-key Ciphers Topics of this Lecture 1. The generation and distribution of secret keys. 2. A key distribution protocol with a key distribution center.

### NUMBER REPRESENTATIONS IN THE COMPUTER for COSC 120

NUMBER REPRESENTATIONS IN THE COMPUTER for COSC 120 First, a reminder of how we represent base ten numbers. Base ten uses ten (decimal) digits: 0, 1, 2,3, 4, 5, 6, 7, 8, 9. In base ten, 10 means ten. Numbers

### CHAPTER 2 Data Representation in Computer Systems

CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 47 2.2 Positional Numbering Systems 48 2.3 Converting Between Bases 48 2.3.1 Converting Unsigned Whole Numbers 49 2.3.2 Converting Fractions

### Quick introduction of randtoolbox

Quick introduction of randtoolbox Christophe Dutang and Petr Savicky September 2009 1 2 Random simulation or Monte-Carlo methods rely on the fact we have access to random numbers. Even if nowadays having

### CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

### ECE 0142 Computer Organization. Lecture 3 Floating Point Representations

ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,

### Recall that in base 10, the digits of a number are just coefficients of powers of the base (10):

Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

### Factoring Algorithms

Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors

### Holger Dammertz September 15, Massively Parallel Random Number Generators

Holger Dammertz September 15, 2010 Massively Parallel Random Number Generators Page 2 Massively Parallel Random Number Generators Overview September 15, 2010 Overview Applications for Pseudo-Random Numbers

### Cryptography and Network Security Chapter 8

Cryptography and Network Security Chapter 8 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 8 Introduction to Number Theory The Devil said to Daniel Webster:

### Ratio Games. Raj Jain. Washington University in St. Louis

Ratio Games Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse567-08/ 11-1 Overview! Ratio

### In this lesson you will learn to find zeros of polynomial functions that are not factorable.

2.6. Rational zeros of polynomial functions. In this lesson you will learn to find zeros of polynomial functions that are not factorable. REVIEW OF PREREQUISITE CONCEPTS: A polynomial of n th degree has

### CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis Linda Shapiro Today Registration should be done. Homework 1 due 11:59 pm next Wednesday, January 14 Review math essential

### Lecture 10: Distinct Degree Factoring

CS681 Computational Number Theory Lecture 10: Distinct Degree Factoring Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi Overview Last class we left of with a glimpse into distant degree factorization.

### Lecture 8: Stream ciphers - LFSR sequences

Lecture 8: Stream ciphers - LFSR sequences Thomas Johansson T. Johansson (Lund University) 1 / 42 Introduction Symmetric encryption algorithms are divided into two main categories, block ciphers and stream

### Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

### Introduction to Finite Fields (cont.)

Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

### Continued Fractions. Darren C. Collins

Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history

### Primality Testing and Factorization Methods

Primality Testing and Factorization Methods Eli Howey May 27, 2014 Abstract Since the days of Euclid and Eratosthenes, mathematicians have taken a keen interest in finding the nontrivial factors of integers,

### PRIMES 2017 Math Problem Set

Dear PRIMES applicant: PRIMES 2017 Math Problem Set This is the PRIMES 2017 Math Problem Set. Please send us your solutions as part of your PRIMES application by the application deadline (December 1, 2016).

### Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Module No. # 01 Lecture No. # 05 Classic Cryptosystems (Refer Slide Time: 00:42)

### Two s Complement Arithmetic

Two s Complement Arithmetic We now address the issue of representing integers as binary strings in a computer. There are four formats that have been used in the past; only one is of interest to us. The

### Big Data & Scripting Part II Streaming Algorithms

Big Data & Scripting Part II Streaming Algorithms 1, Counting Distinct Elements 2, 3, counting distinct elements problem formalization input: stream of elements o from some universe U e.g. ids from a set

### An Introduction to Galois Fields and Reed-Solomon Coding

An Introduction to Galois Fields and Reed-Solomon Coding James Westall James Martin School of Computing Clemson University Clemson, SC 29634-1906 October 4, 2010 1 Fields A field is a set of elements on

### High School Algebra 1 Common Core Standards & Learning Targets

High School Algebra 1 Common Core Standards & Learning Targets Unit 1: Relationships between Quantities and Reasoning with Equations CCS Standards: Quantities N-Q.1. Use units as a way to understand problems

### Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1

Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

### Image Compression. Topics

Image Compression October 2010 Topics Redundancy Image information Fidelity Huffman coding Arithmetic coding Golomb code LZW coding Run Length Encoding Bit plane coding 1 Why do we need compression? Data

### Computer and Network Security

MIT 6.857 Computer and Networ Security Class Notes 1 File: http://theory.lcs.mit.edu/ rivest/notes/notes.pdf Revision: December 2, 2002 Computer and Networ Security MIT 6.857 Class Notes by Ronald L. Rivest

### Course Outlines. 1. Name of the Course: Algebra I (Standard, College Prep, Honors) Course Description: ALGEBRA I STANDARD (1 Credit)

Course Outlines 1. Name of the Course: Algebra I (Standard, College Prep, Honors) Course Description: ALGEBRA I STANDARD (1 Credit) This course will cover Algebra I concepts such as algebra as a language,

### Binary Random Sequences Obtained From Decimal Sequences

Binary Random Sequences Obtained From Decimal Sequences Suresh B. Thippireddy Oklahoma State University, Stillwater Abstract: This paper presents a twist to the generation of binary random sequences by

### The Essentials of Computer Organization and Architecture. Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003

The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 2 Instructor's Manual Chapter Objectives Chapter 2, Data Representation,

### Review of Number Systems Binary, Octal, and Hexadecimal Numbers and Two's Complement

Review of Number Systems Binary, Octal, and Hexadecimal Numbers and Two's Complement Topic 1: Binary, Octal, and Hexadecimal Numbers The number system we generally use in our everyday lives is a decimal

### CHAPTER 3 THE NEW MMP CRYPTO SYSTEM. mathematical problems Hidden Root Problem, Discrete Logarithm Problem and

79 CHAPTER 3 THE NEW MMP CRYPTO SYSTEM In this chapter an overview of the new Mixed Mode Paired cipher text Cryptographic System (MMPCS) is given, its three hard mathematical problems are explained, and

### Direct Methods for Solving Linear Systems. Linear Systems of Equations

Direct Methods for Solving Linear Systems Linear Systems of Equations Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

### Square roots by subtraction

Square roots by subtraction Frazer Jarvis When I was at school, my mathematics teacher showed me the following very strange method to work out square roots, using only subtraction, which is apparently

### Factoring & Primality

Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount

### STRAND B: Number Theory. UNIT B2 Number Classification and Bases: Text * * * * * Contents. Section. B2.1 Number Classification. B2.

STRAND B: Number Theory B2 Number Classification and Bases Text Contents * * * * * Section B2. Number Classification B2.2 Binary Numbers B2.3 Adding and Subtracting Binary Numbers B2.4 Multiplying Binary

### Cyclic Codes Introduction Binary cyclic codes form a subclass of linear block codes. Easier to encode and decode

Cyclic Codes Introduction Binary cyclic codes form a subclass of linear block codes. Easier to encode and decode Definition A n, k linear block code C is called a cyclic code if. The sum of any two codewords

### Short Programs for functions on Curves

Short Programs for functions on Curves Victor S. Miller Exploratory Computer Science IBM, Thomas J. Watson Research Center Yorktown Heights, NY 10598 May 6, 1986 Abstract The problem of deducing a function

### Mathematical induction & Recursion

CS 441 Discrete Mathematics for CS Lecture 15 Mathematical induction & Recursion Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Proofs Basic proof methods: Direct, Indirect, Contradiction, By Cases,

### Utah Core Curriculum for Mathematics

Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions