SPPA-D3000 Plant Monitor Technical Description

Size: px
Start display at page:

Download "SPPA-D3000 Plant Monitor Technical Description"

Transcription

1 Instrumentation & Control, SPPA-D3000 Plant Monitor Technical Description Model-based monitoring and early fault detection for components and processes June 2010 Answers for energy. 1 Siemens AG All Rights Reserved.

2 Contents Contents Introduction Applications System components Interfaces and integration Model-based condition monitoring Method of operation of Plant Monitor models Generate model and learn normal behavior Generating models Training models Preprocessing in Plant Monitor projects Prediction of Plant Monitor warnings Learning of residual thresholds Calculation of soft sensors Validation of sensor signals Definition of rules Changing models Implementing complex monitoring structures with Plant Monitor projects Extended analysis of results of models Parameterization of models and functions Networking of models Operation and analysis Alarm annunciation and operation Analysis...26 Technical data SPPA-T3000 technology server SPPA-D3000 Plant Monitor Abbreviations...30 Siemens AG All Rights Reserved. 2

3 1 Introduction 1.1 Applications SPPA-D3000 Plant Monitor is one of the solutions in the SPPA-D3000 Diagnostic Suite portfolio (SPPA Siemens Power Plant Automation). It permits continuous evaluation of the conditions of components and processes. Condition evaluation is performed with the help of a model-based description of the conditions of the components and processes to be monitored. The data-driven neural models which are employed here make it possible to dispense with costly engineering. The models are generated and completely engineered based exclusively on archived measured data, as all the relevant information about the physical interaction between components and processes, as well as the entire history, are already available in full. However the Plant Monitor models for condition monitoring are only part of a comprehensive range of functions designed either for preprocessing, i.e. as input for Plant Monitor models, or as model add-ons. This range of functions including the Plant Monitor models is referred to as a Plant Monitor project. 1.2 System components Only two components are required for the operation of SPPA-D3000 Plant Monitor: a Plant Monitor license and a technology server from the Siemens SPPA-T3000 I&C system. The Plant Monitor license comprises a range of functions which are available as an autonomous group of function blocks in T3000. Each function can be activated individually by means of a license. The functions can be booked in different denominations and make it possible for the user to create any number of models of different sizes and for a wide variety of applications and to vary these without any problems at any time. Model generation, data-driven engineering and other functions are performed on the SPPA-T3000 technology server, which fulfils all the requirements for operation, data management, training, analysis and reporting of models, and of detected condition changes. 1.3 Interfaces and integration Plant Monitor is basically used in two different ways: As a fully integrated component in release R4.2 or higher of the SPPA-T3000 I&C system or In stand-alone operation in the case of all older Siemens I&C systems or I&C systems from third-party suppliers If Plant Monitor is used in conjunction with release R4.2 or higher of the SPPA-T3000 I&C system, it seamlessly integrates into the existing architecture and uses the same planning and engineering environment. Plant Monitor can therefore be operated from any thin client within the framework of SPPA-T3000 user rights. Furthermore all results and analyses from Plant Monitor can be immediately incorporated in existing plant displays. The full range of functions of SPPA-T3000 "Embedded Component Service" (ECS TM ) is also provided. 3 Siemens AG All Rights Reserved.

4 User interface Servers Application Server Automation Server Plant Monitor on the Technology Server Process interfaces On the left: Topology of network interface of Plant Monitor on the technology server with SPPA-T3000 projects - Release 4.2 or higher On the right: Diagrammatic representation of Embedded Component Services TM architecture of SPPA-T3000 Even if Plant Monitor is not used with SPPA-T3000, engineering, operation and analysis are still retained in full thanks to the technology server platform. If, for example, measured data are exported via OPC from another I&C system or from a PI archive, the technology server then constitutes an autonomous SPPA-T3000 system. It features the same convenient features and advantages as the integrated variant, as the most important elements of ECS TM are also available with this variant. Data sources Plant Monitor User interface Thin Client Web Server (Java) System SW HMI Data System SW Non- Siemens I&C or any other data sources via OPC Engin- Diageerinnostic Data Data System SW System SW OPC Server Auto- Archive mation Data Data System SW System SW Plant Monitor on the SPPA-T3000 Technology Server Process interfaces Topology of network interface of Plant Monitor in the case of connection to older Siemens I&C systems or I&C systems from third-party suppliers With the stand-alone variant, however, measured values supplied, for example, by SPPA-D3000 Machinery Protection via Profibus DP can also be used directly and without a link to the S7 automation server. In such cases and with other similar links, the bus signals are read in by means of a SIMATIC Microbox and made available via OPC. Siemens AG All Rights Reserved. 4

5 2 Model-based condition monitoring 2.1 Method of operation of Plant Monitor models SPPA-D3000 Plant Monitor is a model-based solution which is able to determine the condition of a component or process based solely on archived measured data, to compare the condition with the current condition and to judge whether this condition can still be regarded as normal. The use of a data-driven neural network provides it with this capability. The basis for this condition evaluation is a model which has been generated for this task based on archived measured data and which has been activated on the technology server. The schematic representations below are designed to briefly illustrate the basic method of operation. The value displayed in red in the graphic below represents a real measured signal from the component or process to be monitored. Over time, it assumes many different values that may fluctuate greatly from operating mode to operating mode. Up to now signals of this type have generally been monitored for violation of simple thresholds. In many cases the operator will only take note of upward limit value violation, whereby such high values are not unusual in certain operating situations. If the Plant Monitor model has been adequately trained with historical measured data, it will provide an expected value in real time, shown in blue here, parallel to the measured values from the plant (red). In well-trained models, the real measured value and the expected value will therefore be nearly identical in situations which have been trained as normal plant conditions. 1 2 t Schematic representation of the measured value and the expected value in Plant Monitor operation Block 1: Deviation from learned plant behavior detected Block 2: Typical limit value violation resulting from previously occurring damage Let us now assume that there is a deviation between the real measured value (red) and the expected value (blue) due to a change in the plant condition (see block 1 in graphic). Based on the behavior previously learned from archived measured data, the Plant Monitor model concludes that the measured quantity shown here should be lower in the light of all the other measured values in this model. In this way Plant Monitor detects a deviation from the trained "normal behavior" at this early stage and triggers an alarm. Block 2 in the graphic illustrates a typical limit value violation by the real measured value. This occurs at a later time, after the hitherto undetected damage has started to negatively impact plant behavior. A limit value violation of this kind also results in an alarm, which draws the attention of plant personnel to a condition which is now critical. In the worst case a plant shutdown 5 Siemens AG All Rights Reserved.

6 becomes necessary with significantly greater financial consequences than would have been required to promptly rectify the original damage. Plant Monitor can detect cases similar to that illustrated in block 1 long before a limit value violation has occurred. This is a huge advantage, especially in situations where the deviation from the trained normal behavior is detected in one of those measured variables of the condition model which will not result in any limit value violation in the immediate future. In this case Plant Monitor promptly offers the user a correct analysis based on a comparison with the learned behavior, thereby clearly demonstrating its superiority to traditional monitoring methods. The plant section in which the deviation is detected can be examined during the next inspection and overhaul, and parts subject to wear can be replaced at a fraction of the cost which would have been incurred by an unscheduled outage. Deviations from normal behavior, i.e. points where the real measured value and the expected value calculated by Plant Monitor do not match, are most easily recognized by monitoring the residual, i.e. the difference between the measured value and the expected value. The residual associated with this schematic example is shown in the diagram below. RES 0 t 0 t Display of residual by Plant Monitor As expected, the residual for the time up to t 0 is still low, as the measured value and the expected value are almost identical. However the residual after t 0 regularly exceeds the limit value defined for alarm triggering. Plant Monitor monitors the residual in real time and immediately issues an alarm for each major deviation. Plant Monitor would also output the deviation to the alarm sequence display at time t 0 in this example. The user is thereby informed about the possible problem and can immediately navigate to the associated plant display or initiate a preliminary analysis without delay as he or she can jump directly to the abnormal measured value from the alarm sequence display. Because time t 0 occurs long before time range 2 in the previous graphic where the critical limit value violation occurs, there is still enough time to decide on the best plan of action. It can therefore be seen that Plant Monitor detects deviations from normal behavior much earlier than simple limit value monitoring systems. This offers the operator the opportunity to react promptly to changes before there is any risk of damage or a production outage. Siemens AG All Rights Reserved. 6

7 3 Generate model and learn normal behavior 3.1 Generating models Plat Monitor is capable of monitoring for the normal condition of all processes and components in the power plant. The conditions which are included in one or more Plant Monitor models and which are monitored as a consequence depend entirely on the measured values selected by the user. The source of these values in the power plant is of no significance. For example, all the blowers in a subsystem can be grouped together, as can individual machines or entire process or plant sections. The only important thing is that phenomena which affect operating behavior and which must therefore be detected are reflected in these measured variables or can be derived from them. Up to now it has proven meaningful for practical applications to take into consideration all the data tags of a machine for the purposes of modeling and monitoring. Also included are measured values from the plant which have an effect on the condition and the control of these machines. For example, when monitoring a gas turbine, in addition to the values measured on the gas turbine, values which have an effect on power output, condition or service life but which are not measured directly on the gas turbine should also be taken into account, e.g. ambient temperature and pressure. Unlike most classical systems, Plant Monitor actually generates the model fully automatically from the list of available tags with the help of Plant Monitor's neural network. If Plant Monitor is operated in an integrated application, i.e. in conjunction with SPPA-T3000, all the tags currently defined in the project container are displayed for selection. The user selects the tags which are of interest from this list. In all other applications, the archived tags are read out from data sources accessible by the technology server, e.g. via OPC DA/HDA, and are displayed for selection in a process similar to that for the integrated application. This selection creates the basic conditions required for modeling. Models can now be generated for monitoring by Plant Monitor. Selection of instrumentation channels used for modeling in the Plant Monitor input mask 7 Siemens AG All Rights Reserved.

8 Each model is represented in the form of so-called blocks or automation functions. Each task is represented by a separate block in the SPPA-D3000 Plant Monitor function diagram. All of these blocks, in addition to a header block used for model administration and parameterization, are linked to form a model. 5A00F901A_XQ01 TOTAL_AIR_FLOW_MEAS_1 5A12T010_XQ01 FD_FAN_A_MOT_WINDING_TEMP 5A11P010_XQ01 FD_FAN_A_OUTLET_AIR_PRESS Editing of signals used in the model in the SPPA-T3000 Workbench editor (function diagram of model) The user does not need to draw the function diagrams, as they are generated automatically by the Plant Monitor engineering tool. Several models can be created in a project and linked within SPPA-T3000. The results from state estimators and other monitoring functions in plant displays and alarm lists are transferred through application of the integrated engineering methods of SPPA-T3000 ECS TM. Siemens AG All Rights Reserved. 8

9 3.2 Training models Once the tags relevant for monitoring a component or process have been selected, the model can be trained. In this context training means that a time range from the archive during which the relevant component or process was in a condition regarded as normal is made available to the model. Normal usually means "unimpaired", but not necessarily "optimal". For example, irregular operating behavior of a component can be regarded as normal if it has been identical for many years and has not become any worse. This time range is selected for training directly in Plant Monitor with minimum effort using the calendar function or a graphical display. The time resolution for training can be selected independently of the graphical display. This is especially useful if a time range is displayed with a low resolution when training periods are being selected although a higher resolution is required for training. In this case any resolution can be selected for training. Selection of training data and resolution in Plant Monitor view Non-consecutive time ranges can be selected when defining a training period. Every plant behavior regarded as normal can therefore be included, even if long intervals occur between the individual time ranges. 9 Siemens AG All Rights Reserved.

10 5O21M900S_XQ01_BFPT_A_SPEED_1V2 Selection of normal behavior for training a model (marked in blue) in the Plant Monitor operating window The selection of training times allows the model to familiarize itself with the normal behavior of the component or process in the initial training phase. The time required for this training phase is usually a few hours or days, provided no extremely changeable behavior spanning several months needs to be taken into account (a longer training period is required in such cases). Once a satisfactory result has been obtained and Plant Monitor only detects comparatively minor deviations between the measured value and the model value when new training data are introduced, the initial training phase can be concluded. Deviation too great Measured value Estimated value Deviation (residual) Threshold for residual Display of training results with overview of deviations in the upper window highlighted by red error bars Siemens AG All Rights Reserved. 10

11 If greater deviations occur, a decision must be made as to whether the deviation points to an incipient fault or whether it is normal behavior which has not previously been taken into consideration. If the latter is the case, the area can be defined as normal simply by selecting it and adding to the model information. As a rule, this so-called retraining is rarely necessary provided the initial training period is sufficiently long. If an abnormal condition is incorrectly included during training, it can be selected and removed from the training information at any time without problems. Upper window: Lower window: Display of deviations (red error bars), classified by the user as normal behavior which has not previously been taken into consideration Retraining of the model for this normal behavior which has not previously been taken into consideration by selecting the time range (marked in blue) Plant Monitor s graphical display also points out deviations from trained behavior which occurred in the past. These deviations can either be an indication of behavior which has not yet been trained or of a deviation which occurred at the time. If the behavior has not been trained, this time range is added to the training period as described above. If it points to a deviation which occurred in the past and if the underlying cause is known, Plant Monitor s rule-based functions will ensure that this deviation will be reliably detected and reported in future. The time periods used for training can be adjusted at any time. Plant Monitor provides an efficient management function for this purpose. If, for example, a new type of plant behavior is expected or identified following a modernization measure, time ranges previously included in a training period can be selectively deleted and new time ranges can be selected with a view to defining the new behavior. 11 Siemens AG All Rights Reserved.

12 Management of selected training times in Plant Monitor view. Training times are used as jump labels. A trained model is generally applied to the overall plant behavior, irrespective of the operating condition which was active during the selected training periods. However Plant Monitor also makes it possible to apply a model for a particular operating condition only. If the plant or process is not in this operating condition, no monitoring is performed. Monitoring of the selected operating condition features a high degree of accuracy, as Plant Monitor restricts itself to the learned behavior for the selected operating condition. No residual calculated Invalid data areas are hidden so as to make monitoring more sensitive and transparent. Siemens AG All Rights Reserved. 12

13 3.3 Preprocessing in Plant Monitor projects The functionality of Plant Monitor V2.0 does not restrict itself to the calculation of expected values and to monitoring of the normal behavior of processes and plants. The models of the latest version and the condition monitoring generated from them are simply one part, albeit central, of an extensive Plant Monitor project. Plant Monitor projects now also include the following functions: Alarm prediction Learning of (residual) thresholds Calculation of soft sensors Validation and testing of sensor signals and data quality Definition of rules 3.4 Prediction of Plant Monitor warnings Plant Monitor calculates an expected value for every incoming signal based on training data. This value represents the currently expected condition. This makes it possible to detect any deviations from normal behavior which emerge due to a change in operating behavior. Plant Monitor can also make pronouncements as to whether a deviation from the learned normal behavior will occur within a definable time frame. RES 5,00 4,00 3,00 2,00 1,00 0,00 Event horizon (PRED_WND) Remaining time (PRED_ETA) Prediction Limit Value -1, Now t prediction Prediction lies within horizon => PRED_FLT = 1 PRED ETA = Remaining time Schematic representation of possible predictions in PMSE block This information is then available, in addition to the current expected value, in the form of a binary value and in the form of an integer at the associated function block. This allows the user not only to assess the current condition but also to predict whether a change is to be anticipated in the near future. A statement about availability, which says much more than the statement about condition, therefore becomes possible. 13 Siemens AG All Rights Reserved.

14 3.5 Learning of residual thresholds When a model is being created, the thresholds for the residual are initially set to absolute and predefined fixed limits. The user can either change these individually for each sensor or use the spreadsheet engineering facility of SPPA-T3000, which allows all the sensors of a model to be changed systematically in a clearly structured table. It is often necessary, however, to define thresholds relative to the behavior of the monitored signal instead of fixing them at absolute values. Plant Monitor makes it possible to learn not only the behavior of the monitored asset based on historical measured values but also the associated thresholds. The definition of thresholds for residuals is oriented exclusively towards the fluctuation margins of the residuals. Any multiples of these fluctuation margins can then be used for specifying limit values. This ensures that residuals with large and small standard deviation can be monitored equally sensitively. The actual engineering is reduced even if learned limit values are manually adjusted to a minimum. Automatic definition of residual limit values by Plant Monitor The thresholds for residuals play an important role in the online monitoring of processes and plants. The degree to which current plant behavior still matches the learned behavior is defined based on thresholds in Plant Monitor. Because limits must be defined for every measured value used in a model, automatic calculation of these limit values offers a huge simplification of the engineering work load. Siemens AG All Rights Reserved. 14

15 3.6 Calculation of soft sensors It often happens in practice that a number of values are not measured because no instrumentation has been implemented for them or because measuring them is a physical impossibility. In such cases computed sensors, which calculate derived values based on existing sensors, can be defined in Plant Monitor. This makes it possible, for example, to convert the measured power output of a generator into money or to calculate an average temperature. Creation of computed sensors or soft sensors for the calculation of unmeasured variables These calculated values can in turn be used directly as new measured variables in the model for the detection of normal behavior and for the prediction of incipient deviations. They can also be used for defining rules and can contribute to the detection of recurring plant behavior, which would only be possible to a limited extent, if at all, on the basis of values measured by purely physical methods. Formula editor Perform actions List of sensors Delete or edit sequence List of operators Name for calculated Formula field Finished formula Using the formula editor for the creation of simple rules in Plant Monitor projects 15 Siemens AG All Rights Reserved.

16 3.7 Validation of sensor signals Plant Monitor can be used not only for predicting expected values and calculating the time which will elapse prior to an alarm, but also for testing (validating) sensor signals. Creation of sensors which are tested by means of validation The five tests listed below can be applied to every signal, thus preventing Plant Monitor from accessing measured data which cannot be regarded as valid. This greatly increases the quality of information offered by Plant Monitor, especially for the purposes of training and during normal operation. 1. Test for constant ("stuck") values: This test monitors the input signal to ensure that it has not violated a defined value range within a specific period of time. If this condition is fulfilled, the signal can be regarded as being constant and actions can be derived from it where appropriate. 55,00 54,00 53,00 52,00 51,00 50,00 49,00 48,00 47,00 09:05:01 09:05:11 09:05:21 09:05:31 09:06:10 09:06:20 09:06:30 09:07:10 09:07:20 09:07:30 Stuck value Schematic representation of sensor validation for stuck sensors Siemens AG All Rights Reserved. 16

17 2. Sensors and signals with disturbances, such as spikes, in the signal trend can be monitored to ensure that Plant Monitor accesses measured data which are considered normal rather than data from signals in which the level of noise is too high. 150,00 125,00 100,00 75,00 50,00 09:05:01 09:05:11 09:05:21 09:05:31 09:06:10 09:06:20 09:06:30 09:07:10 09:07:20 09:07:30 Deviation too high Schematic representation of sensor validation for "chattering" sensors 3. In addition to the tests listed above, Plant Monitor can also check whether the measured value violates an absolute upper or lower limit value. This is a simple way of checking whether a value is in the physically correct range. 150,00 125,00 100,00 75,00 09:05:01 09:05:11 09:05:21 09:05:31 09:06:10 09:06:20 09:06:30 09:07:10 09:07:20 09:07:30 Thresholds violated Schematic representation of sensor validation for limit violations in sensors 17 Siemens AG All Rights Reserved.

18 4. The gradient test performs an absolute or relative test of the measuring signal gradient. This can be used to detect step changes in signals which cannot be regarded as valid. 175,00 150,00 125,00 100,00 75,00 50,00 09:05:01 09:05:11 09:05:21 09:05:31 09:06:10 09:06:20 09:06:30 09:07:10 09:07:20 09:07:30 Rate of change too high Detection of step changes Schematic representation of sensor validation for too fast changing sensors 5. Finally sensors can also be grouped with a view to checking signals from redundantly configured sensors for consistency. Any discrepancy detected between redundant sensors is reported and the conditions derived from these sensors can be treated accordingly. Siemens AG All Rights Reserved. 18

19 3.8 Definition of rules Rules can also be defined in Plant Monitor projects in order to enable the automatic detection of recurring events and deviations, for example. Logical links can be configured between these rules with a view to representing complex logic operations. In some cases it is even possible to define damage patterns for automatic detection in this way. Examples of rules in Plant Monitor The defined rules can easily be visualized in Plant Monitor view, allowing the user to see in detail how the result of a particular rule behaves. Graphical representation of the defined rules. The validity of the rule is indicated by the red areas in the upper section of the window. The lower section shows the sensor values used for the rules. 19 Siemens AG All Rights Reserved.

20 3.9 Changing models Because the components and processes in the power plant are subject to continuous change due to technical modifications and normal aging, the model itself must also be changed from time to time. Two basic options are available here: 1. Adaptation to aging or changed operating regime and operating modes Changes in the behavior of a component or in operating regime and operating modes can be dealt with by changing the stored normal behavior. In this case the new operating behavior can simply be learned following an inspection and overhaul, for example. 2. Adaptation to new or changed tags If new measuring points are added, removed or configured with new instrumentation equipment, this can be represented graphically using Plant Monitor. Since each tag is represented by a separate block, it can easily be deleted, added or parameterized by the user. When adapting the training period, changes in system behavior can necessitate the addition of new behavior or the removal of behavior which has previously been regarded as normal (but which has now changed). The previously used training periods can be called up in Plant Monitor for this purpose. Using stored training times for further training or retraining Plant Monitor can compute all the changes in configuration in a single step. The analysis of process values which is currently in operation is neither interrupted nor affected by the engineering process. Plant Monitor always works with a consistent configuration. Siemens AG All Rights Reserved. 20

21 It is not possible to make a general pronouncement as to whether instances of system behavior need to be removed or whether a new type of behavior "simply" has to be learned. We can work on the basic assumption that changes in the design of a process or machine and major changes in operating mode or operating regime will necessitate new a learning phase and updating of previously acquired information as a result. Plant Monitor will report deviations in these cases and these will have to be dealt it on a case-by-case basis Implementing complex monitoring structures with Plant Monitor projects The individual functions of Plant Monitor can be combined for the purposes of implementing complex plant monitoring applications in a series of steps which build one upon the other. Each steps yields results which are in turn used as a starting point for further steps. For example, a computed sensor can be included in a condition model and the resulting residual can serve as a criterion for a particular type of plant behavior. Process Sensor Values Direct use Calculation Validation Rules Computed Computed Sensors Sensors Proved Proved Sensors Sensors Detected Detected Events Events State State Estimators Estimators Detection Detection of of Deviation Deviation Forecast Forecast of of Availability Availability Limits, Limits, Ratings Ratings Faults, Faults, Alarms Alarms Recurring Recurring Situations Situations Information for Maintenance Management Structure of a Plant Monitor project: The individual functions are blocks of an interconnected analysis Extended analysis of results of models The functions described above can also be used for monitoring and evaluating occurrences of deviations from normal behavior in a more detailed manner. With the aid of computed sensors, deviations which occur in several process variables at the same time and which last for a defined period can be grouped using mathematical formulas to form a quality function for the process. A criterion can then be formed using freely definable rules for the purposes of issuing an early warning to plant personnel. 21 Siemens AG All Rights Reserved.

22 3.12 Parameterization of models and functions Once the required tags have been selected and the training has been carried out successfully, the Plant Monitor model can be put into operation immediately. The default thresholds for the residual and other default settings are used, thus permitting satisfactory work in the first approximation. The user can easily change these settings at any time, however, and adapt them to fit the given situation. Plant Monitor offers a facility for displaying parameters directly in overview fashion with a view to editing these. Parameterization of models within Plant Monitor It is also possible to export all the definable parameters to Excel, to edit them there and then to read them back in. The user can take advantage of all the Excel features in this case. Spreadsheet engineering with Excel for parameterization of Plant Monitor models and Plant Monitor functions Siemens AG All Rights Reserved. 22

23 3.13 Networking of models Plat Monitor is capable of describing and monitoring any processes or components with the aid of models. The scope of these models can be defined freely and can also go beyond the boundaries of an equipment unit. However it must be noted that the greater the number of different components and processes that are grouped together which are independent with respect to information (i.e. which are not interdependent), the more the accuracy of the condition description suffers due to the nature of the group. This can always be remedied by representing different components and processes using separate models, e.g. one model each for boiler, gas turbine, NH3 conditioning, etc. Needless to say, important variables common to all models can also be used several times in different models. This makes it possible to achieve significantly higher accuracy for early fault detection and can also clearly channel responsibilities in alarm situations. Training models which monitor a component or process for a number of different applications should also be avoided. Although a model for a machine is capable of monitoring both steady-state operation and rundown, for example, the condition description will be significantly more accurate, as will the possible analyses derived from it, if an existing model is duplicated and trained on the one hand for steady-state behavior, e.g. for a fixed speed band, and on the other, for example, for the rundown procedure. Plant Monitor can then automatically activate the correct specialized model depending on the situation. Parallel operation of such models is also possible. In addition Plant Monitor makes it possible to operate models with different levels of detail in cascaded fashion. If, for example, a small manageable model for a process reports a deviation at a boiler, another previously prepared model which takes all the tags for that boiler into consideration can be activated. This reduces the possible flood of information for the operator while at the same time ensuring that no condition is left out of consideration. 23 Siemens AG All Rights Reserved.

24 4 Operation and analysis 4.1 Alarm annunciation and operation If Plant Monitor detects deviations from normal plant behavior, it outputs these deviations in the standard views of SPPA- T3000: In the alarm sequence display In the header information In the plant displays Any value used in Plant Monitor, i.e. any measured value, calculated value, validation result, model value, deviation, rule or alarm, can report an alarm condition. The form and priority of alarm annunciation can be changed at any time and adapted to suit requirements. The information content is greatest in the case of alarms displayed in the alarm sequence display. This lists in tabular form the type of alarm which has been issued, its location and status. The alarm sequence display can also be used to jump to the associated plant display, trend display or setup dialog. List of alarms which have occurred and their sequence in the SPPA-T3000 alarm sequence display (ASD) In addition to the general alarm sequence display, Plant Monitor alarms are also listed in the header. From here the user can jump directly to the plant displays in which the Plant Monitor alarms occurred. Siemens AG All Rights Reserved. 24

25 Selection of plant displays indicating a Plant Monitor alarm which can be displayed by means of selection The third option allows the user to jump directly from a plant display showing a Plant Monitor alarm to a trend display of the alarm values, to the function diagram of the model or to the Plant Monitor view itself. Plant display with Plant Monitor alarms (purple "PM" flags) 25 Siemens AG All Rights Reserved.

26 4.2 Analysis An analysis generally begins with a message from Plant Monitor that a measuring point is exhibiting a deviation from normal behavior. This information is displayed in the alarm sequence display and simultaneously in the plant display itself. A range of information is therefore already available for the analysis of correlations and background reasons for this report and thus for an analysis of the possible problem: The model in which the fault occurred and the associated component or process The measuring points which are exhibiting irregularities and those which are not The sequence in which the deviations occurred The severity of the deviations relative to the measured value In addition to this accurate information, the user has two basic analysis options which can be combined as required: 1. Analysis in Plant Monitor view All the tags associated with a model are displayed one below the other for the same time range in the Plant Monitor view. An overview with the exact times of all the deviations which have occurred is also displayed in the header in the form of red error bars. Simply select one of these error bars to switch the Plant Monitor display to the associated tag and residual. A large number of causes can be determined in this display alone. More importantly, a time range defined as exhibiting normal behavior can be added to or removed from the model in this view. In the upper window: In the lower window: Display of current deviations by means of red error bars Associated measured values (red), expected values (blue) and below these the residuals Siemens AG All Rights Reserved. 26

27 2. Analysis in trend display view Behind every display of values by Plant Monitor, i.e. measured value, model value and residual, lies a stored preconfigured trend display containing these values. Like any other trend display, this trend display can be used for the purposes of analysis in any plant display. Trend display of all the information necessary for a detailed analysis directly in the plant displays The advantage of this type of display is that, depending on the analysis, values can be dragged and dropped into any diagram from other displays using the mouse. This makes it very easy, for example, to analyze vibration values in the context of process variables. Combinations which have proven useful for analyses can also be stored as views, allowing them to be used again at any time. The deviations from normal behavior and the causes of each deviation identified by Plant Monitor put the operating and maintenance personnel in a position to analyze correlations relative to a situation and to make decisions about changes in operating modes and planning of maintenance measures. 27 Siemens AG All Rights Reserved.

28 Technical data 4.3 SPPA-T3000 technology server The SPPA-T3000 technology server is the hardware and software platform for SPPA-D3000 Plant Monitor, as well as for a large number of other applications devoted to the diagnostics and optimization of plants and processes. If we first look at the technology server independently of all other components and interfaces, it is an autonomous SPPA- T3000 component which is usually not redundantly configured (not fault-tolerant) but which can be configured as a redundant (fault-tolerant) server in the event of increased availability requirements. Unlike an I&C system used for power plant automation, the technology server does not feature automation interfaces and cannot therefore be used for automation applications. The technology server does, however, feature a component called the Technical Calculation Container, or TCC for short. Applications like Plant Monitor run in this TCC, which means that it is fully integrated in the Embedded Component Services ECS of SPPA-T3000. All the applications executed in the TCC can therefore benefit from the functions and advantages of SPPA-T3000. The most important of these include: Shared user interface for HMI, analyses and engineering Integrated engineering Archive Log function and All blocks and display forms All interfaces and operations are also implemented in SPPA-T3000 via the TCC. This means that outputs from the application are completely homogenous, with the result that externally visible outputs have the same appearance and the same operating philosophy as SPPA-T3000. Another advantage of implementing all applications as an SPPA-T3000 function in the TCC is that all applications use identical engineering and the same editor. Not only does this produce the same "look & feel", it also means that engineering data are only entered once (one-time, consistent data input) and complete integration of applications is achieved. Unlike classical platforms, the technology server does not represent a collection of applications which simply share the same operating system on a server, with each application implemented independently of all others. All the applications implemented on the technology server platform use all the services supplied by the technology server. There is only one editor, one user interface, one archive, and so on. The technology server thus makes real and complete integration of applications possible. In the stand-alone version, i.e. without the SPPA-T3000 I&C system, the technology server comes ready-equipped with licenses for engineering and operation. Only the licenses for Plant Monitor need to be added. If the technology server is used in conjunction with the SPPA-T3000 I&C system, however, the SPPA licenses are used as required. Needless to say, these licenses can be added to at any time within the framework of the I&C system. Siemens AG All Rights Reserved. 28

29 4.4 SPPA-D3000 Plant Monitor License based on the number of functions used in the Plant Monitor project. The following licensable functions are available: PMSE (state estimator) PMVAL (validation block) PMCS (SoftSensor) PMRULE (rule block) The blocks listed above can be obtained in multiples of 100 for use in the model. Cycle time less than 3 seconds Monitoring of steady-state conditions Yes Monitoring of transient conditions Yes Number of models Any number within the framework of the licensed functions Networking of models Yes Use of data sources Different data sources possible in parallel Connection via interfaces OPC DA and HDA Integration in SPPA-T2000 possible Yes, by means of OPC link (via OPC server) Integration in SPPA-T3000 possible Yes, with Release 4 or higher, otherwise via OPC link In the case of integrated use of Plant Monitor with SPPA-T3000 R4.2 or higher, operation and engineering is performed based on the existing thin client workplace licenses. Other licenses for engineering and operation can be added in the form of a license upgrade. In applications without the SPPA-T3000 R4 I&C, a so-called stand-alone technology server is employed for operating and engineering tasks. The licenses required for operation are included in the scope of supply of the stand-alone technology server. If other thin client work places are required on the stand-alone technology server, a license upgrade can be implemented on the technology server. The existing I&C is not affected by this upgrade. 29 Siemens AG All Rights Reserved.

30 5 Abbreviations ECS KKS OPC DA HDA ASD PI PM RES Embedded Component Services Kraftwerks-Kennzeichnungs-System (power plant identification system) OLE for process control; standardized client/server communication Data access (live data); access to live data via OPC Historical data access; access to past data via OPC Alarm sequence display in SPPA-T3000 Real-time database from OSI-Soft SPPA-D3000 Plant Monitor Residual; deviation from expected value R4 SPPA-T3000 Release 4 SPPA TAG TCC TS Project Siemens Power Plant Automation German "KKS"; "signal" in Plant Monitor Technical Calculation Container SPPA-T3000 technology server General term for Plant Monitor functions, incl. Plant Monitor models Siemens AG All Rights Reserved. 30

31 Published by and Copyright (2009): Siemens AG Energy Sector Freyeslebenstraße 1 D Erlangen Germany Siemens AG Energy Sector Fossil Power Generation Siemensallee 84 D Karlsruhe Germany sppa-d3000.pg@siemens.com D3PPM_DT1_TechDesc_d_V2-2 Printed on elementary chlorine-free paper. All Rights Reserved. The trademarks and brand names used in this document are the property of Siemens AG or their associated companies or the individual holder. jeweiligen Inhaber. Subject to change without prior notice. The information in this document represents general descriptions of technical options which are not implemented in every case. The required performance features must be agreed upon for each individual application upon formation of the contract Siemens AG All Rights Reserved.

SPPA-D3000 Plant Monitor Technical Description

SPPA-D3000 Plant Monitor Technical Description SPPA-D3000 Plant Monitor Technical Description Model-based monitoring and early fault detection for components and processes May 2008 Answers for energy. 1 Siemens AG 2008. All Rights Reserved Contents

More information

SPPA-T3000 Control System The Benchmark in Controls

SPPA-T3000 Control System The Benchmark in Controls Instrumentation, Controls & Electrical SPPA-T3000 Control System The Benchmark in Controls Siemens Power & Process Automation Answers for energy. The benchmark for Distributed Control Systems Developed

More information

DANGER indicates that death or severe personal injury will result if proper precautions are not taken.

DANGER indicates that death or severe personal injury will result if proper precautions are not taken. Multi-User Systems 1 ArchiveServer 2 SIMATIC HMI WinCC V7.0 SP1 File Server 3 WinCC ServiceMode 4 Redundant Systems 5 System Manual Print of the Online Help 11/2008 Legal information Warning notice system

More information

SIMATIC HMI. WinCC flexible 2008 Getting Started - First-Time Users Getting Started. Printout of the Online Help 06/2008 A5E00279548-04

SIMATIC HMI. WinCC flexible 2008 Getting Started - First-Time Users Getting Started. Printout of the Online Help 06/2008 A5E00279548-04 SIMATIC HMI WinCC flexible 2008 Getting Started - First-Time Users Getting Started Printout of the Online Help 06/2008 A5E00279548-04 Safety Guidelines This manual contains notices you have to observe

More information

Features. Emerson Solutions for Abnormal Situations

Features. Emerson Solutions for Abnormal Situations Features Comprehensive solutions for prevention, awareness, response, and analysis of abnormal situations Early detection of potential process and equipment problems Predictive intelligence network to

More information

Siemens AG 2010. Fieldbus solutions with the SIMATIC PCS 7 distributed control system. Brochure April 2010 SIMATIC PCS 7. Answers for industry.

Siemens AG 2010. Fieldbus solutions with the SIMATIC PCS 7 distributed control system. Brochure April 2010 SIMATIC PCS 7. Answers for industry. Fieldbus solutions with the SIMATIC PCS 7 distributed control system Brochure April 2010 SIMATIC PCS 7 Answers for industry. Fieldbus solutions with SIMATIC PCS 7 OS multi-clients Engineering station Maintenance/

More information

Information Server Documentation SIMATIC. Information Server V8.0 Update 1 Information Server Documentation. Introduction 1. Web application basics 2

Information Server Documentation SIMATIC. Information Server V8.0 Update 1 Information Server Documentation. Introduction 1. Web application basics 2 Introduction 1 Web application basics 2 SIMATIC Information Server V8.0 Update 1 System Manual Office add-ins basics 3 Time specifications 4 Report templates 5 Working with the Web application 6 Working

More information

Production Rules Configurator Rules-based analysis of production data With ConnectedManufacturing Solutions by Bosch Software Innovations

Production Rules Configurator Rules-based analysis of production data With ConnectedManufacturing Solutions by Bosch Software Innovations Production Rules Configurator Rules-based analysis of production data With ConnectedManufacturing Solutions by Bosch Software Innovations Software Innovations 2 Production Rules Configurator Detect deviations

More information

Permissible ambient temperature Operation Storage, transport

Permissible ambient temperature Operation Storage, transport The Sitras PRO combined DC protective unit and controller is used in the power supply for DC railways in mass transit and main-line systems up 3,000 V DC. It protects DC switch gear and contact line systems

More information

Visualization SIMATIC. Visualization. Present sample project. HMI configuration. Insert HMI device from libraries 3. Configuring HMI connection 4

Visualization SIMATIC. Visualization. Present sample project. HMI configuration. Insert HMI device from libraries 3. Configuring HMI connection 4 Present sample project 1 HMI configuration 2 SIMATIC Getting Started Insert HMI device from libraries 3 Configuring HMI connection 4 Configuring system diagnostics 5 Simulating an HMI device 6 05/2014

More information

Using Flow Control with the HEAD Recorder

Using Flow Control with the HEAD Recorder 03/15 Using with the HEAD Recorder The HEAD Recorder is a data acquisition software program that features an editable Flow Control function. This function allows complex program sequences to be predefined,

More information

SIMATIC. WinCC V7.0. Getting started. Getting started. Welcome 2. Icons 3. Creating a project 4. Configure communication 5

SIMATIC. WinCC V7.0. Getting started. Getting started. Welcome 2. Icons 3. Creating a project 4. Configure communication 5 SIMATIC WinCC V7.0 SIMATIC WinCC V7.0 Printout of the Online Help 1 Welcome 2 Icons 3 Creating a project 4 Configure communication 5 Configuring the Process Screens 6 Archiving and displaying values 7

More information

Continuous Availability for Power Plant Automation. Dr. Rainer M. Speh. Chief Technology Officer

Continuous Availability for Power Plant Automation. Dr. Rainer M. Speh. Chief Technology Officer Continuous Availability for Power Plant Automation Dr. Rainer M. Speh Chief Technology Officer Instrumentation & Controls Division Siemens Power Generation 1 Introduction If you ask power producers just

More information

SIMATIC HMI. WinCC flexible Getting Started First Time User. Order number 6ZB5370-1CL02-0BA2. Edition 04/2006 A5E00279548-03

SIMATIC HMI. WinCC flexible Getting Started First Time User. Order number 6ZB5370-1CL02-0BA2. Edition 04/2006 A5E00279548-03 SIMATIC HMI WinCC flexible Getting Started First Time User Order number 6ZB5370-1CL02-0BA2 Edition 04/2006 A5E00279548-03 Safety Guidelines This manual contains notices which you should observe to ensure

More information

EnerVista TM Viewpoint Monitoring v7.10

EnerVista TM Viewpoint Monitoring v7.10 EnerVista TM Viewpoint Monitoring v7.10 Guideform Specifications July 7, 2014 Page 1 of 14 1 - Product Overview 1.1 Viewpoint Monitoring Scope EnerVista Viewpoint Monitoring is an easy to setup, powerful

More information

siemens.com/mobility Traffic data analysis in Sitraffic Scala/Concert The expert system for visualization, quality management and statistics

siemens.com/mobility Traffic data analysis in Sitraffic Scala/Concert The expert system for visualization, quality management and statistics siemens.com/mobility Traffic data analysis in Sitraffic Scala/Concert The expert system for visualization, quality management and statistics 2 Traffic data analysis produces transparent intersections The

More information

Creating the program. TIA Portal. SIMATIC Creating the program. Loading the block library. Deleting program block Main [OB1] Copying program blocks

Creating the program. TIA Portal. SIMATIC Creating the program. Loading the block library. Deleting program block Main [OB1] Copying program blocks Loading the block library 1 Deleting program block Main [OB1] 2 TIA Portal SIMATIC Getting Started Copying program blocks 3 Cyclic interrupt OB 4 Copying tag tables 5 Compiling a project 6 Load project

More information

PROCESS AUTOMATION PLANNING AND INTEGRATION INFORMATION LB8106* Integration in Siemens SIMATIC PCS 7

PROCESS AUTOMATION PLANNING AND INTEGRATION INFORMATION LB8106* Integration in Siemens SIMATIC PCS 7 PROCESS AUTOMATION PLANNING AND INTEGRATION INFORMATION LB8106* Integration in Siemens SIMATIC PCS 7 With regard to the supply of products, the current issue of the following document is applicable: The

More information

Process Operators and Maintenance Staff Work Hand-in-hand with DCS-embedded Condition Monitoring

Process Operators and Maintenance Staff Work Hand-in-hand with DCS-embedded Condition Monitoring Process Operators and Maintenance Staff Work Hand-in-hand with DCS-embedded Condition Monitoring Erkki Jaatinen Metso, Tampere, Finland ABSTRACT The capabilities of an on-line condition monitoring system

More information

How can I manage all automation software tasks in one engineering environment?

How can I manage all automation software tasks in one engineering environment? How can I manage all automation software tasks in one engineering environment? With Totally Integrated Automation Portal: One integrated engineering framework for all your automation tasks. Answers for

More information

SIMATIC Route Control Configuration, Control and Diagnostics of Material Transports. Product Brief February 2004

SIMATIC Route Control Configuration, Control and Diagnostics of Material Transports. Product Brief February 2004 SIMATIC Route Control Configuration, Control and Diagnostics of Material Transports Product Brief February 2004 Application Area, Configuration Application Area SIMATIC Route Control adds a tool for the

More information

Quality assurance for hydrometric network data as a basis for integrated river basin management

Quality assurance for hydrometric network data as a basis for integrated river basin management Water in Celtic Countries: Quantity, Quality and Climate Variability (Proceedings of the Fourth InterCeltic Colloquium on Hydrology and Management of Water Resources, Guimarães, Portugal, July 2005). IAHS

More information

Bitrix Site Manager 4.0. Quick Start Guide to Newsletters and Subscriptions

Bitrix Site Manager 4.0. Quick Start Guide to Newsletters and Subscriptions Bitrix Site Manager 4.0 Quick Start Guide to Newsletters and Subscriptions Contents PREFACE...3 CONFIGURING THE MODULE...4 SETTING UP FOR MANUAL SENDING E-MAIL MESSAGES...6 Creating a newsletter...6 Providing

More information

Cut down your costs, increase your productions efficiently with the knowledge of PLC s Siemens technology. SITRAIN TM THAILAND Page 1 of 14

Cut down your costs, increase your productions efficiently with the knowledge of PLC s Siemens technology. SITRAIN TM THAILAND Page 1 of 14 Training Center Digital Factory and Process Industries & Drives 1. Introduction 2. Course content 3. Course Schedule 4. Terms and Condition 5. Registration Channel Page 1 of 14 1. Introduction SITRAIN

More information

SIMATIC Sensors. The new software SIMATIC RF-MANAGER 2008. Simple management of RFID systems. Brochure April 2009. Answers for industry.

SIMATIC Sensors. The new software SIMATIC RF-MANAGER 2008. Simple management of RFID systems. Brochure April 2009. Answers for industry. The new software SIMATIC RF-MANAGER 2008 Simple management of RFID systems Brochure April 2009 SIMATIC Sensors Answers for industry. Totally Integrated and Flexible Simple management of RFID systems With

More information

Candle Plant process automation based on ABB 800xA Distributed Control Systems

Candle Plant process automation based on ABB 800xA Distributed Control Systems Candle Plant process automation based on ABB 800xA Distributed Control Systems Yousef Iskandarani and Karina Nohammer Department of Engineering University of Agder Jon Lilletuns vei 9, 4879 Grimstad Norway

More information

Management Applications PDM ADP CC System description. Siemens Building Technologies Landis & Staefa Division

Management Applications PDM ADP CC System description. Siemens Building Technologies Landis & Staefa Division PDM ADP CC System description Index PDM (Process Data Manager) ADP (Advanced Data Processing) CC (Consumption Control) What are management applications? 4 CC Consumption Control 5 ADP Advanced Data Processing

More information

The more intelligent solution for greater transparency SIMATIC Plant Intelligence. simatic

The more intelligent solution for greater transparency SIMATIC Plant Intelligence. simatic The more intelligent solution for greater transparency SIMATIC Plant Intelligence simatic PLANT INTELLIGENCE 1 SIMATIC Plant Intelligence greater transparency from the machine to the enterprise level Increasing

More information

easyjob 5 new functions 2012 by protonic software GmbH 1

easyjob 5 new functions 2012 by protonic software GmbH 1 easyjob 5 new functions 2012 by protonic software GmbH 1 Contents Contents... 2 Introduction... 7 General... 8 Direct access from the Windows 7 start menu... 8 Improved auto refresh... 8 New roadmap...

More information

Woods Hole Group, Inc. Oceanography and Measurement Systems Division INTEGRATED REAL-TIME MONITORING SYSTEM

Woods Hole Group, Inc. Oceanography and Measurement Systems Division INTEGRATED REAL-TIME MONITORING SYSTEM Woods Hole Group, Inc. INTEGRATED REAL-TIME MONITORING SYSTEM Woods Hole Group, Inc. (WHG) has developed the Integrated Real-time Monitoring System (IRMS) as a general-purpose data acquisition and telemetry

More information

ABB PSPS Erich Steinmann; Generator control-2013

ABB PSPS Erich Steinmann; Generator control-2013 ABB PSPS Erich Steinmann; Generator control-2013 GENERATOR CONTROL THE MODULAR SOLUTION FOR GENERATORS To make sure that power is efficiently converted into electric energy, it is necessary to supervise

More information

WinCC. Configuration Manual. Manual Volume 2

WinCC. Configuration Manual. Manual Volume 2 WinCC Configuration Manual Manual Volume 2 This manual is part of the documentation package with the order number: 6AV6392-1CA05-0AB0 Release: September 1999 WinCC, SIMATIC, SINEC, STEP are trademarks

More information

USB Floppy USB Floppy Disk Emulator

USB Floppy USB Floppy Disk Emulator USB Floppy USB Floppy Disk Emulator Manual ipcas GmbH Phone: +49 (0)9131/ 7677-0 Gundstraße 15 Fax: +49 (0)9131/ 7677-78 D-91056 Erlangen Internet: http://www.ipcas.de Germany Email: info@ipcas.de Contents

More information

Quality Assurance for Hydrometric Network Data as a Basis for Integrated River Basin Management

Quality Assurance for Hydrometric Network Data as a Basis for Integrated River Basin Management Quality Assurance for Hydrometric Network Data as a Basis for Integrated River Basin Management FRANK SCHLAEGER 1, MICHAEL NATSCHKE 1 & DANIEL WITHAM 2 1 Kisters AG, Charlottenburger Allee 5, 52068 Aachen,

More information

ABB i-bus EIB Logic Module LM/S 1.1

ABB i-bus EIB Logic Module LM/S 1.1 Product Manual ABB i-bus EIB Logic Module LM/S 1.1 Intelligent Installation System Contents page 1 General... 3 1.1 About this manual... 3 1.2 Product and functional overview... 3 2 Device technology...

More information

WinCC / PerformanceMonitor V7.3. Production analysis and improvement through individual key performance indicators. siemens.

WinCC / PerformanceMonitor V7.3. Production analysis and improvement through individual key performance indicators. siemens. WinCC / PerformanceMonitor V7.3 Production analysis and improvement through individual key performance indicators siemens.com/wincc Targeted productivity increase... The WinCC / PerformanceMonitor facilitates

More information

Application Unit, MDRC AB/S 1.1, GH Q631 0030 R0111

Application Unit, MDRC AB/S 1.1, GH Q631 0030 R0111 , GH Q631 0030 R0111 SK 0010 B 98 The application unit is a DIN rail mounted device for insertion in the distribution board. The connection to the EIB is established via a bus connecting terminal at the

More information

Configuring PROFINET

Configuring PROFINET CHAPTER 9 This chapter describes how to configure the PROFINET feature on the Cisco IE 3000 switch. Understanding PROFINET, page 9-1, page 9-4 Displaying the PROFINET Configuration, page 9-5 Troubleshooting

More information

IndustrialIT System 800xA Engineering

IndustrialIT System 800xA Engineering IndustrialIT System 800xA Engineering Overview Features and Benefits Integrated Engineering Environment: Supports the engineering of the entire extended automation system from field devices to plant management

More information

LS/ATN Living Systems Adaptive Transportation Networks

LS/ATN Living Systems Adaptive Transportation Networks W HITESTEI Technologies N Product Brochure LS/ATN Living Systems Adaptive Transportation Networks LS/ATN is a comprehensive solution for the dynamic optimization and dispatching of full and part truck

More information

Position Classification Standard for Management and Program Clerical and Assistance Series, GS-0344

Position Classification Standard for Management and Program Clerical and Assistance Series, GS-0344 Position Classification Standard for Management and Program Clerical and Assistance Series, GS-0344 Table of Contents SERIES DEFINITION... 2 EXCLUSIONS... 2 OCCUPATIONAL INFORMATION... 3 TITLES... 6 EVALUATING

More information

EB TechPaper. Test drive with the tablet. automotive.elektrobit.com

EB TechPaper. Test drive with the tablet. automotive.elektrobit.com EB TechPaper Test drive with the tablet automotive.elektrobit.com 1 A great many test miles have to be covered in the development and validation of driver assistance systems. A tablet with Elektrobit (EB)

More information

SAFETY MANUAL SIL RELAY MODULE

SAFETY MANUAL SIL RELAY MODULE PROCESS AUTOMATION SAFETY MANUAL SIL RELAY MODULE KFD0-RSH-1.4S.PS2 ISO9001 3 With regard to the supply of products, the current issue of the following document is applicable: The General Terms of Delivery

More information

Plant automation and telecontrol in one system. SIMATIC PCS 7 TeleControl SIMATIC PCS 7. Answers for industry.

Plant automation and telecontrol in one system. SIMATIC PCS 7 TeleControl SIMATIC PCS 7. Answers for industry. Plant automation and telecontrol in one system SIMATIC TeleControl SIMATIC Answers for industry. SIMATIC TeleControl The intelligent solution for installations with local and widely distributed automation

More information

SIMATIC IT Historian. Increase your efficiency. SIMATIC IT Historian. Answers for industry.

SIMATIC IT Historian. Increase your efficiency. SIMATIC IT Historian. Answers for industry. SIMATIC IT Historian Increase your efficiency SIMATIC IT Historian Answers for industry. SIMATIC IT Historian: Clear Information at every level Supporting Decisions and Monitoring Efficiency Today s business

More information

DANGER indicates that death or severe personal injury will result if proper precautions are not taken.

DANGER indicates that death or severe personal injury will result if proper precautions are not taken. SIMATIC Process Control System PCS 7 V7.0 SP1 SIMATIC Process Control System PCS 7 V7.0 SP1 Preface 1 PC components of a PCS 7 system 2 Hardware for PC stations 3 Installing PC stations 4 Appendix 5 Operating

More information

Siemens Hybrid Power Solutions. Cost and emission reduction by integrating renewables into diesel plants

Siemens Hybrid Power Solutions. Cost and emission reduction by integrating renewables into diesel plants Siemens Hybrid Power Solutions Cost and emission reduction by integrating renewables into diesel plants Instrumentation, Controls & Electrical Complete, optimized solutions that minimize your risk One-stop

More information

S7 for Windows S7-300/400

S7 for Windows S7-300/400 S7 for Windows S7-300/400 A Programming System for the Siemens S7 300 / 400 PLC s IBHsoftec has an efficient and straight-forward programming system for the Simatic S7-300 and ern controller concept can

More information

TestManager Administration Guide

TestManager Administration Guide TestManager Administration Guide RedRat Ltd July 2015 For TestManager Version 4.57-1 - Contents 1. Introduction... 3 2. TestManager Setup Overview... 3 3. TestManager Roles... 4 4. Connection to the TestManager

More information

Easy. Modular. Universal. Laboratory automation with SIMATIC PCS 7 LAB SIMATIC PCS 7. Answers for industry.

Easy. Modular. Universal. Laboratory automation with SIMATIC PCS 7 LAB SIMATIC PCS 7. Answers for industry. Easy. Modular. Universal. Laboratory automation with SIMATIC PCS 7 LAB SIMATIC PCS 7 Answers for industry. Greater efficiency in the laboratory SIMATIC ET 200pro I/O module Considerably less overhead Whether

More information

Safety Integrated. SIMATIC Safety Matrix. The Management Tool for all Phases of the Safety Lifecycle. Brochure September 2010. Answers for industry.

Safety Integrated. SIMATIC Safety Matrix. The Management Tool for all Phases of the Safety Lifecycle. Brochure September 2010. Answers for industry. SIMATIC Safety Matrix The Management Tool for all Phases of the Safety Lifecycle Brochure September 2010 Safety Integrated Answers for industry. Functional safety and Safety Lifecycle Management Hazard

More information

Asset Track Getting Started Guide. An Introduction to Asset Track

Asset Track Getting Started Guide. An Introduction to Asset Track Asset Track Getting Started Guide An Introduction to Asset Track Contents Introducing Asset Track... 3 Overview... 3 A Quick Start... 6 Quick Start Option 1... 6 Getting to Configuration... 7 Changing

More information

Die Mobiliar Insurance Company AG, Switzerland Adaptability and Agile Business Practices

Die Mobiliar Insurance Company AG, Switzerland Adaptability and Agile Business Practices Die Mobiliar Insurance Company AG, Switzerland Adaptability and Agile Business Practices Nominated by ISIS Papyrus Software 1. EXECUTIVE SUMMARY / ABSTRACT The Swiss insurance company Die Mobiliar is the

More information

WinCC. Configuration Manual. Manual Volume 3

WinCC. Configuration Manual. Manual Volume 3 WinCC Configuration Manual Manual Volume 3 This manual is part of the documentation package with the order number: 6AV6392-1CA05-0AB0 Release: September 1999 WinCC, SIMATIC, SINEC, STEP are trademarks

More information

WinCC Options. Redundancy. Manual C79000-G8263-C142-01

WinCC Options. Redundancy. Manual C79000-G8263-C142-01 WinCC Options Redundancy Manual Edition November 1998 WinCC, SIMATIC, SINEC, STEP are Siemens registered trademarks. All other product and system names in this manual are (registered) trademarks of their

More information

Data Validation and Data Management Solutions

Data Validation and Data Management Solutions FRONTIER TECHNOLOGY, INC. Advanced Technology for Superior Solutions. and Solutions Abstract Within the performance evaluation and calibration communities, test programs are driven by requirements, test

More information

Work Process Management

Work Process Management GE Intelligent Platforms Work Process Management Achieving Operational Excellence through Consistent and Repeatable Plant Operations With Work Process Management, organizations can drive the right actions

More information

LOGO! LOGO! App V.10. LOGO! app 1. Making basic settings and establishing a connection to LOGO! Using the device overview 3. Creating controls 4

LOGO! LOGO! App V.10. LOGO! app 1. Making basic settings and establishing a connection to LOGO! Using the device overview 3. Creating controls 4 LOGO! app 1 Making basic settings and establishing a connection to LOGO! 2 LOGO! Using the device overview 3 Creating controls 4 Settings and project information 5 Operating Manual 04/2016 A5E38071463-AA

More information

Part I. Introduction

Part I. Introduction Part I. Introduction In the development of modern vehicles, the infotainment system [54] belongs to the innovative area. In comparison to the conventional areas such as the motor, body construction and

More information

SIMATIC PCS 7 takes you beyond the limits. SIMATIC PCS 7. Answers for industry.

SIMATIC PCS 7 takes you beyond the limits. SIMATIC PCS 7. Answers for industry. SIMATIC PCS 7 takes you beyond the limits. SIMATIC PCS 7 Answers for industry. Your benefits Performance Scalability Integration Safety & Security Innovation Modernization Global Network of Experts 2 The

More information

Extend and optimize the life of your plant the modular Life Cycle Service portfolio

Extend and optimize the life of your plant the modular Life Cycle Service portfolio Extend and optimize the life of your plant the modular Life Cycle Service portfolio SIMATIC PCS 7 process control system www.siemens.com/simatic-pcs7 For planning security and availability: your plant

More information

KPI, OEE AND DOWNTIME ANALYTICS. An ICONICS Whitepaper

KPI, OEE AND DOWNTIME ANALYTICS. An ICONICS Whitepaper 2010 KPI, OEE AND DOWNTIME ANALYTICS An ICONICS Whitepaper CONTENTS 1 ABOUT THIS DOCUMENT 1 1.1 SCOPE OF THE DOCUMENT... 1 2 INTRODUCTION 2 2.1 ICONICS TOOLS PROVIDE DOWNTIME ANALYTICS... 2 3 DETERMINING

More information

Performance ratio. Contents. Quality factor for the PV plant

Performance ratio. Contents. Quality factor for the PV plant Performance ratio Quality factor for the PV plant Contents The performance ratio is one of the most important variables for evaluating the efficiency of a PV plant. Specifically, the performance ratio

More information

Job Streaming User Guide

Job Streaming User Guide Job Streaming User Guide By TOPS Software, LLC Clearwater, Florida Document History Version Edition Date Document Software Trademark Copyright First Edition 08 2006 TOPS JS AA 3.2.1 The names of actual

More information

User Guide. SysMan Utilities. By Sysgem AG

User Guide. SysMan Utilities. By Sysgem AG SysMan Utilities User Guide By Sysgem AG Sysgem is a trademark of Sysgem AG. Other brands and products are registered trademarks of their respective holders. 2013 Sysgem AG, Lavaterstr. 45, CH-8002 Zürich,

More information

Salesforce Classic Guide for iphone

Salesforce Classic Guide for iphone Salesforce Classic Guide for iphone Version 37.0, Summer 16 @salesforcedocs Last updated: July 12, 2016 Copyright 2000 2016 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark

More information

Selecting Sensors for Safety Instrumented Systems per IEC 61511 (ISA 84.00.01 2004)

Selecting Sensors for Safety Instrumented Systems per IEC 61511 (ISA 84.00.01 2004) Selecting Sensors for Safety Instrumented Systems per IEC 61511 (ISA 84.00.01 2004) Dale Perry Worldwide Pressure Marketing Manager Emerson Process Management Rosemount Division Chanhassen, MN 55317 USA

More information

Declaration of Conformity 21 CFR Part 11 SIMATIC WinCC flexible 2007

Declaration of Conformity 21 CFR Part 11 SIMATIC WinCC flexible 2007 Declaration of Conformity 21 CFR Part 11 SIMATIC WinCC flexible 2007 SIEMENS AG Industry Sector Industry Automation D-76181 Karlsruhe, Federal Republic of Germany E-mail: pharma.aud@siemens.com Fax: +49

More information

Ovation Operator Workstation for Microsoft Windows Operating System Data Sheet

Ovation Operator Workstation for Microsoft Windows Operating System Data Sheet Ovation Operator Workstation for Microsoft Windows Operating System Features Delivers full multi-tasking operation Accesses up to 200,000 dynamic points Secure standard operating desktop environment Intuitive

More information

Auditing UML Models. This booklet explains the Auditing feature of Enterprise Architect. Copyright 1998-2010 Sparx Systems Pty Ltd

Auditing UML Models. This booklet explains the Auditing feature of Enterprise Architect. Copyright 1998-2010 Sparx Systems Pty Ltd Auditing UML Models Enterprise Architect is an intuitive, flexible and powerful UML analysis and design tool for building robust and maintainable software. This booklet explains the Auditing feature of

More information

Reading Sample. Integration Scenarios with Other Project Management Tools. Contents. Index. The Author. Project Management with SAP Project System

Reading Sample. Integration Scenarios with Other Project Management Tools. Contents. Index. The Author. Project Management with SAP Project System First-hand knowledge. Reading Sample SAP Project System s innovative design allows for cross-platform usage. This is good news for companies who manage projects through different programs and software.

More information

SIMATIC. SIMATIC Logon. User management and electronic signatures. Hardware and Software Requirements. Scope of delivery 3.

SIMATIC. SIMATIC Logon. User management and electronic signatures. Hardware and Software Requirements. Scope of delivery 3. SIMATIC SIMATIC SIMATIC User management and electronic signatures 1 Hardware and Software Requirements 2 Scope of delivery 3 Installation 4 5 Configuration Manual 08/2008 A5E00496669-05 Legal information

More information

Technical Training Module ( 30 Days)

Technical Training Module ( 30 Days) Annexure - I Technical Training Module ( 30 Days) Section 1 : Programmable Logic Controller (PLC) 1. Introduction to Programmable Logic Controller - A Brief History, Need and advantages of PLC, PLC configuration,

More information

A Real Time, Object Oriented Fieldbus Management System

A Real Time, Object Oriented Fieldbus Management System A Real Time, Object Oriented Fieldbus Management System Mr. Ole Cramer Nielsen Managing Director PROCES-DATA Supervisor International P-NET User Organisation Navervej 8 8600 Silkeborg Denmark pd@post4.tele.dk

More information

CONDIS. IT Service Management and CMDB

CONDIS. IT Service Management and CMDB CONDIS IT Service and CMDB 2/17 Table of contents 1. Executive Summary... 3 2. ITIL Overview... 4 2.1 How CONDIS supports ITIL processes... 5 2.1.1 Incident... 5 2.1.2 Problem... 5 2.1.3 Configuration...

More information

Seeing by Degrees: Programming Visualization From Sensor Networks

Seeing by Degrees: Programming Visualization From Sensor Networks Seeing by Degrees: Programming Visualization From Sensor Networks Da-Wei Huang Michael Bobker Daniel Harris Engineer, Building Manager, Building Director of Control Control Technology Strategy Development

More information

Donation Tracker Information

Donation Tracker Information C A S C A D E D A T A S O L U T I O N S Donation Tracker Information Our mission is to provide powerful, yet easy to use, Campaign Management software with excellent Support. When you purchase Donation

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction The area of fault detection and diagnosis is one of the most important aspects in process engineering. This area has received considerable attention from industry and academia because

More information

WHITE PAPER. Lean Construction. Technology Advances in Lean Construction

WHITE PAPER. Lean Construction. Technology Advances in Lean Construction WHITE PAPER Lean Construction Technology Advances in Lean Construction Contents 1. Introduction... 1 2. Origins of Lean Construction... 2 3. Lean Construction Principles... 4 4. Advancements in Lean Construction

More information

Section 8 Scheduler. Alcatel-Lucent OmniVista 4760 Network Management System

Section 8 Scheduler. Alcatel-Lucent OmniVista 4760 Network Management System Alcatel-Lucent OmniVista 4760 Network Management System Section 8 Scheduler Alcatel-Lucent OmniVista 4760 Network Management System All Rights Reserved Alcatel-Lucent 2011 Legal notice: Alcatel, Lucent,

More information

Siemens. Partner for the petrochemical industry. chemicals

Siemens. Partner for the petrochemical industry. chemicals Siemens. Partner for the petrochemical industry. chemicals The challenges petrochemical plants are facing today The quality must be right. Safety is the top priority. No matter what your plant produces,

More information

Siemens ENEAS solutions for substation automation and protection

Siemens ENEAS solutions for substation automation and protection Siemens ENEAS solutions for substation automation and protection System solutions for energy automation Answers for energy. An integrated approach for the entire spectrum of energy automation New challenges

More information

PROFINET IO Diagnostics 1

PROFINET IO Diagnostics 1 PROFINET IO is a very cost effective and reliable technology. However, extensive installations can have thousands of PROFINET IO devices operating on many networks. The reliable operation of these networks

More information

Expense Management. Configuration and Use of the Expense Management Module of Xpert.NET

Expense Management. Configuration and Use of the Expense Management Module of Xpert.NET Expense Management Configuration and Use of the Expense Management Module of Xpert.NET Table of Contents 1 Introduction 3 1.1 Purpose of the Document.............................. 3 1.2 Addressees of the

More information

Development of a Gateway to PROFIBUS for Remote Diagnostics

Development of a Gateway to PROFIBUS for Remote Diagnostics Development of a Gateway to PROFIBUS for Remote Diagnostics Hassan Kaghazchi, Donal Heffernan Automation Research Centre, University of Limerick, Ireland Abstract With the increased use of fielbuses in

More information

Logi Ad Hoc Reporting System Administration Guide

Logi Ad Hoc Reporting System Administration Guide Logi Ad Hoc Reporting System Administration Guide Version 11.2 Last Updated: March 2014 Page 2 Table of Contents INTRODUCTION... 4 Target Audience... 4 Application Architecture... 5 Document Overview...

More information

CONTROL MICROSYSTEMS DNP3. User and Reference Manual

CONTROL MICROSYSTEMS DNP3. User and Reference Manual DNP3 User and Reference Manual CONTROL MICROSYSTEMS SCADA products... for the distance 48 Steacie Drive Telephone: 613-591-1943 Kanata, Ontario Facsimile: 613-591-1022 K2K 2A9 Technical Support: 888-226-6876

More information

WinCC / PerformanceMonitor V7.2

WinCC / PerformanceMonitor V7.2 WinCC / PerformanceMonitor V7.2 Production analysis and improvement through individual key performance indicators siemens.com/wincc Answers for industry. Targeted productivity increase... The WinCC / PerformanceMonitor

More information

IDDERO HOME SERVER. Quick start guide. www.iddero.com 150302-02

IDDERO HOME SERVER. Quick start guide. www.iddero.com 150302-02 IDDERO HOME SERVER Quick start guide www.iddero.com 150302-02 TABLE OF CONTENTS 1 INTRODUCTION... 3 2 IDDERO CONFIGURATION SOFTWARE... 3 2.1 Installation and First Steps...3 3 IDDERO HOME SERVER CONFIGURATION...

More information

www.cathaybank.com Cathay Business Online Banking Quick Guide

www.cathaybank.com Cathay Business Online Banking Quick Guide www.cathaybank.com Cathay Business Online Banking Quick Guide Effective 06/2016 Disclaimer: The information and materials in these pages, including text, graphics, links, or other items are provided as

More information

SIMATIC. Process Control System PCS 7 Configuration Symantec Endpoint Protection (V12.1) Preface 1. Virus scanner administration 2.

SIMATIC. Process Control System PCS 7 Configuration Symantec Endpoint Protection (V12.1) Preface 1. Virus scanner administration 2. Preface 1 Virus scanner administration 2 SIMATIC Configuration 3 Process Control System PCS 7 Configuration Symantec Endpoint Protection (V12.1) Commissioning Manual 04/2013 A5E03874574-02 Legal information

More information

PMCS. Integrated Energy Management Solution. Unlock the Full Potential of Power Networks Through Integration. Complete Solution. Informed Decisions

PMCS. Integrated Energy Management Solution. Unlock the Full Potential of Power Networks Through Integration. Complete Solution. Informed Decisions PMCS Integrated Energy Management Solution Unlock the Full Potential of Power Networks Through Integration Power Management Control System (PMCS) is a highly customizable, fully integrated end-to-end Energy

More information

Integrated engineering with COMOS and SIMATIC PCS 7

Integrated engineering with COMOS and SIMATIC PCS 7 siemens.com/comos-pcs7 Integrated engineering with COMOS and SIMATIC PCS 7 Added value throughout the entire plant lifecycle: Maximum data consistency from planning through automation up to operation.

More information

Making Basic Measurements. Publication Number 16700-97020 August 2001. Training Kit for the Agilent Technologies 16700-Series Logic Analysis System

Making Basic Measurements. Publication Number 16700-97020 August 2001. Training Kit for the Agilent Technologies 16700-Series Logic Analysis System Making Basic Measurements Publication Number 16700-97020 August 2001 Training Kit for the Agilent Technologies 16700-Series Logic Analysis System Making Basic Measurements: a self-paced training guide

More information

CHAPTER 1. Introduction to CAD/CAM/CAE Systems

CHAPTER 1. Introduction to CAD/CAM/CAE Systems CHAPTER 1 1.1 OVERVIEW Introduction to CAD/CAM/CAE Systems Today s industries cannot survive worldwide competition unless they introduce new products with better quality (quality, Q), at lower cost (cost,

More information

DATA LEAP Production Data Management. SOFTWARE FOR PROCESS-ORIENTED PRODUCTION MANAGEMENT IN THE FACTORY OF TOMORROW.

DATA LEAP Production Data Management. SOFTWARE FOR PROCESS-ORIENTED PRODUCTION MANAGEMENT IN THE FACTORY OF TOMORROW. DATA LEAP Production Data Management. SOFTWARE FOR PROCESS-ORIENTED PRODUCTION MANAGEMENT IN THE FACTORY OF TOMORROW. DATA LEAP - Optimised production processes. Get an overview with ease. What is modern

More information

UC4 for SAP NetWeaver

UC4 for SAP NetWeaver UC4 for SAP NetWeaver Operations Manager is considered the most advanced solution available for the fast, seamless integration of SAP systems into enterprise process management. Operations Manager offers

More information

Engineering Change Management (LO-ECH)

Engineering Change Management (LO-ECH) Engineering Change Management (LO-ECH) HELP.LOECH Release 4.6C SAP AG Copyright Copyright 2001 SAP AG. All rights reserved. No part of this publication may be reproduced or transmitted in any form or for

More information

SOFTWARE-IMPLEMENTED SAFETY LOGIC Angela E. Summers, Ph.D., P.E., President, SIS-TECH Solutions, LP

SOFTWARE-IMPLEMENTED SAFETY LOGIC Angela E. Summers, Ph.D., P.E., President, SIS-TECH Solutions, LP SOFTWARE-IMPLEMENTED SAFETY LOGIC Angela E. Summers, Ph.D., P.E., President, SIS-TECH Solutions, LP Software-Implemented Safety Logic, Loss Prevention Symposium, American Institute of Chemical Engineers,

More information

2014-02. Technical Service Bulletin

2014-02. Technical Service Bulletin Technical Service Bulletin 2014-02 Date: April 25, 2014 Title: Pinnacle Lite Version 14 (5.7 & 7.5 HMI Screens) Affected: 2010-2013 Pinnacle Lite 5.7 & 7.5 HMI Equipped Dryers Priority: Medium Overview

More information