Two succulent leaf tips are exposed above ground; the rest of the plant lives below ground

Size: px
Start display at page:

Download "Two succulent leaf tips are exposed above ground; the rest of the plant lives below ground"

Transcription

1 Resource Acquisition, Transport, & Plant Nutrition Ch s. 36 & 37 Stone plants (Lithops) are adapted to life in the desert Two succulent leaf tips are exposed above ground; the rest of the plant lives below ground The success of plants depends on their ability to gather and conserve resources from their environment The transport of materials is central to the integrated functioning of the whole plant The algal ancestors of land plants absorbed water, minerals, and CO 2 directly from the surrounding water Early nonvascular land plants lived in shallow water and had aerial shoots Natural selection favored taller plants with flat appendages, multicellular branching roots, and efficient transport The evolution of xylem and phloem in land plants made possible the long-distance transport of water, minerals, and products of photosynthesis Xylem transports water and minerals from roots to shoots Phloem transports photosynthetic products from sources to sinks Shoot Architecture & Light Capture Stems serve as conduits for water and nutrients and as supporting structures for leaves There is generally a positive correlation between water availability and leaf size Phyllotaxy, the arrangement of leaves on a stem, is specific to each species Most angiosperms have alternate phyllotaxy with leaves arranged in a spiral The angle between leaves is and likely minimizes shading of lower leaves Light absorption is affected by the leaf area index, the ratio of total upper leaf surface of a plant divided by the surface area of land on which it grows Self-pruning is the shedding of lower shaded leaves when they respire more than photosynthesize Leaf orientation affects light absorption In low-light conditions, horizontal leaves capture more sunlight In sunny conditions, vertical leaves are less damaged by sun and allow light to reach lower leaves Shoot height and branching pattern also affect light capture There is a trade-off between growing tall and branching Root Architecture & Water Acquisition Soil is a resource mined by the root system Taproot systems anchor plants and are characteristic of gymnosperms and eudicots

2 Root growth can adjust to local conditions For example, roots branch more in a pocket of high nitrate than low nitrate Roots are less competitive with other roots from the same plant than with roots from different plants Roots and the hyphae of soil fungi form mutualistic associations called mycorrhizae Mutualisms with fungi helped plants colonize land Mycorrhizal fungi increase the surface area for absorbing water and minerals, especially phosphate There are two major pathways through plants The apoplast The symplast The apoplast consists of everything external to the plasma membrane It includes cell walls, extracellular spaces, and the interior of vessel elements and tracheids The symplast consists of the cytosol of the living cells in a plant, as well as the plasmodesmata Three transport routes for water and solutes are The apoplastic route, through cell walls and extracellular spaces The symplastic route, through the cytosol The transmembrane route, across cell walls Transport of Solutes Plasma membrane permeability controls short-distance movement of substances Both active and passive transport occur in plants In plants, membrane potential is established through pumping H by proton pumps In animals, membrane potential is established through pumping Na by sodium-potassium pumps Transport of Water To survive, plants must balance water uptake and loss Osmosis determines the net uptake or water loss by a cell and is affected by solute concentration and pressure Water potential is a measurement that combines the effects of solute concentration and pressure Water potential determines the direction of movement of water Water flows from regions of higher water potential to regions of lower water potential Potential refers to water s capacity to perform work Water potential is abbreviated as Ψ and measured in a unit of pressure called the megapascal (MPa) Ψ = 0 MPa for pure water at sea level and at room temperature

3 Solutes & Pressure affect Water Potential Both pressure and solute concentration affect water potential This is expressed by the water potential equation: Ψ Ψ S Ψ P The solute potential (Ψ S ) of a solution is directly proportional to its molarity Solute potential is also called osmotic potential Pressure potential (Ψ P ) is the physical pressure on a solution Turgor pressure is the pressure exerted by the plasma membrane against the cell wall, and the cell wall against the protoplast The protoplast is the living part of the cell, which also includes the plasma membrane Water potential affects uptake and loss of water by plant cells If a flaccid cell is placed in an environment with a higher solute concentration, the cell will lose water and undergo plasmolysis Plasmolysis occurs when the protoplast shrinks and pulls away from the cell wall If a flaccid cell is placed in a solution with a lower solute concentration, the cell will gain water and become turgid Turgor loss in plants causes wilting, which can be reversed when the plant is watered Aquaporins Aquaporins are transport proteins in the cell membrane that allow the passage of water These affect the rate of water movement across the membrane Plants can move a large volume of water from their roots to shoots Most water and mineral absorption occurs near root tips, where root hairs are located and the epidermis is permeable to water Root hairs account for much of the surface area of roots After soil solution enters the roots, the extensive surface area of cortical cell membranes enhances uptake of water and selected minerals Water can cross the cortex via the symplast or apoplast The waxy Casparian strip of the endodermal wall blocks apoplastic transfer of minerals from the cortex to the vascular cylinder Water and minerals in the apoplast must cross the plasma membrane of an endodermal cell to enter the vascular cylinder Root Pressure At night root cells continue pumping mineral ions into the xylem of the vascular cylinder, lowering the water potential Water flows in from the root cortex, generating root pressure

4 Root pressure sometimes results in guttation, the exudation of water droplets on tips or edges of leaves Transpiration pull Water vapor in the airspaces of a leaf diffuses down its water potential gradient and exits the leaf via stomata As water evaporates, the air-water interface retreats further into the mesophyll cell walls The surface tension of water creates a negative pressure potential This negative pressure pulls water in the xylem into the leaf The transpirational pull on xylem sap is transmitted from leaves to roots Adhesion & Cohesion Water molecules are attracted to cellulose in xylem cell walls through adhesion Adhesion of water molecules to xylem cell walls helps offset the force of gravity Water molecules are attracted to each other through cohesion Cohesion makes it possible to pull a column of xylem sap Thick secondary walls prevent vessel elements and tracheids from collapsing under negative pressure Drought stress or freezing can cause cavitation, the formation of a water vapor pocket by a break in the chain of water molecules Transpiration Regulation Leaves generally have broad surface areas and high surface-to-volume ratios These characteristics increase photosynthesis and increase water loss through stomata Guard cells help balance water conservation with gas exchange for photosynthesis About 95% of the water a plant loses escapes through stomata Each stoma is flanked by a pair of guard cells, which control the diameter of the stoma by changing shape Stomatal density is under genetic and environmental control Changes in turgor pressure open and close stomata When turgid, guard cells bow outward and the pore between them opens When flaccid, guard cells become less bowed and the pore closes Generally, stomata open during the day and close at night to minimize water loss Stomatal opening at dawn is triggered by Light CO 2 depletion An internal clock in guard cells

5 All eukaryotic organisms have internal clocks; circadian rhythms are 24-hour cycles Drought, high temperature, and wind can cause stomata to close during the daytime The hormone abscisic acid is produced in response to water deficiency and causes the closure of stomata Wilting & Leaf Temp. Plants lose a large amount of water by transpiration If the lost water is not replaced by sufficient transport of water, the plant will lose water and wilt Transpiration also results in evaporative cooling, which can lower the temperature of a leaf and prevent denaturation of various enzymes involved in photosynthesis and other metabolic processes Plant Nutrition Ch 37 Carnivory by pitcher plants is well-documented An extreme example is Nepenthes rajah, a pitcher plant large enough to catch a rat N. Rajah lives in very unproductive soil and uses carnivory to obtain nutrients such as calcium, potassium, and phosphorus Soils Plants obtain most of their water and minerals from the upper layers of soil Living organisms play an important role in these soil layers This complex ecosystem is fragile The basic physical properties of soil are Texture Composition Texture Soil particles are classified by size; from largest to smallest they are called sand, silt, and clay Soil is stratified into layers called soil horizons Topsoil consists of mineral particles, living organisms, and humus, the decaying organic material Soil solution consists of water and dissolved minerals in the pores between soil particles After a heavy rainfall, water drains from the larger spaces in the soil, but smaller spaces retain water because of its attraction to clay and other particles The film of loosely bound water is usually available to plants Loams are the most fertile topsoils and contain equal amounts of sand, silt, and clay Inorganic Components

6 Cations (for example K +, Ca 2+, Mg 2+ ) adhere to negatively charged soil particles; this prevents them from leaching out of the soil through percolating groundwater During cation exchange, cations are displaced from soil particles by other cations Displaced cations enter the soil solution and can be taken up by plant roots Negatively charged ions do not bind with soil particles and can be lost from the soil by leaching Organic Components Humus builds a crumbly soil that retains water but is still porous It also increases the soil s capacity to exchange cations and serves as a reservoir of mineral nutrients Topsoil contains bacteria, fungi, algae, other protists, insects, earthworms, nematodes, and plant roots These organisms help to decompose organic material and mix the soil Soil Sustainability Soil management, by fertilization and other practices, allowed for agriculture and cities In contrast with natural ecosystems, agriculture depletes the mineral content of soil, taxes water reserves, and encourages erosion The American Dust Bowl of the 1930s resulted from soil mismanagement At present, 30% of the world s farmland has reduced productivity because of soil mismanagement The goal of sustainable agriculture is to use farming methods that are conservation-minded, environmentally safe, and profitable Irrigation Irrigation is a huge drain on water resources when used for farming in arid regions For example, 75% of global freshwater use is devoted to agriculture The primary source of irrigation water is underground water reserves called aquifers The depleting of aquifers can result in land subsidence, the settling or sinking of land Fertilization Soils can become depleted of nutrients as plants and the nutrients they contain are harvested Fertilization replaces mineral nutrients that have been lost from the soil Commercial fertilizers are enriched in nitrogen (N), phosphorus (P), and potassium (K) Excess minerals are often leached from the soil and can cause algal blooms in lakes Erosion control Topsoil from thousands of acres of farmland is lost to water and wind erosion each year in the United States Erosion of soil causes loss of nutrients

7 Erosion can be reduced by Planting trees as windbreaks Terracing hillside crops Cultivating in a contour pattern Practicing no-till agriculture Essential Elements Soil, water, and air all contribute to plant growth 80 90% of a plant s fresh mass is water 4% of a plant s dry mass is inorganic substances from soil 96% of plant s dry mass is from CO 2 assimilated during photosynthesis More than 50 chemical elements have been identified among the inorganic substances in plants, but not all of these are essential to plants There are 17 essential elements, chemical elements required for a plant to complete its life cycle Researchers use hydroponic culture to determine which chemical elements are essential Relationships with other organisms Plants and soil microbes have a mutualistic relationship Soil Bacteria Dead plants provide energy needed by soil-dwelling microorganisms Secretions from living roots support a wide variety of microbes in the near-root environment The layer of soil bound to the plant s roots is the rhizosphere The rhizosphere contains bacteria that act as decomposers and nitrogen-fixers Free-living rhizobacteria thrive in the rhizosphere, and some can enter roots The rhizosphere has high microbial activity because of sugars, amino acids, and organic acids secreted by roots Rhizobacteria can play several roles Produce hormones that stimulate plant growth Produce antibiotics that protect roots from disease Absorb toxic metals or make nutrients more available to roots Nitrogen can be an important limiting nutrient for plant growth The nitrogen cycle transforms nitrogen and nitrogen-containing compounds

8 Plants can absorb nitrogen as either NO 3 or NH 4 Most soil nitrogen comes from actions of soil bacteria Conversion to NH 4 Ammonifying bacteria break down organic compounds and release ammonia (NH 3 ) Nitrogen-fixing bacteria convert N 2 into NH 3 NH 3 is converted to NH 4 Conversion to NO 3 Nitrifying bacteria oxidize NH 3 to nitrite (NO 2 ) then nitrite to nitrate (NO 3 ) Nitrogen is abundant in the atmosphere, but unavailable to plants because of the triple bond between atoms in N 2 Nitrogen fixation is the conversion of nitrogen from N 2 to NH 3 N 2 8e 8 H 16 ATP 2 NH 3 H 2 16 ADP 16 P i Symbiotic relationships with nitrogen-fixing Rhizobium bacteria provide some plant species (e.g., legumes) with a source of fixed nitrogen Fungi Mycorrhizae are mutualistic associations of fungi and roots The fungus benefits from a steady supply of sugar from the host plant The host plant benefits because the fungus increases the surface area for water uptake and mineral absorption Mycorrhizal fungi also secrete growth factors that stimulate root growth and branching Ectomycorrhizae Arbuscular mycorrhizae Epiphytes, Parasitic Plants, & Carnivores Some plants have nutritional adaptations that use other organisms in nonmutualistic ways Three unusual adaptations are Epiphytes Parasitic plants Carnivorous plants An epiphyte grows on another plant and obtains water and minerals from rain Sundew Trapping Prey

Chapter 36: Resource Acquisition & Transport in Vascular Plants

Chapter 36: Resource Acquisition & Transport in Vascular Plants Chapter 36: Resource Acquisition & Transport in Vascular Plants 1. Overview of Transport in Plants 2. Transport of Water & Minerals 3. Transport of Sugars 1. Overview of Transport in Plants H 2 O CO 2

More information

Transport in Plants Notes AP Biology Mrs. Laux 3 levels of transport occur in plants: 1. Uptake of water and solutes by individual cells

Transport in Plants Notes AP Biology Mrs. Laux 3 levels of transport occur in plants: 1. Uptake of water and solutes by individual cells 3 levels of transport occur in plants: 1. Uptake of water and solutes by individual cells -for photosynthesis and respiration -ex: absorption of H 2 O /minerals by root hairs 2. Short distance cell-to-cell

More information

1. The leaf is the main photosynthetic factory (Fig. 36.1, p. 702)

1. The leaf is the main photosynthetic factory (Fig. 36.1, p. 702) TRANSPORT IN PLANTS A. Introduction 1. The leaf is the main photosynthetic factory (Fig. 36.1, p. 702) a. This requires a transport system to move water and minerals from the roots to the leaf. This is

More information

3) Transpiration creates a force that pulls water upward in. xylem. 2) Water and minerals transported upward form roots to shoots in.

3) Transpiration creates a force that pulls water upward in. xylem. 2) Water and minerals transported upward form roots to shoots in. 3) Transpiration creates a force that pulls water upward in xylem Figure 36.1 An overview of transport in whole plants (Layer 1) Transport in plants 2) Water and minerals transported upward form roots

More information

Water movement in the xylem Water moves from roots to leaves through the xylem. But how? Hypotheses: 1. Capillary action - water will move upward in

Water movement in the xylem Water moves from roots to leaves through the xylem. But how? Hypotheses: 1. Capillary action - water will move upward in Transport in Plants Two Transport Processes Occur in Plants 1. Carbohydrates carried from leaves (or storage organs) to where they are needed (from sources to sinks) 2. Water transported from roots to

More information

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A. Earth s Cycles 1. Models are often used to explain scientific knowledge or experimental results. A model of the carbon cycle is shown below. Which of the following can be determined based on this model?

More information

WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS?

WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS? WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS? Let s take a closer look. What makes them different on the outside and inside? Learning Intentions To understand how vascular plant cells

More information

Text for Transpiration Water Movement through Plants

Text for Transpiration Water Movement through Plants Text for Transpiration Water Movement through Plants Tracy M. Sterling, Ph.D., 2004 Department of Entomology, Plant Pathology and Weed Science New Mexico State University tsterlin@nmsu.edu http://croptechnology.unl.edu

More information

Exchange and transport

Exchange and transport Exchange and transport Examples of things which need to be interchanged between an organism and its environment include: Respiratory gases Nutrients Excretory products Heat This exchange can take place

More information

Anatomy and Physiology of Leaves

Anatomy and Physiology of Leaves I. Leaf Structure and Anatomy Anatomy and Physiology of Leaves A. Structural Features of the Leaf Question: How do plants respire? Plants must take in CO 2 from the atmosphere in order to photosynthesize.

More information

Transpiration. C should equal D.BUT SOMETIMES. 1. Loss in mass is greater than volume of water added.

Transpiration. C should equal D.BUT SOMETIMES. 1. Loss in mass is greater than volume of water added. Transpiration Transpiration is the loss of water by evaporation from the leaves through the stomata. The source of water for the plants is soil water. It is taken up by root hair cells by osmosis. Once

More information

Bio Factsheet January 2001 Number 82

Bio Factsheet January 2001 Number 82 January 2001 Number 82 Transport in Flowering Plants This Factsheet covers the relevant AS syllabus content of the major examination boards. By studying this Factsheet candidates will gain a knowledge

More information

Plant Classification, Structure, Growth and Hormones

Plant Classification, Structure, Growth and Hormones Biology SAT II Review Sheet Plants Plant Classification, Structure, Growth and Hormones Multicellular autotrophs (organisms that use the energy of inorganic materials to produce organic materials) Utilize

More information

7. A selectively permeable membrane only allows certain molecules to pass through.

7. A selectively permeable membrane only allows certain molecules to pass through. CHAPTER 2 GETTING IN & OUT OF CELLS PASSIVE TRANSPORT Cell membranes help organisms maintain homeostasis by controlling what substances may enter or leave cells. Some substances can cross the cell membrane

More information

THE WATER CYCLE. Ecology

THE WATER CYCLE. Ecology THE WATER CYCLE Water is the most abundant substance in living things. The human body, for example, is composed of about 70% water, and jellyfish are 95% water. Water participates in many important biochemical

More information

Lecture 7: Plant Structure and Function. I. Background

Lecture 7: Plant Structure and Function. I. Background Lecture 7: Plant Structure and Function I. Background A. Challenges for terrestrial plants 1. Habitat is divided a. Air is the source of CO2 for photosynthesis i. Sunlight cannot penetrate soil b. Soil

More information

Six major functions of membrane proteins: Transport Enzymatic activity

Six major functions of membrane proteins: Transport Enzymatic activity CH 7 Membranes Cellular Membranes Phospholipids are the most abundant lipid in the plasma membrane. Phospholipids are amphipathic molecules, containing hydrophobic and hydrophilic regions. The fluid mosaic

More information

Flowers; Seeds enclosed in fruit

Flowers; Seeds enclosed in fruit Name Class Date Chapter 22 Plant Diversity Section Review 22-1 Reviewing Key Concepts Short Answer On the lines provided, answer the following questions. 1. Describe the main characteristics of plants.

More information

Plants have organs composed of different tissues, which in turn are composed of different cell types

Plants have organs composed of different tissues, which in turn are composed of different cell types Plant Structure, Growth, & Development Ch. 35 Plants have organs composed of different tissues, which in turn are composed of different cell types A tissue is a group of cells consisting of one or more

More information

Photosynthesis: Harvesting Light Energy

Photosynthesis: Harvesting Light Energy Photosynthesis: Harvesting Light Energy Importance of Photosynthesis A. Ultimate source of energy for all life on Earth 1. All producers are photosynthesizers 2. All consumers and decomposers are dependent

More information

Photosynthesis. Chemical Energy (e.g. glucose) - They are the ultimate source of chemical energy for all living organisms: directly or indirectly.

Photosynthesis. Chemical Energy (e.g. glucose) - They are the ultimate source of chemical energy for all living organisms: directly or indirectly. Photosynthesis Light Energy transduction Chemical Energy (e.g. glucose) - Only photosynthetic organisms can do this (e.g. plants) - They are the ultimate source of chemical energy for all living organisms:

More information

Nitrogen Cycling in Ecosystems

Nitrogen Cycling in Ecosystems Nitrogen Cycling in Ecosystems In order to have a firm understanding of how nitrogen impacts our ecosystems, it is important that students fully understand how the various forms of nitrogen cycle through

More information

COTTON WATER RELATIONS

COTTON WATER RELATIONS COTTON WATER RELATIONS Dan R. Krieg 1 INTRODUCTION Water is the most abundant substance on the Earth s surface and yet is the most limiting to maximum productivity of nearly all crop plants. Land plants,

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

LAB 24 Transpiration

LAB 24 Transpiration Name: AP Biology Lab 24 LAB 24 Transpiration Objectives: To understand how water moves from roots to leaves in terms of the physical/chemical properties of water and the forces provided by differences

More information

Topic 3: Nutrition, Photosynthesis, and Respiration

Topic 3: Nutrition, Photosynthesis, and Respiration 1. Base your answer to the following question on the chemical reaction represented below and on your knowledge of biology. If this reaction takes place in an organism that requires sunlight to produce

More information

VIII. PLANTS AND WATER

VIII. PLANTS AND WATER VIII. PLANTS AND WATER Plants play a large role in the hydrologic cycle. Transpiration, the evaporative loss of water from leaves of natural and cultivated vegetation, returns to the atmosphere about 60

More information

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

PHOTOSYNTHESIS AND CELLULAR RESPIRATION reflect Wind turbines shown in the photo on the right are large structures with blades that move in response to air movement. When the wind blows, the blades rotate. This motion generates energy that is

More information

Transport in Plants. Lab Exercise 25. Introduction. Objectives

Transport in Plants. Lab Exercise 25. Introduction. Objectives Lab Exercise Transport in Plants Objectives - Become familiar and be able to recognize the different types of cells found in the plant s vascular tissue. - Be able to describe root pressure and transpiration

More information

Photosynthesis (Life from Light)

Photosynthesis (Life from Light) Photosynthesis Photosynthesis (Life from Light) Energy needs of life All life needs a constant input of energy o Heterotrophs (consumers) Animals, fungi, most bacteria Get their energy from other organisms

More information

What Is Humic Acid? Where Does It Come From?

What Is Humic Acid? Where Does It Come From? What Is Humic Acid? Humic and Fulvic acids are the final break-down constituents of the natural decay of plant and animal materials. These organic acids are found in pre-historic deposits. Humic matter

More information

10B Plant Systems Guided Practice

10B Plant Systems Guided Practice 10B Plant Systems Guided Practice Reproduction Station 1 1. Observe Plant A. Locate the following parts of the flower: stamen, stigma, style, ovary. 2. Draw and label the parts of a flower (listed above)

More information

Plants, like all other living organisms have basic needs: a source of nutrition (food),

Plants, like all other living organisms have basic needs: a source of nutrition (food), LEARNING FROM LEAVES: A LOOK AT LEAF SIZE Grades 3 6 I. Introduction Plants, like all other living organisms have basic needs: a source of nutrition (food), water, space in which to live, air, and optimal

More information

Photosynthesis and (Aerobic) Respiration. Photosynthesis

Photosynthesis and (Aerobic) Respiration. Photosynthesis Photosynthesis and (Aerobic) Respiration These two processes have many things in common. 1. occur in organelles that seem to be descended from bacteria (endosymbiont theory): chloroplasts and mitochondria

More information

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Cellular Energy. 1. Photosynthesis is carried out by which of the following? Cellular Energy 1. Photosynthesis is carried out by which of the following? A. plants, but not animals B. animals, but not plants C. bacteria, but neither animals nor plants D. all living organisms 2.

More information

Chapter 2. The Nitrogen Cycle

Chapter 2. The Nitrogen Cycle Chapter 2 Plants need at least seventeen elements to grow. Three of these elements carbon, oxygen, and hydrogen are referred to as "building blocks." Plants get these elements from air and water. The other

More information

8. Study the cladogram underline the derived characteristics and circle the organisms that developed from them.

8. Study the cladogram underline the derived characteristics and circle the organisms that developed from them. Seed Plants: Gymnosperms and Angiosperms Answer the questions as you go through the power point, there are also paragraphs to read where you will need to hi-lite or underline as you read. 1. What are the

More information

Plant Structure, Growth, and Development. Chapter 35

Plant Structure, Growth, and Development. Chapter 35 Plant Structure, Growth, and Development Chapter 35 PLANTS developmental plasticity = ability of plant to alter form to respond to environment Biological heirarchy Cell basic unit of life Tissue group

More information

Cells are tiny building blocks that make up all living things. Cells are so small that you need a microscope to see them.

Cells are tiny building blocks that make up all living things. Cells are so small that you need a microscope to see them. FC01 CELLS s are tiny building blocks that make up all living things. s are so small that you need a microscope to see them. ANIMAL CELL PLANT CELL This is the control centre of the cell. It contains chromosomes

More information

Impressions of a Stoma

Impressions of a Stoma Huntington Library, Art Collections, and Botanical Gardens Impressions of a Stoma Overview Students use two different methods to view stomata on the underside of leaves. Introduction Plants exchange the

More information

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions. thebiotutor AS Biology OCR Unit F211: Cells, Exchange & Transport Module 1.2 Cell Membranes Notes & Questions Andy Todd 1 Outline the roles of membranes within cells and at the surface of cells. The main

More information

Transport of Water and Solutes in Plants

Transport of Water and Solutes in Plants OpenStax-CNX module: m44708 1 Transport of Water and Solutes in Plants OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end

More information

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage? Energy Transport Study Island 1. During the process of photosynthesis, plants use energy from the Sun to convert carbon dioxide and water into glucose and oxygen. These products are, in turn, used by the

More information

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions!

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions! AS Biology Unit 2 Key Terms and Definitions Make sure you use these terms when answering exam questions! Chapter 7 Variation 7.1 Random Sampling Sampling a population to eliminate bias e.g. grid square

More information

IGCSE and GCSE Biology. Answers to questions. Section 2. Flowering Plants. Chapters 6-9. Chapter 6 Plant structure and function

IGCSE and GCSE Biology. Answers to questions. Section 2. Flowering Plants. Chapters 6-9. Chapter 6 Plant structure and function 1 IGCSE and GCSE Biology. Answers to questions Section 2. Flowering Plants. Chapters 6-9 Chapter 6 Plant structure and function Page 54 1. a Epidermis. Helps maintain shape, reduces evaporation, resists

More information

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy Assessment Bank Matter and Energy in Living Things SC.8.L.18.4 1. What is energy? A. anything that takes up space B. anything that has mass C. the ability to conduct current D. the ability to do work 2.

More information

GLOBAL CIRCULATION OF WATER

GLOBAL CIRCULATION OF WATER Global Circulation of Water MODULE - 8A 27 GLOBAL CIRCULATION OF WATER More than three-fourths of the earth s surface is covered by water. Water is an odorless, tasteless, substance than can naturally

More information

pathway that involves taking in heat from the environment at each step. C.

pathway that involves taking in heat from the environment at each step. C. Study Island Cell Energy Keystone Review 1. Cells obtain energy by either capturing light energy through photosynthesis or by breaking down carbohydrates through cellular respiration. In both photosynthesis

More information

CHAPTER 5.1 5.2: Plasma Membrane Structure

CHAPTER 5.1 5.2: Plasma Membrane Structure CHAPTER 5.1 5.2: Plasma Membrane Structure 1. Describe the structure of a phospholipid molecule. Be sure to describe their behavior in relationship to water. 2. What happens when a collection of phospholipids

More information

Ch. 8 - The Cell Membrane

Ch. 8 - The Cell Membrane Ch. 8 - The Cell Membrane 2007-2008 Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water Aaaah, one of those

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Part A Multiple Choice 1. The fluid mosaic model describes membranes as having A. a set of protein channels separated by phospholipids. B. a bilayer of phospholipids in

More information

NITROGEN IN SOIL AND FERTILIZERS James J. Camberato

NITROGEN IN SOIL AND FERTILIZERS James J. Camberato 1 NITROGEN IN SOIL AND FERTILIZERS James J. Camberato Nitrogen influences turf health and quality more than any other nutrient. Nitrogen is present in grass plants in greater quantities than any other

More information

XII. Biology, Grade 10

XII. Biology, Grade 10 XII. Biology, Grade 10 Grade 10 Biology Pilot Test The spring 2004 Grade 10 MCAS Biology Test was based on learning standards in the Biology content strand of the Massachusetts Science and Technology/Engineering

More information

Photosynthesis and Cellular Respiration. Stored Energy

Photosynthesis and Cellular Respiration. Stored Energy Photosynthesis and Cellular Respiration Stored Energy What is Photosynthesis? plants convert the energy of sunlight into the energy in the chemical bonds of carbohydrates sugars and starches. SUMMARY EQUATION:

More information

Ecosystems One or more communities in an area and the abiotic factors, including water, sunlight, oxygen, temperature, and soil.

Ecosystems One or more communities in an area and the abiotic factors, including water, sunlight, oxygen, temperature, and soil. 7-4.1 Summarize the characteristics of the levels of organization within ecosystems (including populations, communities, habitats, niches, and biomes). Taxonomy level: 2.4-B Understand Conceptual Knowledge

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

Summary of Metabolism. Mechanism of Enzyme Action

Summary of Metabolism. Mechanism of Enzyme Action Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the

More information

STUDY GUIDE AGRICULTURAL SCIENCES GRADE 11

STUDY GUIDE AGRICULTURAL SCIENCES GRADE 11 STUDY GUIDE AGRICULTURAL SCIENCES GRADE 11 A publication of Impak Onderwysdiens (Pty) Ltd Copyright reserved. Apart from any fair dealing for the purpose of research, criticism or review as permitted under

More information

Introduction to Plants

Introduction to Plants Introduction to Plants Unity and Diversity of Life Q: What are the five main groups of plants, and how have four of these groups adapted to life on land? 22.1 What are of plants? WHAT I KNOW SAMPLE ANSWER:

More information

What are the subsystems of the Earth? The 4 spheres

What are the subsystems of the Earth? The 4 spheres What are the subsystems of the Earth? The 4 spheres Essential Questions What are the 4 spheres of the Earth? How do these spheres interact? What are the major cycles of the Earth? How do humans impact

More information

a. a population. c. an ecosystem. b. a community. d. a species.

a. a population. c. an ecosystem. b. a community. d. a species. Name: practice test Score: 0 / 35 (0%) [12 subjective questions not graded] The Biosphere Practice Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the

More information

8-3 The Reactions of Photosynthesis Slide 1 of 51

8-3 The Reactions of Photosynthesis Slide 1 of 51 8-3 The of Photosynthesis 1 of 51 Inside a Chloroplast Inside a Chloroplast In plants, photosynthesis takes place inside chloroplasts. Plant Chloroplast Plant cells 2 of 51 Inside a Chloroplast Chloroplasts

More information

Human Health, the Nutritional Quality of Harvested Food and Sustainable Farming Systems

Human Health, the Nutritional Quality of Harvested Food and Sustainable Farming Systems Human Health, the Nutritional Quality of Harvested Food and Sustainable Farming Systems by John B. Marler and Jeanne R. Wallin The alarming fact is that foods fruits, vegetables and grains now being raised

More information

Amazing World Under Our Feet

Amazing World Under Our Feet Crop Science Investigation Workshop Series Lesson Plans Amazing World Under Our Feet Subject: Crop Production Intro to Soil Grade Level(s): 4 th 8 th grades Lesson Title: What is soil and why is soil important?

More information

BIOL 305L Laboratory Two

BIOL 305L Laboratory Two Please print Full name clearly: Introduction BIOL 305L Laboratory Two Osmosis, because it is different in plants! Osmosis is the movement of solvent molecules through a selectively permeable membrane into

More information

Leaf Structure and Transpiration

Leaf Structure and Transpiration 10 LESSON Leaf Structure and Transpiration INTRODUCTION Have you wondered what happens to all that water that disappears from the reservoir of your growing system? Although some might have evaporated from

More information

REVIEW UNIT 3: METABOLISM (RESPIRATION & PHOTOSYNTHESIS) SAMPLE QUESTIONS

REVIEW UNIT 3: METABOLISM (RESPIRATION & PHOTOSYNTHESIS) SAMPLE QUESTIONS Period Date REVIEW UNIT 3: METABOLISM (RESPIRATION & PHOTOSYNTHESIS) SAMPLE QUESTIONS A. Sample Multiple Choice Questions Complete the multiple choice questions to review this unit. 1. The carbon that

More information

Cell Membrane & Tonicity Worksheet

Cell Membrane & Tonicity Worksheet NAME ANSWER KEY DATE PERIOD Cell Membrane & Tonicity Worksheet Composition of the Cell Membrane & Functions The cell membrane is also called the PLASMA membrane and is made of a phospholipid BI-LAYER.

More information

Cell Biology - Part 2 Membranes

Cell Biology - Part 2 Membranes Cell Biology - Part 2 Membranes The organization of cells is made possible by membranes. Membranes isolate, partition, and compartmentalize cells. 1 Membranes isolate the inside of the cell from the outside

More information

CELERY LAB - Structure and Function of a Plant

CELERY LAB - Structure and Function of a Plant CELERY LAB - Structure and Function of a Plant READ ALL INSTRUCTIONS BEFORE BEGINNING! YOU MAY WORK WITH A PARTNER ON THIS ACTIVITY, BUT YOU MUST COMPLETE YOUR OWN LAB SHEET! Look at the back of this paper

More information

Chapter 8. Movement across the Cell Membrane. AP Biology

Chapter 8. Movement across the Cell Membrane. AP Biology Chapter 8. Movement across the Cell Membrane More than just a barrier Expanding our view of cell membrane beyond just a phospholipid bilayer barrier phospholipids plus Fluid Mosaic Model In 1972, S.J.

More information

Modes of Membrane Transport

Modes of Membrane Transport Modes of Membrane Transport Transmembrane Transport movement of small substances through a cellular membrane (plasma, ER, mitochondrial..) ions, fatty acids, H 2 O, monosaccharides, steroids, amino acids

More information

Figure 1. Basic structure of the leaf, with a close up of the leaf surface showing Stomata and Guard cells.

Figure 1. Basic structure of the leaf, with a close up of the leaf surface showing Stomata and Guard cells. BIOL100 Laboratory Assignment 3: Analysis of Stomata Name: Stomata (singular=stoma) are the respiratory control structures in plants (see Figure 1 below). They are essentially small holes in the surface

More information

Cells and Their Housekeeping Functions Cell Membrane & Membrane Potential

Cells and Their Housekeeping Functions Cell Membrane & Membrane Potential Cells and Their Housekeeping Functions Cell Membrane & Membrane Potential Shu-Ping Lin, Ph.D. Institute of Biomedical Engineering E-mail: splin@dragon.nchu.edu.tw Website: http://web.nchu.edu.tw/pweb/users/splin/

More information

Cells, tissues and organs

Cells, tissues and organs Chapter 8: Cells, tissues and organs Cells: building blocks of life Living things are made of cells. Many of the chemical reactions that keep organisms alive (metabolic functions) take place in cells.

More information

Equation for Photosynthesis

Equation for Photosynthesis Photosynthesis Definition The process by which cells harvest light energy to make sugars (glucose). -Sugar is used to power the process of cellular respiration, which produces the ATP that cells utilize

More information

Date: Student Name: Teacher Name: Jared George. Score: 1) A cell with 1% solute concentration is placed in a beaker with a 5% solute concentration.

Date: Student Name: Teacher Name: Jared George. Score: 1) A cell with 1% solute concentration is placed in a beaker with a 5% solute concentration. Biology Keystone (PA Core) Quiz Homeostasis and Transport - (BIO.A.4.1.1 ) Plasma Membrane, (BIO.A.4.1.2 ) Transport Mechanisms, (BIO.A.4.1.3 ) Transport Facilitation Student Name: Teacher Name: Jared

More information

CHAPTER 7: REMEDIATION TECHNOLOGIES FOR CONTAMINATED GROUNDWATER

CHAPTER 7: REMEDIATION TECHNOLOGIES FOR CONTAMINATED GROUNDWATER CHAPTER 7: REMEDIATION TECHNOLOGIES FOR CONTAMINATED GROUNDWATER There are a number of technologies that are being use to remediate contaminated groundwater. The choice of a certain remediation technology

More information

Total Suspended Solids Total Dissolved Solids Hardness

Total Suspended Solids Total Dissolved Solids Hardness Total Suspended Solids (TSS) are solids in water that can be trapped by a filter. TSS can include a wide variety of material, such as silt, decaying plant and animal matter, industrial wastes, and sewage.

More information

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet AP * BIOLOGY CELL MEMBRANES, TRANSPORT, and COMMUNICATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production

More information

Biological Approaches to Farming

Biological Approaches to Farming Biological Approaches to Farming Reducing Fertilizer Use & Pollution by Mike Amaranthus Ph.D. & Larry Simpson The thin skin of soil that envelops the earth s crust is a basic and critical resource supporting

More information

Introduction to the Cell: Plant and Animal Cells

Introduction to the Cell: Plant and Animal Cells Introduction to the Cell: Plant and Animal Cells Tissues, Organs, and Systems of Living Things Cells, Cell Division, and Animal Systems and Plant Systems Cell Specialization Human Systems All organisms

More information

Investigating cells. Cells are the basic units of living things (this means that all living things are made up of one or more cells).

Investigating cells. Cells are the basic units of living things (this means that all living things are made up of one or more cells). SG Biology Summary notes Investigating cells Sub-topic a: Investigating living cells Cells are the basic units of living things (this means that all living things are made up of one or more cells). Cells

More information

8.2 - A Local Ecosystem:

8.2 - A Local Ecosystem: 8.2 - A Local Ecosystem: 1. The distribution, diversity and numbers of plants and animals found in ecosystems are determined by biotic and abiotic factors: Distinguish between the abiotic and biotic factors

More information

Ecology Module B, Anchor 4

Ecology Module B, Anchor 4 Ecology Module B, Anchor 4 Key Concepts: - The biological influences on organisms are called biotic factors. The physical components of an ecosystem are called abiotic factors. - Primary producers are

More information

Understanding the. Soil Test Report. Client and Sample Identification

Understanding the. Soil Test Report. Client and Sample Identification Understanding the Soil Test Report Page 1 of 7 Crops absorb the nutrients required from soil in order to grow, so ensuring that your soil is meeting the crops needs is critical. Having the proper level

More information

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Anatomy and Physiology Placement Exam 2 Practice with Answers at End! Anatomy and Physiology Placement Exam 2 Practice with Answers at End! General Chemical Principles 1. bonds are characterized by the sharing of electrons between the participating atoms. a. hydrogen b.

More information

b. What is/are the overall function(s) of photosystem II?

b. What is/are the overall function(s) of photosystem II? Use your model and the information in Chapter 10 of Biology, 7th edition, to answer the questions. 1. The various reactions in photosynthesis are spatially segregated from each other within the chloroplast.

More information

> C 6 H 12 O 6 + 6O 2

> C 6 H 12 O 6 + 6O 2 Photosynthesis- is the process that converts light energy into chemical energy. This chemical energy is usually a carbohydrate. Only photoautrotrops can do photosynthesis. Heterotrophs must obtain their

More information

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling Ecosystems THE REALM OF ECOLOGY Biosphere An island ecosystem A desert spring ecosystem Biosphere Ecosystem Ecology: Interactions between the species in a given habitat and their physical environment.

More information

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 5090 BIOLOGY. 5090/22 Paper 2 (Theory), maximum raw mark 80

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 5090 BIOLOGY. 5090/22 Paper 2 (Theory), maximum raw mark 80 www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 5090 BIOLOGY 5090/22 Paper 2 (Theory),

More information

CELERY LAB - Structure and Function of a Plant

CELERY LAB - Structure and Function of a Plant CELERY LAB - Structure and Function of a Plant READ ALL INSTRUCTIONS BEFORE BEGINNING! YOU MAY WORK WITH A PARTNER ON THIS ACTIVITY, BUT YOU MUST COMPLETE YOUR OWN LAB SHEET! Plants are incredible organisms!

More information

TREE STRUCTURE AND BIOLOGY

TREE STRUCTURE AND BIOLOGY TREE STRUCTURE AND BIOLOGY Introduction. Sarasota County lies along a transient tension zone line. In this region, climate cycles cause periods of warmer weather, when normally tropical trees find their

More information

Overview. Suggested Lesson Please see the Greenlinks Module description.

Overview. Suggested Lesson Please see the Greenlinks Module description. Overview Plants interact with their environment in many ways that we cannot see. Children often enjoy learning about these hidden secrets of plant life. In this lesson, children will learn about role of

More information

Cellular Respiration: Practice Questions #1

Cellular Respiration: Practice Questions #1 Cellular Respiration: Practice Questions #1 1. Which statement best describes one of the events taking place in the chemical reaction? A. Energy is being stored as a result of aerobic respiration. B. Fermentation

More information

ATOMS AND BONDS. Bonds

ATOMS AND BONDS. Bonds ATOMS AND BONDS Atoms of elements are the simplest units of organization in the natural world. Atoms consist of protons (positive charge), neutrons (neutral charge) and electrons (negative charge). The

More information

4. Biology of the Cell

4. Biology of the Cell 4. Biology of the Cell Our primary focus in this chapter will be the plasma membrane and movement of materials across the plasma membrane. You should already be familiar with the basic structures and roles

More information

And the Green Grass Grew All Around and Around, the Green Grass Grew All. Evolution of Plants

And the Green Grass Grew All Around and Around, the Green Grass Grew All. Evolution of Plants And the Green Grass Grew All Around and Around, the Green Grass Grew All Around Evolution of Plants Adapting to Terrestrial Living Plants are complex multicellular organisms that are autotrophs they feed

More information

Cell and Membrane Practice. A. chromosome B. gene C. mitochondrion D. vacuole

Cell and Membrane Practice. A. chromosome B. gene C. mitochondrion D. vacuole Name: ate: 1. Which structure is outside the nucleus of a cell and contains N?. chromosome. gene. mitochondrion. vacuole 2. potato core was placed in a beaker of water as shown in the figure below. Which

More information

Photosynthesis Chapter 8 E N E R G Y T O M A K E F O O D?

Photosynthesis Chapter 8 E N E R G Y T O M A K E F O O D? Photosynthesis Chapter 8 H O W D O E S T H E P L A N T U S E T H E S U N S E N E R G Y T O M A K E F O O D? http://www.youtube.com/watch?v=pe82qtkssh4 Autotroph vs. Heterotroph Autotrophs/Producers-organisms

More information