proveeks_bilag.out The SAS System 22:27 Thursday, November 27, Source DF Squares Square F Value Pr > F


 Willa Banks
 3 years ago
 Views:
Transcription
1 The SAS System 22:27 Thursday, November 27, Model <.0001 Error Corrected Total Root MSE RSquare Dependent Adj RSq Coeff Var Intercept OMS <.0001 KONK NYPR Nypr_Oms The SAS System 22:27 Thursday, November 27, Dependent Variable: uhatsq Model <.0001 Error Corrected Total Root MSE RSquare Dependent Adj RSq Coeff Var Intercept OMS KONK NYPR Nypr_Oms Oms Oms_Konk Nypr_oms Nypr_Konk Nypr_Oms_Konk konk The SAS System 22:27 Thursday, November 27, Model <.0001 Corrected Total
2 Root MSE RSquare Dependent Adj RSq Coeff Var Intercept OMS <.0001 KONK NYPR Nypr_Oms The SAS System 22:27 Thursday, November 27, Model Root MSE RSquare Dependent Adj RSq Coeff Var Intercept <.0001 TOms TKonk TNypr NYPR The SAS System 22:27 Thursday, November 27, NOTE: No intercept in model. RSquare is redefined. Model <.0001 Error Uncorrected Total Root MSE RSquare Dependent Adj RSq Coeff Var OMS <.0001 KONK The SAS System 22:27 Thursday, November 27,
3 Model Error Root MSE RSquare Dependent Adj RSq Coeff Var Intercept <.0001 TKonk The SAS System 22:27 Thursday, November 27, Model <.0001 Corrected Total Root MSE RSquare Dependent Adj RSq Coeff Var Intercept OMS <.0001 KONK NYPR Nypr_Oms The SAS System 22:27 Thursday, November 27, Consistent Covariance of Estimates Variable Intercept OMS KONK NYPR Nypr_Oms Intercept OMS E KONK E NYPR Nypr_Oms The SAS System 22:27 Thursday, November 27, Model
4 Root MSE RSquare Dependent Adj RSq Coeff Var Intercept <.0001 TOms TKonk TNypr NYPR The SAS System 22:27 Thursday, November 27, Consistent Covariance of Estimates Variable Intercept TOms TKonk TNypr NYPR Intercept E TOms TKonk E TNypr NYPR The SAS System 22:27 Thursday, November 27, Model Error Root MSE RSquare Dependent Adj RSq Coeff Var Intercept <.0001 k_m k_m k_p k_p The SAS System 22:27 Thursday, November 27, Test 1 Results for Dependent Variable TPrmres Source DF Square F Value Pr > F Numerator Denominator The SAS System 22:27 Thursday, November 27, NOTE: No intercept in model. RSquare is redefined.
5 Model <.0001 Error Uncorrected Total Root MSE RSquare Dependent Adj RSq Coeff Var OMS <.0001 d_m d_m d_p d_p The SAS System 22:27 Thursday, November 27, Test 1 Results for Dependent Variable PRMRES Source DF Square F Value Pr > F Numerator Denominator
Source DF Squares Square F Value Pr > F Model 4 18106 4526.41616 54.70 <.0001 Error 245 20273 82.74845 Corrected Total 249 38379
The SAS System 09:43 Thursday, April 28, 2005 1 The MEANS Procedure Variable N Minimum Maximum Std Dev Median ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
More informationOutline. Topic 4  Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4  Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test  Fall 2013 R 2 and the coefficient of correlation
More informationData Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression
Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction
More informationRandom effects and nested models with SAS
Random effects and nested models with SAS /************* classical2.sas ********************* Three levels of factor A, four levels of B Both fixed Both random A fixed, B random B nested within A ***************************************************/
More informationCalifornia SCHIP Caregivers Perceptions of Dental Care
California SCHIP Caregivers Perceptions of Dental Care J.J. CRALL, C UCLA / MCHB National Oral Health Policy Center, LA, CA J. BROWN, RAND Survey Research Group, Santa Monica, CA L.U. BROWN, Managed Risk
More informationGetting Correct Results from PROC REG
Getting Correct Results from PROC REG Nathaniel Derby, Statis Pro Data Analytics, Seattle, WA ABSTRACT PROC REG, SAS s implementation of linear regression, is often used to fit a line without checking
More informationARKANSAS PUBLIC SERVICE COMMISSYF cc7 DOCKET NO. 001 90U IN THE MATTER OF ON THE DEVELOPMENT OF COMPETITION IF ANY, ON RETAIL CUSTOMERS
ARKANSAS PUBLIC SERVICE COMMISSYF cc7 L I :b; Ir '3, :I: 36 DOCKET NO. 001 90U 1.. T 3.  " ~...ij IN THE MATTER OF A PROGRESS REPORT TO THE GENERAL ASSEMBLY ON THE DEVELOPMENT OF COMPETITION IN ELECTRIC
More information1.1. Simple Regression in Excel (Excel 2010).
.. Simple Regression in Excel (Excel 200). To get the Data Analysis tool, first click on File > Options > AddIns > Go > Select Data Analysis Toolpack & Toolpack VBA. Data Analysis is now available under
More information6 Variables: PD MF MA K IAH SBS
options pageno=min nodate formdlim=''; title 'Canonical Correlation, Journal of Interpersonal Violence, 10: 354366.'; data SunitaPatel; infile 'C:\Users\Vati\Documents\StatData\Sunita.dat'; input Group
More informationAn Introduction to Statistical Tests for the SAS Programmer Sara Beck, Fred Hutchinson Cancer Research Center, Seattle, WA
ABSTRACT An Introduction to Statistical Tests for the SAS Programmer Sara Beck, Fred Hutchinson Cancer Research Center, Seattle, WA Often SAS Programmers find themselves in situations where performing
More informationDetecting Email Spam. MGS 8040, Data Mining. Audrey Gies Matt Labbe Tatiana Restrepo
Detecting Email Spam MGS 8040, Data Mining Audrey Gies Matt Labbe Tatiana Restrepo 5 December 2011 INTRODUCTION This report describes a model that may be used to improve likelihood of recognizing undesirable
More informationMEAN SEPARATION TESTS (LSD AND Tukey s Procedure) is rejected, we need a method to determine which means are significantly different from the others.
MEAN SEPARATION TESTS (LSD AND Tukey s Procedure) If Ho 1 2... n is rejected, we need a method to determine which means are significantly different from the others. We ll look at three separation tests
More informationTopic 3. Chapter 5: Linear Regression in Matrix Form
Topic Overview Statistics 512: Applied Linear Models Topic 3 This topic will cover thinking in terms of matrices regression on multiple predictor variables case study: CS majors Text Example (NKNW 241)
More informationBasic Statistical and Modeling Procedures Using SAS
Basic Statistical and Modeling Procedures Using SAS OneSample Tests The statistical procedures illustrated in this handout use two datasets. The first, Pulse, has information collected in a classroom
More informationORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS
ORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS Many treatments are equally spaced (incremented). This provides us with the opportunity to look at the response curve
More informationECON 142 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE #2
University of California, Berkeley Prof. Ken Chay Department of Economics Fall Semester, 005 ECON 14 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE # Question 1: a. Below are the scatter plots of hourly wages
More informationADVANCED FORECASTING MODELS USING SAS SOFTWARE
ADVANCED FORECASTING MODELS USING SAS SOFTWARE Girish Kumar Jha IARI, Pusa, New Delhi 110 012 gjha_eco@iari.res.in 1. Transfer Function Model Univariate ARIMA models are useful for analysis and forecasting
More informationI n d i a n a U n i v e r s i t y U n i v e r s i t y I n f o r m a t i o n T e c h n o l o g y S e r v i c e s
I n d i a n a U n i v e r s i t y U n i v e r s i t y I n f o r m a t i o n T e c h n o l o g y S e r v i c e s Linear Regression Models for Panel Data Using SAS, Stata, LIMDEP, and SPSS * Hun Myoung Park,
More informationABSTRACT INTRODUCTION READING THE DATA SESUG 2012. Paper PO14
SESUG 2012 ABSTRACT Paper PO14 Spatial Analysis of Gastric Cancer in Costa Rica using SAS So Young Park, North Carolina State University, Raleigh, NC Marcela AlfaroCordoba, North Carolina State University,
More informationThis can dilute the significance of a departure from the null hypothesis. We can focus the test on departures of a particular form.
OneDegreeofFreedom Tests Test for group occasion interactions has (number of groups 1) number of occasions 1) degrees of freedom. This can dilute the significance of a departure from the null hypothesis.
More informationIAPRI Quantitative Analysis Capacity Building Series. Multiple regression analysis & interpreting results
IAPRI Quantitative Analysis Capacity Building Series Multiple regression analysis & interpreting results How important is Rsquared? Rsquared Published in Agricultural Economics 0.45 Best article of the
More informationPredicting the US Presidential Approval and Applying the Model to Foreign Countries.
Predicting the US Presidential Approval and Applying the Model to Foreign Countries. Author: Daniel Mariani Date: May 01, 2013 Thesis Advisor: Dr. Samanta ABSTRACT Economic factors play a significant,
More informationAssessing the Relationship Between Online Job Postings and Total Hires and Education Levels in Arizona Aruna Murthy Dan Bache Benjamin Fa anunu
Assessing the Relationship Between Online Job Postings and Total Hires and Education Levels in Arizona Aruna Murthy Dan Bache Benjamin Fa anunu Help Wanted Online (HWOL) HWOL data series from the Conference
More informationLab 5 Linear Regression with Withinsubject Correlation. Goals: Data: Use the pig data which is in wide format:
Lab 5 Linear Regression with Withinsubject Correlation Goals: Data: Fit linear regression models that account for withinsubject correlation using Stata. Compare weighted least square, GEE, and random
More informationChapter 4 and 5 solutions
Chapter 4 and 5 solutions 4.4. Three different washing solutions are being compared to study their effectiveness in retarding bacteria growth in five gallon milk containers. The analysis is done in a laboratory,
More informationDepartment of Economics Session 2012/2013. EC352 Econometric Methods. Solutions to Exercises from Week 10 + 0.0077 (0.052)
Department of Economics Session 2012/2013 University of Essex Spring Term Dr Gordon Kemp EC352 Econometric Methods Solutions to Exercises from Week 10 1 Problem 13.7 This exercise refers back to Equation
More informationEvaluation of Correlation between WithinBarn Curing Environment and TSNA Accumulation in Dark AirCured Tobacco
Evaluation of Correlation between WithinBarn Curing Environment and TSNA Accumulation in Dark AirCured Tobacco Preliminary Study Grant Report CORESTA TSNA SubGroup M.D. Richmond, W.A. Bailey, R.C. Pearce
More informationxtmixed & denominator degrees of freedom: myth or magic
xtmixed & denominator degrees of freedom: myth or magic 2011 Chicago Stata Conference Phil Ender UCLA Statistical Consulting Group July 2011 Phil Ender xtmixed & denominator degrees of freedom: myth or
More informationOutline. Session A: Various Definitions. 1. Basics of Path Diagrams and Path Analysis
Session A: Basics of Structural Equation Modeling and The Mplus Computer Program Kevin Grimm University of California, Davis June 9, 008 Outline Basics of Path Diagrams and Path Analysis Regression and
More informationExperimental Design for Influential Factors of Rates on Massive Open Online Courses
Experimental Design for Influential Factors of Rates on Massive Open Online Courses December 12, 2014 Ning Li nli7@stevens.edu Qing Wei qwei1@stevens.edu Yating Lan ylan2@stevens.edu Yilin Wei ywei12@stevens.edu
More informationProbability Calculator
Chapter 95 Introduction Most statisticians have a set of probability tables that they refer to in doing their statistical wor. This procedure provides you with a set of electronic statistical tables that
More informationSAS Code to Select the Best Multiple Linear Regression Model for Multivariate Data Using Information Criteria
Paper SA01_05 SAS Code to Select the Best Multiple Linear Regression Model for Multivariate Data Using Information Criteria Dennis J. Beal, Science Applications International Corporation, Oak Ridge, TN
More informationInternational Statistical Institute, 56th Session, 2007: Phil Everson
Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA Email: peverso1@swarthmore.edu 1. Introduction
More informationLecture 15. Endogeneity & Instrumental Variable Estimation
Lecture 15. Endogeneity & Instrumental Variable Estimation Saw that measurement error (on right hand side) means that OLS will be biased (biased toward zero) Potential solution to endogeneity instrumental
More informationA Tutorial on the Piecewise Regression Approach Applied to Bedload Transport Data
A Tutorial on the Piecewise Regression Approach Applied to Bedload Transport Data Sandra E. Ryan Laurie S. Porth United States Department of Agriculture Forest Service General Technical Report RMRSGTR189
More information5. Linear Regression
5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4
More informationAddressing Alternative. Multiple Regression. 17.871 Spring 2012
Addressing Alternative Explanations: Multiple Regression 17.871 Spring 2012 1 Did Clinton hurt Gore example Did Clinton hurt Gore in the 2000 election? Treatment is not liking Bill Clinton 2 Bivariate
More informationNCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
More informationUnit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
More informationNew SAS Procedures for Analysis of Sample Survey Data
New SAS Procedures for Analysis of Sample Survey Data Anthony An and Donna Watts, SAS Institute Inc, Cary, NC Abstract Researchers use sample surveys to obtain information on a wide variety of issues Many
More informationMilk Data Analysis. 1. Objective Introduction to SAS PROC MIXED Analyzing protein milk data using STATA Refit protein milk data using PROC MIXED
1. Objective Introduction to SAS PROC MIXED Analyzing protein milk data using STATA Refit protein milk data using PROC MIXED 2. Introduction to SAS PROC MIXED The MIXED procedure provides you with flexibility
More informationCloud Computing Business Framework. Dr Victor Chang 25 th November 2014, Paris, France
Cloud Computing Business Framework Dr Victor Chang 25 th November 2014, Paris, France 1 Overview Cloud Computing Overview Cloud Computing Business Framework Classification / Organizational Sustainability
More informationCorrelation and Regression
Correlation and Regression Scatterplots Correlation Explanatory and response variables Simple linear regression General Principles of Data Analysis First plot the data, then add numerical summaries Look
More informationDETERMINANTS OF CAPITAL ADEQUACY RATIO IN SELECTED BOSNIAN BANKS
DETERMINANTS OF CAPITAL ADEQUACY RATIO IN SELECTED BOSNIAN BANKS Nađa DRECA International University of Sarajevo nadja.dreca@students.ius.edu.ba Abstract The analysis of a data set of observation for 10
More informationA Cohort Study of Trafficrelated Air Pollution and Mortality in Toronto, Canada: Online Appendix
A Cohort Study of Trafficrelated Air Pollution and Mortality in Toronto, Canada: Online Appendix Michael Jerrett, 1 Murray M. Finkelstein, 2 Jeff R. Brook, 3 M. Altaf Arain, 4 Palvos Kanaroglou, 4 Dave
More informationChapter 19 SplitPlot Designs
Chapter 19 SplitPlot Designs Splitplot designs are needed when the levels of some treatment factors are more difficult to change during the experiment than those of others. The designs have a nested
More informationNHTSA TIRE ROLLING RESISTANCE TEST DEVELOPMENT PROJECT PHASE I
NHTSA TIRE ROLLING RESISTANCE TEST DEVELOPMENT PROJECT PHASE I Dr. M. Kamel Salaani, Larry R. Evans, John R. Harris Transportation Research Center Inc. James D. MacIsaac Jr. U.S. Department of Transportation
More informationSPSS Guide: Regression Analysis
SPSS Guide: Regression Analysis I put this together to give you a stepbystep guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar
More informationLesson 1: Comparison of Population Means Part c: Comparison of Two Means
Lesson : Comparison of Population Means Part c: Comparison of Two Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
More informationMULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL. by Michael L. Orlov Chemistry Department, Oregon State University (1996)
MULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL by Michael L. Orlov Chemistry Department, Oregon State University (1996) INTRODUCTION In modern science, regression analysis is a necessary part
More information1 Simple Linear Regression I Least Squares Estimation
Simple Linear Regression I Least Squares Estimation Textbook Sections: 8. 8.3 Previously, we have worked with a random variable x that comes from a population that is normally distributed with mean µ and
More informationSurvival analysis methods in Insurance Applications in car insurance contracts
Survival analysis methods in Insurance Applications in car insurance contracts Abder OULIDI 12 JeanMarie MARION 1 Hérvé GANACHAUD 3 1 Institut de Mathématiques Appliquées (IMA) Angers France 2 Institut
More informationCredit Scoring and Disparate Impact
Credit Scoring and Disparate Impact Elaine Fortowsky Wells Fargo Home Mortgage & Michael LaCourLittle Wells Fargo Home Mortgage Conference Paper for Midyear AREUEA Meeting and Wharton/Philadelphia FRB
More informationDeveloping Risk Adjustment Techniques Using the SAS@ System for Assessing Health Care Quality in the lmsystem@
Developing Risk Adjustment Techniques Using the SAS@ System for Assessing Health Care Quality in the lmsystem@ Yanchun Xu, Andrius Kubilius Joint Commission on Accreditation of Healthcare Organizations,
More information1. The parameters to be estimated in the simple linear regression model Y=α+βx+ε ε~n(0,σ) are: a) α, β, σ b) α, β, ε c) a, b, s d) ε, 0, σ
STA 3024 Practice Problems Exam 2 NOTE: These are just Practice Problems. This is NOT meant to look just like the test, and it is NOT the only thing that you should study. Make sure you know all the material
More information25 Working with categorical data and factor variables
25 Working with categorical data and factor variables Contents 25.1 Continuous, categorical, and indicator variables 25.1.1 Converting continuous variables to indicator variables 25.1.2 Converting continuous
More informationMultiple Linear Regression
Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is
More informationVI. Introduction to Logistic Regression
VI. Introduction to Logistic Regression We turn our attention now to the topic of modeling a categorical outcome as a function of (possibly) several factors. The framework of generalized linear models
More informationMULTIPLE REGRESSION EXAMPLE
MULTIPLE REGRESSION EXAMPLE For a sample of n = 166 college students, the following variables were measured: Y = height X 1 = mother s height ( momheight ) X 2 = father s height ( dadheight ) X 3 = 1 if
More information[This document contains corrections to a few typos that were found on the version available through the journal s web page]
Online supplement to Hayes, A. F., & Preacher, K. J. (2014). Statistical mediation analysis with a multicategorical independent variable. British Journal of Mathematical and Statistical Psychology, 67,
More informationMulticollinearity Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015
Multicollinearity Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015 Stata Example (See appendices for full example).. use http://www.nd.edu/~rwilliam/stats2/statafiles/multicoll.dta,
More informationThe Relationship Between Rodent Offspring Blood Lead Levels and Maternal Diet
The Relationship Between Rodent Offspring Blood Lead Levels and Maternal Diet Allison Crawford, Xiahong Li, Mira Shapiro 1, Ruitao Zhang Introduction A study was undertaken to understand the effect of
More informationTopic 9. Factorial Experiments [ST&D Chapter 15]
Topic 9. Factorial Experiments [ST&D Chapter 5] 9.. Introduction In earlier times factors were studied one at a time, with separate experiments devoted to each factor. In the factorial approach, the investigator
More informationStat 5303 (Oehlert): Tukey One Degree of Freedom 1
Stat 5303 (Oehlert): Tukey One Degree of Freedom 1 > catch
More informationMultiple Linear Regression in Data Mining
Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple
More informationThe importance of graphing the data: Anscombe s regression examples
The importance of graphing the data: Anscombe s regression examples Bruce Weaver Northern Health Research Conference Nipissing University, North Bay May 3031, 2008 B. Weaver, NHRC 2008 1 The Objective
More informationInteraction effects between continuous variables (Optional)
Interaction effects between continuous variables (Optional) Richard Williams, University of Notre Dame, http://www.nd.edu/~rwilliam/ Last revised February 0, 05 This is a very brief overview of this somewhat
More information1) (3) + (6) = 2) (2) + (5) = 3) (7) + (1) = 4) (3)  (6) = 5) (+2)  (+5) = 6) (7)  (4) = 7) (5)(4) = 8) (3)(6) = 9) (1)(2) =
Extra Practice for Lesson Add or subtract. ) (3) + (6) = 2) (2) + (5) = 3) (7) + () = 4) (3)  (6) = 5) (+2)  (+5) = 6) (7)  (4) = Multiply. 7) (5)(4) = 8) (3)(6) = 9) ()(2) = Division is
More informationLecture 11: Confidence intervals and model comparison for linear regression; analysis of variance
Lecture 11: Confidence intervals and model comparison for linear regression; analysis of variance 14 November 2007 1 Confidence intervals and hypothesis testing for linear regression Just as there was
More informationDomain of a Composition
Domain of a Composition Definition Given the function f and g, the composition of f with g is a function defined as (f g)() f(g()). The domain of f g is the set of all real numbers in the domain of g such
More informationAugust 2012 EXAMINATIONS Solution Part I
August 01 EXAMINATIONS Solution Part I (1) In a random sample of 600 eligible voters, the probability that less than 38% will be in favour of this policy is closest to (B) () In a large random sample,
More informationEstimation of σ 2, the variance of ɛ
Estimation of σ 2, the variance of ɛ The variance of the errors σ 2 indicates how much observations deviate from the fitted surface. If σ 2 is small, parameters β 0, β 1,..., β k will be reliably estimated
More informationDecision Models for Comparative Usability Evaluation of Mobile Phones Using the Mobile Phone Usability Questionnaire (MPUQ)
Vol. 3, Issue 1, November 2007, pp. 2439 Decision Models for Comparative Usability Evaluation of Mobile Phones Using the Mobile Phone Usability Questionnaire (MPUQ) Young Sam Ryu Ingram School of Engineering
More informationHandling missing data in Stata a whirlwind tour
Handling missing data in Stata a whirlwind tour 2012 Italian Stata Users Group Meeting Jonathan Bartlett www.missingdata.org.uk 20th September 2012 1/55 Outline The problem of missing data and a principled
More informationInvestment Statistics: Definitions & Formulas
Investment Statistics: Definitions & Formulas The following are brief descriptions and formulas for the various statistics and calculations available within the ease Analytics system. Unless stated otherwise,
More informationTesting for Lack of Fit
Chapter 6 Testing for Lack of Fit How can we tell if a model fits the data? If the model is correct then ˆσ 2 should be an unbiased estimate of σ 2. If we have a model which is not complex enough to fit
More informationFINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x
More informationAre We Ricardian? Evidence from U.S. Counties Kathleen Niple, Elon University
Are We Ricardian? Evidence from U.S. Counties Kathleen Niple, Elon University The national debt of the United States is the total of all the obligations of the Treasury to pay money to the federal government's
More informationMODEL I: DRINK REGRESSED ON GPA & MALE, WITHOUT CENTERING
Interpreting Interaction Effects; Interaction Effects and Centering Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised February 20, 2015 Models with interaction effects
More informationConjoint Analysis. Warren F. Kuhfeld. Abstract
Conjoint Analysis Warren F. Kuhfeld Abstract Conjoint analysis is used to study consumers product preferences and simulate consumer choice. This chapter describes conjoint analysis and provides examples
More informationThe Numbers Behind the MLB Anonymous Students: AD, CD, BM; (TF: Kevin Rader)
The Numbers Behind the MLB Anonymous Students: AD, CD, BM; (TF: Kevin Rader) Abstract This project measures the effects of various baseball statistics on the win percentage of all the teams in MLB. Data
More informationMultiple Optimization Using the JMP Statistical Software Kodak Research Conference May 9, 2005
Multiple Optimization Using the JMP Statistical Software Kodak Research Conference May 9, 2005 Philip J. Ramsey, Ph.D., Mia L. Stephens, MS, Marie Gaudard, Ph.D. North Haven Group, http://www.northhavengroup.com/
More informationWinter Impacts of Energy Efficiency In New England
Winter Impacts of Energy Efficiency In New England April 2015 Investments in electric efficiency since 2000 reduced electric demand in New England by over 2 gigawatts. 1 These savings provide significant
More informationALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola
More informationAlgebra Practice Problems for Precalculus and Calculus
Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials
More informationIntroduction to Design and Analysis of Experiments with the SAS System (Stat 7010 Lecture Notes)
Introduction to Design and Analysis of Experiments with the SAS System (Stat 7010 Lecture Notes) Asheber Abebe Discrete and Statistical Sciences Auburn University Contents 1 Completely Randomized Design
More informationModeration. Moderation
Stats  Moderation Moderation A moderator is a variable that specifies conditions under which a given predictor is related to an outcome. The moderator explains when a DV and IV are related. Moderation
More informationMultiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.
Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.
More informationChapter 3 Quantitative Demand Analysis
Managerial Economics & Business Strategy Chapter 3 uantitative Demand Analysis McGrawHill/Irwin Copyright 2010 by the McGrawHill Companies, Inc. All rights reserved. Overview I. The Elasticity Concept
More informationThe Impact of Pell Grants on Academic Outcomes for LowIncome California Community College Students
Research Brief The Impact of Pell Grants on Academic Outcomes for LowIncome California Community College Students By Jennie H. Woo This is the fifth in a series of MPR Research Briefs published on the
More informationStudents will benefit from pencils with erasers, if possible since revisions are part of learning.
Suggestions and/or Directions for Implementing Extended Concept (2) Activities Students will benefit from pencils with erasers, if possible since revisions are part of learning. Students should be allowed
More informationExponential and Logarithmic Functions
Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,
More informationMISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group
MISSING DATA TECHNIQUES WITH SAS IDRE Statistical Consulting Group ROAD MAP FOR TODAY To discuss: 1. Commonly used techniques for handling missing data, focusing on multiple imputation 2. Issues that could
More informationElementary Statistics Sample Exam #3
Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to
More informationThe Latent Variable Growth Model In Practice. Individual Development Over Time
The Latent Variable Growth Model In Practice 37 Individual Development Over Time y i = 1 i = 2 i = 3 t = 1 t = 2 t = 3 t = 4 ε 1 ε 2 ε 3 ε 4 y 1 y 2 y 3 y 4 x η 0 η 1 (1) y ti = η 0i + η 1i x t + ε ti
More informationSection 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
More informationAssessing Model Fit and Finding a Fit Model
Paper 21429 Assessing Model Fit and Finding a Fit Model Pippa Simpson, University of Arkansas for Medical Sciences, Little Rock, AR Robert Hamer, University of North Carolina, Chapel Hill, NC ChanHee
More informationCalculating VaR. Capital Market Risk Advisors CMRA
Calculating VaR Capital Market Risk Advisors How is VAR Calculated? Sensitivity Estimate Models  use sensitivity factors such as duration to estimate the change in value of the portfolio to changes in
More information