Chapter 7 The Prime Number Theorem


 Grant Fitzgerald
 1 years ago
 Views:
Transcription
1 Chapter 7 The Prime Number Theorem In this final chapter we will take advantage of an opportunity to apply many of the ideas and results from earlier chapters in order to give an analytic proof of the famous prime number theorem: If π(x) is the number of primes less than or equal to x, then x π(x)lnx asx.that is, π(x) is asymptotically equal to x/ ln x as x. (In the sequel, prime will be taken to mean positive prime.) Perhaps the first recorded property of π(x) is that π(x) as x, in other words, the number of primes is infinite.this appears in Euclid s Elements.A more precise result that was established much later by Euler (737) is that the series of reciprocals of the prime numbers, , is a divergent series.this can be interpreted in a certain sense as a statement about how fast π(x) as x.later, near the end of the 8th century, mathematicians, including Gauss and Legendre, through mainly empirical considerations, put forth conectures that are equivalent to the above statement of the prime number theorem (PNT).However, it was not until nearly years later, after much effort by numerous 9th century mathematicians, that the theorem was finally established (independently) by Hadamard and de la Vallée Poussin in 896.The quest for a proof led Riemann, for example, to develop complex variable methods to attack the PNT and related questions. In the process, he made a remarkable and as yet unresolved conecture known as the Riemann hypothesis, whose precise statement will be given later.now it is not clear on the surface that there is a connection between complex analysis and the distribution of prime numbers.but in fact, every proof of the PNT dating from Hadamard and de la Vallée Poussin, up to 949 when P.Erdös and A.Selberg succeeded in finding elementary proofs, has used the methods of complex variables in an essential way.in 98, D.J. Newman published a new proof of the PNT which, although still using complex analysis, nevertheless represents a significant simplification of previous proofs.it is Newman s proof, as modified by J.Korevaar, that we present in this chapter. There are a number of preliminaries that must be dealt with before Newman s method can be applied to produce the theorem.the proof remains far from trivial but the steps
2 2 CHAPTER 7. THE PRIME NUMBER THEOREM along the way are of great interest and importance in themselves.we begin by introducing the Riemann zeta function, which arises via Euler s product formula and forms a key link between the sequence of prime numbers and the methods of complex variables. 7. The Riemann Zeta function The Riemann zeta function is defined by ζ(z) = where n z = e z ln n.since n z = n Re z, the given series converges absolutely on Re z> and uniformly on {z :Rez +δ} for every δ>.let p,p 2,p 3,... be the sequence 2,3,5,... of prime numbers and note that for =, 2,... and Re z>, we have n= /p z =+ p z Now consider the partial product m m p z = + = =( p z n z + p 2z +. + p 2z + ). By multiplying the finitely many absolutely convergent series on the right together, rearranging, and applying the fundamental theorem of arithmetic, we find that the product is the same as the sum n P m n, where P z m consists of along with those positive integers whose prime factorization uses only primes from the set {p,...,p m }.Therefore We now state this formally. = p z 7.. Euler s Product formula = n=, Re z>. nz For Re z>, the Riemann zeta function ζ(z) = n= /nz is given by the product ( ) p z = where {p } is the (increasing) sequence of prime numbers. The above series and product converge uniformly on compact subsets of Re z>, hence ζ is analytic on Re z >.Furthermore, the product representation of ζ shows that ζ has no zeros in Re z> (Theorem 6..7). Our proof of the PNT requires a number of additional properties of ζ.the first result is concerned with extending ζ to a region larger than Re z>.
3 7.. THE RIEMANN ZETA FUNCTION Extension Theorem for Zeta The function ζ(z) /(z ) has an analytic extension to the right half plane Re z>. Thus ζ has an analytic extension to {z :Rez>,z } and has a simple pole with residue at z =. Proof.For Re z>, apply the summation by parts formula (Problem 2.2.7) with a n = n and b n =/n z to obtain Thus But k n= [ n (n +) z n z ] k + (n +) z = n= [ n (n +) z ] n z = nz = k k z (n +) z. k k z n+ n n= [ n n= t z dt = z (n +) z n z n+ where [t] is the largest integer less than or equal to t.hence we have k n= k n z =+ (n +) z = k k z + z n= Letting k, we obtain the integral formula ζ(z) =z = k z + z n= k for Re z>.consider, however, the closely related integral z tt z dt = z Combining this with () we can write ζ(z) z =+z n n+ n [t]t z dt. ]. [t]t z dt [t]t z dt [t]t z dt () t z dt = z z =+ z. ([t] t)t z dt. Now fix k> and consider the integral k ([t] t)t z dt. By (3.3.3), this integral is an entire function of z.furthermore, if Re z>, then k ([t] t)t z dt k t Re(z+) dt t Re z dt = Re z.
4 4 CHAPTER 7. THE PRIME NUMBER THEOREM This implies that the sequence f k (z) = k ([t] t)t z dt of analytic functions on Re z> is uniformly bounded on compact subsets. Hence by Vitali s theorem (5..4), the limit function f(z) = ([t] t)t z dt (as the uniform limit on compact subsets of Re z>) is analytic, and thus the function +z ([t] t)t z dt is also analytic on Re z>.but this function agrees with ζ(z) z for Re z>, and consequently provides the required analytic extension of ζ to Re z >.This completes the proof of the theorem. We have seen that Euler s formula (7..) implies that ζ has no zeros in the half plane Re z>, but how about zeros of (the extension of) ζ in < Re z? The next theorem asserts that ζ has no zeros on the line Re z =.This fact is crucial to our proof of the PNT. 7..3Theorem The Riemann zeta function has no zeros on Re z =,so(z )ζ(z) is analytic and zerofree on a neighborhood of Re z. Proof.Fix a real number y and consider the auxiliary function = h(x) =ζ 3 (x)ζ 4 (x + iy)ζ(x + i2y) for x real and x>.by Euler s product formula, if Re z> then ln ζ(z) = ln p z = Re Log( p z )=Re = = n= n p nz where we have used the expansion Log( w) = n= wn /n, valid for w <.Hence ln h(x) =3ln ζ(x) +4ln ζ(x + iy) +ln ζ(x + i2y) =3Re = = n= +Re = n= n p nx n p nx = n= But p iny = e iny and p i2ny form +4Re n p nx i2ny Re(3 + 4p iny = n= n p nx iny + p i2ny ). = e i2ny.thus Re(3 + 4p iny 3+4cosθ + cos 2θ =3+4cosθ + 2 cos 2 θ = 2( + cos θ) 2. + p i2ny ) has the
5 7.. THE RIEMANN ZETA FUNCTION 5 Therefore ln h(x) and consequently h(x) = ζ 3 (x) ζ 4 (x + iy) ζ(x + i2y). Thus h(x) x = (x )ζ(x) 3 ζ(x + iy) x 4 ζ(x + i2y) x. But if ζ(+iy) =, then the left hand side of this inequality would approach a finite limit ζ ( + iy) 4 ζ( + i2y) as x + since ζ has a simple pole at with residue.however, the right hand side of the inequality contradicts this.we conclude that ζ( + iy). Since y is an arbitrary nonzero real number, ζ has no zeros on Re z =. Remark The ingenious introduction of the auxiliary function h is due to Mertens (898).We now have shown that any zeros of ζ in Re z > must lie in the strip < Re z <. The study of the zeros of ζ has long been the subect of intensive investigation by many mathematicians.riemann had stated in his seminal 859 paper that he considered it very likely that all the zeros of ζ in the above strip, called the critical strip, lie on the line Re z = /2.This assertion is now known as the Riemann hypothesis, and remains as yet unresolved.however, a great deal is known about the distribution of the zeros of ζ in the critical strip, and the subect continues to capture the attention of eminent mathematicians.to state ust one such result, G.H.Hardy proved in 95 that ζ has infinitely many zeros on the line Re z = /2.Those interested in learning more about this fascinating subect may consult, for example, the book Riemann s Zeta Function by H.M. Edwards. Another source is We turn next to zeta s logarithmic derivative ζ /ζ, which we know is analytic on Re z >. In fact, more is true, for by (7..3), ζ /ζ is analytic on a neighborhood of {z :Rez and z }.Since ζ has a simple pole at z =,sodoesζ /ζ, with residue Res(ζ /ζ, ) =. [See the proof of (4.2.7).] We next obtain an integral representation for ζ /ζ that is similar to the representation () above for ζ. [See the proof of (7..2).] But first, we must introduce the von Mangoldt function Λ, which is defined by { if n = p m for some m, Λ(n) = otherwise. Thus Λ(n) islnp if n is a power of the prime p, and is if not.next define ψ on x by ψ(x) = n x Λ(n). (2) An equivalent expression for ψ is ψ(x) = p x m p (x)lnp,
6 6 CHAPTER 7. THE PRIME NUMBER THEOREM where the sum is over primes p x and m p (x) is the largest integer such that p mp(x) x. (For example, ψ(.4) = 3 ln ln [ 3 + ln ] 5 + ln 7.) Note that p mp(x) x iff m p (x)lnp ln x iff m p (x) ln x.thus m ln x p(x) = where as before, [ ] denotes the greatest integer function.the function ψ will be used to obtain the desired integral representation for ζ /ζ Theorem For Re z>, ζ (z) ζ(z) = z ψ(t)t z dt (3) where ψ is defined as above. Proof.In the formulas below, p and q range over primes.if Re z>, we have ζ(z) = p ( p z ) by (7..), hence ζ (z) = p = ζ(z) p = ζ(z) p p z ( p z ) 2 q z q p p z ( p z ) 2 ( p z ) p z p z. Thus ζ (z) ζ(z) = p p z p z = p p nz. n= The iterated sum is absolutely convergent for Re z>, so it can be rearranged as a double sum (p,n),n (p n ) z = k z k where k = p n for some n.consequently, ζ (z) ζ(z) = k z Λ(k) = k z (ψ(k) ψ(k )) k= by the definitions of Λ and ψ.but using partial summation once again we obtain, with a k = k z,b k+ = ψ(k), and b = ψ() = in Problem 2.2.7, k= k= M M k z (ψ(k) ψ(k )) = ψ(m)(m +) z + ψ(k)(k z (k +) z ). k=
7 7.2. AN EQUIVALENT VERSION OF THE PRIME NUMBER THEOREM 7 Now from the definition (2) of ψ(x) wehaveψ(x) x ln x, so if Rez > wehave ψ(m)(m +) z asm.moreover, we can write M M ψ(k)(k z (k +) z )= ψ(k)z k= = = z k= M z k= k M k+ k+ k t z dt ψ(t)t z dt ψ(t)t z dt because ψ is constant on each interval [k, k + ).Taking limits as M, we finally get ζ (z) ζ(z) = z ψ(t)t z dt, Re z>. 7.2 An Equivalent Version of the Prime Number Theorem The function ψ defined in (2) above provides yet another connection, through (3), between the Riemann zeta function and properties of the prime numbers.the integral that appears in (3) is called the Mellin transform of ψ and is studied in its own right.we next establish a reduction, due to Chebyshev, of the prime number theorem to a statement involving the function ψ Theorem The prime number theorem holds, that is, x π(x)lnx, iff x ψ(x) asx. Proof.Recall that ψ(x) = [ ] ln x p x ln x () p x =lnx p x = (ln x)π(x).
8 8 CHAPTER 7. THE PRIME NUMBER THEOREM However, if <y<x, then π(x) =π(y)+ π(y)+ <y+ ln y y<p x y<p x y<p x y + ln y ψ(x). ln y (2) Now take y = x/(ln x) 2 in (2), and we get π(x) x (ln x) 2 + ln x 2lnlnx ψ(x). Thus π(x) ln x x ln x + ln x ψ(x) ln x 2lnlnx x. (3) It now follows from () and (3) that ψ(x) x ln x x π(x) ln x + ln x ψ(x) ln x 2lnlnx x and from this we can see that x ψ(x) iffx π(x)lnx asx. The goal will now be to show that ψ(x)/x asx.a necessary intermediate step for our proof is to establish the following weaker estimate on the asymptotic behavior of ψ(x) Lemma There exists C> such that ψ(x) Cx, x >.For short, ψ(x) =O(x). Proof.Again recall that ψ(x) = p x [ ln x ]lnp, x >.Fix x> and let m be an integer such that 2 m <x 2 m+.then ψ(x) =ψ(2 m )+ψ(x) ψ(2 m ) ψ(2 m )+ψ(2 m+ ) ψ(2 m ) = [ ] ln 2 m + p 2 m Consider, for any positive integer n, n<p 2n =ln 2 m <p 2 m+ n<p 2n p. [ ln 2 m+ ].
9 7.3. PROOF OF THE PRIME NUMBER THEOREM 9 Now for any prime p such that n<p 2n, p divides (2n)!/n! =n! ( ) 2n n.since such a p does not divide n!, it follows that p divides ( ) 2n n.hence ( ) 2n p < (+) 2n =2 2n, n n<p 2n and we arrive at n<p 2n <2n ln 2. Therefore m = m < 2 k ln 2 < 2 m+ ln 2 p 2 m k= 2 k <p 2 k k= and <2 m+ ln 2. 2 m <p 2 m+ [ ] ln x But if p x is such that >, then ln x 2 and hence x p2 so that x p. Thus those terms in the sum [ ] [ ] ln x ln x p x where > occur only when p x, and the sum of terms of this form contribute no more than ln x = π( x)lnx. p x It follows from the above discussion that if 2 m <x 2 m+, then ψ(x) 2 m+ ln2+2 m+ ln 2 + π( x)lnx =2 m+2 ln 2 + π( x)lnx < 4x ln 2 + π( x)lnx 4x ln 2 + x ln x =(4ln2+ ln x)x. x Since x ln x asx, we conclude that ψ(x) =O(x), which proves the lemma. 7.3Proof of the Prime Number Theorem Our approach to the prime number theorem has been along traditional lines, but at this stage we will apply D.J. Newman s method (Simple Analytic Proof of the Prime Number Theorem, American Math.Monthly 87 (98), ) as modified by J.Korevaar (On
10 CHAPTER 7. THE PRIME NUMBER THEOREM Newman s Quick Way to the Prime Number Theorem, Math.Intelligencer 4 (982), 85).Korevaar s approach is to apply Newman s ideas to obtain properties of certain Laplace integrals that lead to the prime number theorem. Our plan is to deduce the prime number theorem from a Tauberian theorem (7.3.) and its corollary (7.3.2). Then we will prove (7.3.) and (7.3.2) Auxiliary Tauberian Theorem Let F be bounded and piecewise continuous on [, + ), so that its Laplace transform G(z) = F (t)e zt dt exists and is analytic on Re z>.assume that G has an analytic extension to a neighborhood of the imaginary axis, Re z =.Then F (t) dt exists as an improper integral and is equal to G().[In fact, F (t)e iyt dt converges for every y R to G(iy).] Results like (7.3.) are named for A. Tauber, who is credited with proving the first theorem of this type near the end of the 9th century.the phrase Tauberian theorem was coined by G.H. Hardy, who along with J.E. Littlewood made a number of contributions in this area.generally, Tauberian theorems are those in which some type of ordinary convergence (e.g., convergence of F (t)e iyt dt for each y R), is deduced from some weaker type of convergence (e.g., convergence of F (t)e zt dt for each z with Re z > ) provided additional conditions are satisfied (e.g., G has an analytic extension to a neighborhood of each point on the imaginary axis).tauber s original theorem can be found in The Elements of Real Analysis by R.G. Bartle Corollary Let f be a nonnegative, piecewise continuous and nondecreasing function on [, ) such that f(x) = O(x).Then its Mellin transform g(z) =z f(x)x z dx exists for Re z> and defines an analytic function g.assume that for some constant c, the function g(z) c z has an analytic extension to a neighborhood of the line Re z =.Then as x, f(x) x c. As stated earlier, we are first going to see how the prime number theorem follows from (7.3.) and (7.3.2). To this end, let ψ be as above, namely ψ(x) = [ ] ln x. p x
11 7.3. PROOF OF THE PRIME NUMBER THEOREM Then ψ is a nonnegative, piecewise continuous, nondecreasing function on [, ).Furthermore, by (7.2.2), ψ(x) =O(x), so by (7.3.2) we may take f = ψ and consider the Mellin transform g(z) =z ψ(x)x z dx. But by (7..4), actually g(z) = ζ (z)/ζ(z), and by the discussion leading up to the ζ statement of (7..4), (z) ζ(z) + z has an analytic extension to a neighborhood of each pointofrez =, hence so does g(z) z. Consequently, by (7.3.2), we can conclude that ψ(x)/x, which, by (7.2.), is equivalent to the PNT. Thus we are left with the proof of (7.3.) and its corollary (7.3.2). Proof of (7.3.) Let F be as in the statement of the theorem. Then it follows ust as in the proof of (7..2), the extension theorem for zeta, that F s Laplace transform G is defined and analytic on Re z >.Assume that G has been extended to an analytic function on a region containing Re z.since F is bounded we may as well assume that F (t),t. For <λ<, define G λ (z) = λ F (t)e zt dt. By (3.3.3), each function G λ is entire, and the conclusion of our theorem may be expressed as lim G λ() = G(). λ That is, the improper integral F (t) dt exists and converges to G().We begin the analysis by using Cauchy s integral formula to get a preliminary estimate of G λ () G(). For each R>, let δ(r) > be so small that G is analytic inside and on the closed path. ir γ  R γ + R δ(r).. δ γ γ + R = R + γ  R. ir Figure 7.3. γ R in Figure (Note that since G is analytic on an open set containing Re z,
12 2 CHAPTER 7. THE PRIME NUMBER THEOREM such a δ(r) > must exist, although it may well be the case that δ(r) asr +.) Let γ + R denote that portion of γ R that lies in Re z>, and γ R the portion that lies in Re z<.by Cauchy s integral formula, G() G λ () = (G(z) G λ (z)) dz. () 2πi γ R z Let us consider the consequences of estimating G() G λ () by applying the usual M L estimates to the integral on the right hand side of () above.first, for z γ + R and x =Rez, we have G(z) G λ (z) z = R F (t)e zt dt R R λ λ λ e λx F (t) e xt dt e xt dt = R x R x = R Re z. But / Re z is unbounded on γ + R, so we see that a more delicate approach is required to shows that G() G λ () asλ.indeed, it is here that Newman s ingenuity comes to the fore, and provides us with a modification of the above integral representation for G() G λ ().This will furnish the appropriate estimate.newman s idea is to replace the factor /z by (/z)+(z/r 2 ) in the path integral in ().Since (G(z) G λ (z))z/r 2 is analytic, the value of the path integral along γ R remains unchanged.we further modify () by replacing G(z) and G λ (z) by their respective products with e λz.since e λz is entire and has the value at z =, we can write G() G λ () = (G(z) G λ (z))e λz ( 2πi γ R z + z R 2 ) dz. Note that for z = R we have (/z)+(z/r 2 )=(z/ z 2 )+(z/r 2 ) = (2 Re z)/r 2, so that if z γ + R, (recalling (2) above), (G(z) G λ (z))e λz ( z + z R 2 ) Re z e λ Re z λ Re z 2Rez e R 2 = 2 R 2. Consequently, (G(z) G λ (z))e λz ( 2πi γ + z + z dz R 2 ) R R by the ML theorem.note that this estimate of the integral along the path γ + R is independent of λ.now let us consider the contribution to the integral along γ R of the integral (2)
13 7.3. PROOF OF THE PRIME NUMBER THEOREM 3 along γ R.First we use the triangle inequality to obtain the estimate (G(z) G λ (z))e λz ( 2πi γ z + z dz R 2 ) R G(z)e λz ( 2πi γ z + z R 2 ) dz + G λ (z)e λz ( 2πi R γ z + z dz R 2 ) R = I (R) + I 2 (R). First consider I 2 (R).Since G λ (z) is an entire function, we can replace the path of integration γ R by the semicircular path from ir to ir in the left half plane.for z on this semicircular arc, the modulus of the integrand in I 2 (R) is ( λ F (t)e zt λz 2Rez dt)e R 2 ) 2 Re z Re z R 2 = 2 R 2. (Note that F, we can replace the upper limit of integration by, and e λx for x.) This inequality also holds if Re z = (let z iy).thus by the ML theorem we get I 2 (R) (/2π)(2/R 2 )(πr) =/R, again. Finally, we consider I (R).This will be the trickiest of all since we only know that on γ R, G is an analytic extension of the explicitly defined G in the right half plane.to deal with this case, first choose a constant M(R) > such that G(z) M(R) for z γ R. Choose δ such that <δ <δ(r) and break up the integral defining I (R) intotwo parts, corresponding to Re z< δ and Re z δ.the first contribution is bounded in modulus by 2π M(R)e λδ ( δ(r) + R )πr = 2 RM(R)( δ(r) + R )e λδ, which for fixed R and δ tends to as λ.on the other hand, the second contribution is bounded in modulus by 2π M(R)( δ(r) + R )2R arcsin δ R, the last factor arising from summing the lengths of two short circular arcs on the path of integration.thus for fixed R and δ(r) we can make the above expression as small as we please by taking δ sufficiently close to.so at last we are ready to establish the conclusion of this theorem.let ɛ> be given.take R =4/ɛ and fix δ(r), <δ(r) <R, such that G is analytic inside and on γ R.Then as we saw above, for all λ, (G(z) G λ (z))e λz ( 2πi γ + z + z dz R 2 ) R = ɛ 4 R and also 2πi γ R (G λ (z)e λz ( z + z R 2 ) dz R = ɛ 4.
14 4 CHAPTER 7. THE PRIME NUMBER THEOREM Now choose δ such that <δ <δ(r) and such that Since 2π M(R)( δ(r) + R )2R arcsin δ R < ɛ 4. 2 RM(R)( δ(r) + R )e λδ < ɛ 4 for all λ sufficiently large, say λ λ, it follows that which completes the proof. Proof of (7.3.2) G λ () G() <ɛ, λ λ Let f(x) and g(z) be as in the statement of the corollary.define F on [, + ) by F (t) =e t f(e t ) c. Then F satisfies the first part of the hypothesis of the auxiliary Tauberian theorem, so let us consider its Laplace transform, G(z) = which via the change of variables x = e t becomes G(z) = = (e t f(e t ) c)e zt dt, ( x f(x) c)x z dx x f(x)x z 2 dx c x z dx = f(x)x z 2 dx c z g(z +) = z + c z = z + [g(z +) c z c]. It follows from the hypothesis that g(z +) (c/z) has an analytic extension to a neighborhood of the line Re z =, and consequently the same is true of the above function G. Thus the hypotheses of the auxiliary Tauberian theorem are satisfied, and we conclude that the improper integral F (t) dt exists and converges to G().In terms of f, this says that (e t f(e t ) c) dt exists, or equivalently (via the change of variables x = e t once more) that ( f(x) x c)dx x
15 7.3. PROOF OF THE PRIME NUMBER THEOREM 5 exists.recalling that f is nondecreasing, we can infer that f(x)/x c as x.for let ɛ> be given, and suppose that for some x >, [f(x )/x ] c 2ɛ.It follows that Hence, f(x) f(x ) x (c +2ɛ) x(c + ɛ) for x x c +2ɛ c + ɛ x. c+2ɛ c+ɛ x x ( f(x) x c)dx x c+2ɛ c+ɛ x x ɛ +2ɛ dx = ɛ ln(c x c + ɛ ). But x 2 x c) dx x asx,x 2, because the integral from to is convergent. Thus for all x sufficiently large, x ( f(x) c+2ɛ c+ɛ x x ( f(x) x c)dx x <ɛln(c +2ɛ c + ɛ ). However, reasoning from the assumption that [f(x )/x ] c 2ɛ, we have ust deduced the opposite inequality.we must conclude that for all x sufficiently large, [f(x )/x ] c <2ɛ. Similarly, [f(x )/x ] c> 2ɛ for all x sufficiently large.[say [f(x )/x ] c 2ɛ. The key inequality now becomes f(x) f(x ) x (c 2ɛ) x(c ɛ) for ( c 2ɛ c ɛ )x x x and the limits of integration in the next step are from c 2ɛ c ɛ x to x.] Therefore f(x)/x c as x, completing the proof of both the corollary and the prime number theorem. The prime number theorem has a long and interesting history.we have mentioned ust a few of the many historical issues related to the PNT in this chapter.there are several other number theoretic functions related to π(x), in addition to the function ψ(x) that was introduced earlier.a nice discussion of some of these issues can be found in Eric W.Weisstein, Prime Number Theorem, from MathWorld A Wolfram Web Resource, This source also includes a number of references on PNT related matters. References.Karl Sabbach, The Riemann HypothesisThe Greatest Unsolved Problem in Mathematics, Farrar, Strass and Giroux, New York, Julian Havil, GammaExploring Euler s Constant, Princeton University Press, Princeton and Oxford, 23, Chapter 5.
Doug Ravenel. October 15, 2008
Doug Ravenel University of Rochester October 15, 2008 s about Euclid s Some s about primes that every mathematician should know (Euclid, 300 BC) There are infinitely numbers. is very elementary, and we
More information4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complexvalued function of a real variable
4. Complex integration: Cauchy integral theorem and Cauchy integral formulas Definite integral of a complexvalued function of a real variable Consider a complex valued function f(t) of a real variable
More informationThe General Cauchy Theorem
Chapter 3 The General Cauchy Theorem In this chapter, we consider two basic questions. First, for a given open set Ω, we try to determine which closed paths in Ω have the property that f(z) dz = 0for every
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationPreliminary Version: December 1998
On the Number of Prime Numbers less than a Given Quantity. (Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.) Bernhard Riemann [Monatsberichte der Berliner Akademie, November 859.] Translated
More informationReference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.
5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2
More informationUndergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
More informationANALYTIC NUMBER THEORY LECTURE NOTES BASED ON DAVENPORT S BOOK
ANALYTIC NUMBER THEORY LECTURE NOTES BASED ON DAVENPORT S BOOK ANDREAS STRÖMBERGSSON These lecture notes follow to a large extent Davenport s book [5], but with things reordered and often expanded. The
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More information5.3 Improper Integrals Involving Rational and Exponential Functions
Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a
More informationCHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
More informationMOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu
Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
More information6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.
hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,
More informationPrime numbers and prime polynomials. Paul Pollack Dartmouth College
Prime numbers and prime polynomials Paul Pollack Dartmouth College May 1, 2008 Analogies everywhere! Analogies in elementary number theory (continued fractions, quadratic reciprocity, Fermat s last theorem)
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More informationLimit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)
SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f
More informationLecture 21 and 22: The Prime Number Theorem
Lecture and : The Prime Number Theorem (New lecture, not in Tet) The location of rime numbers is a central question in number theory. Around 88, Legendre offered eerimental evidence that the number π()
More informationThe Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
More informationMathematical Methods of Engineering Analysis
Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................
More informationChapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
More informationThe positive integers other than 1 may be divided into two classes, prime numbers (such as 2, 3, 5, 7) which do not admit of resolution into smaller
The positive integers other than may be divided into two classes, prime numbers (such as, 3, 5, 7) which do not admit of resolution into smaller factors, and composite numbers (such as 4, 6, 8, 9) which
More informationTHE CENTRAL LIMIT THEOREM TORONTO
THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................
More informationPRIME NUMBERS AND THE RIEMANN HYPOTHESIS
PRIME NUMBERS AND THE RIEMANN HYPOTHESIS CARL ERICKSON This minicourse has two main goals. The first is to carefully define the Riemann zeta function and exlain how it is connected with the rime numbers.
More informationIdeal Class Group and Units
Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals
More informationOn the Sign of the Difference ir( x) li( x)
mathematics of computation volume 48. number 177 january 1987. pages 323328 On the Sign of the Difference ir( x) li( x) By Herman J. J. te Riele Dedicated to Daniel Shanks on the occasion of his 10 th
More informationCONTRIBUTIONS TO ZERO SUM PROBLEMS
CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg
More informationSums of Independent Random Variables
Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables
More informationGeneral Theory of Differential Equations Sections 2.8, 3.13.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.13.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
More informationx if x 0, x if x < 0.
Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the
More informationThe Ideal Class Group
Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned
More informationFurther Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1
Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing
More informationThe Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationRAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I  ORDINARY DIFFERENTIAL EQUATIONS PART A
RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I  ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:
More informationTaylor and Maclaurin Series
Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More information3 Contour integrals and Cauchy s Theorem
3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of
More informationCourse Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics
Course Notes for Math 16: Mathematical Statistics Approximation Methods in Statistics Adam Merberg and Steven J. Miller August 18, 6 Abstract We introduce some of the approximation methods commonly used
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More information7. Cauchy s integral theorem and Cauchy s integral formula
7. Cauchy s integral theorem and Cauchy s integral formula 7.. Independence of the path of integration Theorem 6.3. can be rewritten in the following form: Theorem 7. : Let D be a domain in C and suppose
More informationReducibility of Second Order Differential Operators with Rational Coefficients
Reducibility of Second Order Differential Operators with Rational Coefficients Joseph Geisbauer University of ArkansasFort Smith Advisor: Dr. Jill Guerra May 10, 2007 1. INTRODUCTION In this paper we
More informationSECTION 102 Mathematical Induction
73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms
More informationn k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...
6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence
More informationPrime Numbers and Irreducible Polynomials
Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.
More informationMetric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
More informationStirling s formula, nspheres and the Gamma Function
Stirling s formula, nspheres and the Gamma Function We start by noticing that and hence x n e x dx lim a 1 ( 1 n n a n n! e ax dx lim a 1 ( 1 n n a n a 1 x n e x dx (1 Let us make a remark in passing.
More informationThe Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
More informationTHE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION
THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION ERICA CHAN DECEMBER 2, 2006 Abstract. The function sin is very important in mathematics and has many applications. In addition to its series epansion, it
More informationLecture 13  Basic Number Theory.
Lecture 13  Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are nonnegative integers. We say that A divides B, denoted
More informationCounting Primes whose Sum of Digits is Prime
2 3 47 6 23 Journal of Integer Sequences, Vol. 5 (202), Article 2.2.2 Counting Primes whose Sum of Digits is Prime Glyn Harman Department of Mathematics Royal Holloway, University of London Egham Surrey
More informationSUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
More informationProperties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a nonnegative BMOfunction w, whose reciprocal is also in BMO, belongs to p> A p,and
More informationModule MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013
Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of
More informationAPPLICATIONS OF THE ORDER FUNCTION
APPLICATIONS OF THE ORDER FUNCTION LECTURE NOTES: MATH 432, CSUSM, SPRING 2009. PROF. WAYNE AITKEN In this lecture we will explore several applications of order functions including formulas for GCDs and
More information{f 1 (U), U F} is an open cover of A. Since A is compact there is a finite subcover of A, {f 1 (U 1 ),...,f 1 (U n )}, {U 1,...
44 CHAPTER 4. CONTINUOUS FUNCTIONS In Calculus we often use arithmetic operations to generate new continuous functions from old ones. In a general metric space we don t have arithmetic, but much of it
More informationRi and. i=1. S i N. and. R R i
The subset R of R n is a closed rectangle if there are n nonempty closed intervals {[a 1, b 1 ], [a 2, b 2 ],..., [a n, b n ]} so that R = [a 1, b 1 ] [a 2, b 2 ] [a n, b n ]. The subset R of R n is an
More informationFIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.
FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is
More informationMATH 381 HOMEWORK 2 SOLUTIONS
MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e
More informationDEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x
Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of
More informationTaylor Polynomials and Taylor Series Math 126
Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will
More informationEstimating the Average Value of a Function
Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and
More informationMATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
More informationEvery Positive Integer is the Sum of Four Squares! (and other exciting problems)
Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer
More information3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More informationAlgebraic and Transcendental Numbers
Pondicherry University July 2000 Algebraic and Transcendental Numbers Stéphane Fischler This text is meant to be an introduction to algebraic and transcendental numbers. For a detailed (though elementary)
More informationProbability and Statistics
CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2b  0 Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute  Systems and Modeling GIGA  Bioinformatics ULg kristel.vansteen@ulg.ac.be
More informationMATH 52: MATLAB HOMEWORK 2
MATH 52: MATLAB HOMEWORK 2. omplex Numbers The prevalence of the complex numbers throughout the scientific world today belies their long and rocky history. Much like the negative numbers, complex numbers
More informationThe Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
More informationSome Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.
Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,
More informationDifferentiating under an integral sign
CALIFORNIA INSTITUTE OF TECHNOLOGY Ma 2b KC Border Introduction to Probability and Statistics February 213 Differentiating under an integral sign In the derivation of Maximum Likelihood Estimators, or
More informationGambling Systems and MultiplicationInvariant Measures
Gambling Systems and MultiplicationInvariant Measures by Jeffrey S. Rosenthal* and Peter O. Schwartz** (May 28, 997.. Introduction. This short paper describes a surprising connection between two previously
More informationCS 103X: Discrete Structures Homework Assignment 3 Solutions
CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On wellordering and induction: (a) Prove the induction principle from the wellordering principle. (b) Prove the wellordering
More informationRecall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula:
Chapter 7 Div, grad, and curl 7.1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: ( ϕ ϕ =, ϕ,..., ϕ. (7.1 x 1
More information1 Norms and Vector Spaces
008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)
More informationChapter 9. Miscellaneous Applications
hapter 9 53 Miscellaneous Applications In this chapter we consider selected methods where complex variable techniques can be employed to solve various types of problems In particular, we consider the summation
More informationThe whole of analytic number theory rests on one marvellous formula due to Leonhard Euler (17071783): n s = primes p. 1 p
Chapter Euler s Product Formula. The Product Formula The whole of analytic number theory rests on one marvellous formula due to Leonhard Euler (707783): n N, n>0 n s = primes p ( p s ). Informally, we
More informationPUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
More informationMA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
More informationThe inverse of the cumulative standard normal probability function.
The inverse of the cumulative standard normal probability function. Diego E. Dominici Abstract t e Some properties of the inverse of the function N(x = π 1 x dt are studied. Its derivatives, integrals
More information4. Expanding dynamical systems
4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,
More informationVERTICES OF GIVEN DEGREE IN SERIESPARALLEL GRAPHS
VERTICES OF GIVEN DEGREE IN SERIESPARALLEL GRAPHS MICHAEL DRMOTA, OMER GIMENEZ, AND MARC NOY Abstract. We show that the number of vertices of a given degree k in several kinds of seriesparallel labelled
More informationFACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
More informationFactoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
More informationNote on some explicit formulae for twin prime counting function
Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen VassilevMissana 5 V. Hugo Str., 4 Sofia, Bulgaria email:
More informationHOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
More informationLectures 56: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5: Taylor Series Weeks 5 Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
More informationTHE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
More informationt := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).
1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction
More informationNotes on metric spaces
Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.
More informationSolutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
More informationHEAVISIDE CABLE, THOMSON CABLE AND THE BEST CONSTANT OF A SOBOLEVTYPE INEQUALITY. Received June 1, 2007; revised September 30, 2007
Scientiae Mathematicae Japonicae Online, e007, 739 755 739 HEAVISIDE CABLE, THOMSON CABLE AND THE BEST CONSTANT OF A SOBOLEVTYPE INEQUALITY Yoshinori Kametaka, Kazuo Takemura, Hiroyuki Yamagishi, Atsushi
More informationThe HenstockKurzweilStieltjes type integral for real functions on a fractal subset of the real line
The HenstockKurzweilStieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,
More informationEXAMENSARBETEN I MATEMATIK
EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Some observations on Fatou sets of rational functions av Per Alexanderson 2007  No 13 MATEMATISKA INSTITUTIONEN, STOCKHOLMS
More information10.2 Series and Convergence
10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and
More informationNumerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
More informationMean value theorems for long Dirichlet polynomials and tails of Dirichlet series
ACA ARIHMEICA LXXXIV.2 998 Mean value theorems for long Dirichlet polynomials and tails of Dirichlet series by D. A. Goldston San Jose, Calif. and S. M. Gonek Rochester, N.Y. We obtain formulas for computing
More informationSubsets of Euclidean domains possessing a unique division algorithm
Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness
More informationWald s Identity. by Jeffery Hein. Dartmouth College, Math 100
Wald s Identity by Jeffery Hein Dartmouth College, Math 100 1. Introduction Given random variables X 1, X 2, X 3,... with common finite mean and a stopping rule τ which may depend upon the given sequence,
More informationThe Expectation Maximization Algorithm A short tutorial
The Expectation Maximiation Algorithm A short tutorial Sean Borman Comments and corrections to: emtut at seanborman dot com July 8 2004 Last updated January 09, 2009 Revision history 2009009 Corrected
More information