Acid-Base Titrations Using ph Measurements

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Acid-Base Titrations Using ph Measurements"

Transcription

1 Acid-Base Titrations Using ph Measurements Introduction According to the Brønsted Lowry definition, an acid is a substance that donates a hydrogen ion and a base is a substance which will accept a hydrogen ion. Whether an acid is strong or weak is determined by how much they dissociate in water. When an acid is strong, the dissociation is virtually complete. When an acid is weak, the dissociation is much less. A strong acid exists mostly as ions and a weak acid exists mostly as molecules. The extent to which a weak acid will dissociate is indicated by the magnitude of its acid dissociation constant (K a ) which is the equilibrium constant for the dissociation reaction for that acid. For example, the dissociation of acetic acid in water is HC 2 H 3 O 2 + H 2 O H 3 O + + C 2 H 3 O 2 (1) Since acetic acid is a weak acid, the equilibrium will lie mostly to the left and have a small K a. When you titrate a weak acid with a strong base, such as NaOH, the reaction will go essentially to completion, giving an acidic solution until just before the equivalence point OH + HC 2 H 3 O 2 C 2 H 3 O 2 + H 2 O (2) At the equivalence point, the ph will not be 7. This is because the weak conjugate base, acetate ion, is the major species in solution. Acetate ion react with water to give a basic solution: C 2 H 3 O 2 + H 2 O OH + HC 2 H 3 O 2 (3) When you are titrating a weak acid with a strong base and you plot your data (ph vs ml), you will notice that the inflection point in your graph where the equivalence point is located does not show as pronounced a change in ph as that of a titration of a strong acid with a strong base. The size of the inflection point depends on the Ka of the acid. If the acid is too weak, this change becomes so small that it is not possible to identify an inflection point. Acetic acid is a monoprotic acid and so therefore, you will see only one inflection point on your graph. In the second part of this experiment, you will be titrating a solution of phosphoric acid. As you know, phosphoric acid is a weak triprotic acid. The dissociation of each of these protons (hydrogen ions) from the molecule will occur in steps. The first proton will dissociate more readily than the second proton, which will dissociate more readily than the third. When you plot your data (ph vs ml), you will see that the first equivalence point will be very clear, the second equivalence point will be harder to notice with the third probably not being evident. In order to find the equivalence points clearly for both parts of this experiment, you will have to treat your data appropriately so you can plot a first and second derivative plot. Instructions for the treatment of your data are located at the end of this experiment. 26

2 Procedure Part I Titration of Acetic Acid 1. Rinse a buret with a few milliliters of the provided standardized sodium hydroxide solution, fill and remove the air bubble from the tip. Make sure you record the molarity of this sodium hydroxide solution since you will need it to calculate the molarity of the acetic acid solution. 2. Obtain an acetic acid solution with an unknown concentration. Record the unknown letter. 3. Pipet ml of the unknown solution into a 250-mL beaker. Add 25 ml of distilled water (graduated cylinder) and a teflon-coated stir bar. Place the beaker on the stir plate. The first titration you will perform will be a trial titration so you can get the approximate volume of sodium hydroxide that is required to reach the equivalence point. Add a few drops of phenolphthalein indicator to give help visualize the equilvalence point. 4. Place the ph electrode in the acetic acid solution and record the ph before any sodium hydroxide is added. Keep the electrode in the solution for the duration of the titration. 5. Record the initial volume of the buret to an accuracy of 0.01 ml. Start the stirrer. 6. Add approximately 1 ml of NaOH solution. Record the final volume to 0.01 ml. 7. Record the ph after the reading has stabilized. 8. Repeat steps 6 and 7 until you observe the equivalence point (you will notice a sharp increase in the ph of the solution). Go past the equivalence point in the same way until the ph reaches about 11 to 12. Now that you know approximately what volume of sodium hydroxide you need to reach the equivalence point, repeat the titration, but with more data recorded in the vicinity of the equivalence point. Sketching a rough plot in your notebook will help you find that point. 9. Pipet ml of the unknown solution into a 250-mL beaker and add 25 ml of distilled water (graduated cylinder). Do not add phenolphthalein indicator. 10. Record the initial volume of the buret to 0.01 ml and the ph. 12. Add approximately 1 ml of NaOH solution. Record the final volume to 0.01 ml. 13. Mix the solutions thoroughly and record the ph. 27

3 14. Repeat 12 and 13. When you are within about 5 ml of the equivalence point (determined in the first titration), add the NaOH in increments of about 0.5 ml for the next 3 ml and then in increments of about 0.2 ml or less for the next 2 ml. Continue for 5 ml on the other side of the equivalence point in a mirror image (about 0.2, then 0.5 ml increments). Record all volumes to 0.01 ml accuracy. Part II Titration of Phosphoric Acid As in Part I, obtain a phosphoric acid solution of unknown concentration. Record the unknown designation. Add 3 drops of bromocresol green before you begin. This indicator will undergo a color change when you have reached the first equivalence point. Proceed as before with a trial titration. Record the volume, color and ph as you titrate. You will be able to clearly determine when you have reached the first equivalence point by a color change. You will not clearly see the second, but it will be approximately two times the first. You will not see the third equivalence point at all. Proceed as before (Part I) with a good titration. Do not add any indicator. Obtain good data points in the vicinity of the first and the second equivalence points. You can take longer intervals after the first and within about 5 ml of the second (which should be twice the first point). Record the volume, color and ph as you titrate. Question 1. Calculate the missing ph s in the following titration of 10.0 ml of 0.10 M weak acid, HA, (K a = 1.0 x 10 5 ) with 0.10 M NaOH solution. Tabulate and plot three graphs: the titration curve, the first derivative and the second derivative (see page 29). ml 0.10 M NaOH ph

4 Data Treatment and Discussion 1. Using a spreadsheet, tabulate the good titration data of the acetic acid and the phosphoric acid unknowns. Calculate the first and second derivatives. Show one sample calculation of the first and second derivative in your notebook. An example is shown below. v (ml NaOH) ph v ' (ml) f ' (ph/v) v'' (ml) f '' (f /v ) v ' is the average of two consecutive volumes: = and f ' is calculated by taking the difference in ph and dividing by the difference in volume of NaOH = = v '' is the average of consecutive v ': = and f '' is calculated by taking the difference in f ' and dividing it by the difference in v' = = A spreadsheet to do this calculation for all your tabulated data looks like: A B C D E F 1 Volume ph v' (ml) f' ( ph/ v) v'' (ml) f'' ( ph 2 / 2 v) 2 A2 B2 =(A2+A3)/2 =(B3-B2)/(A3-A2) =(C2+C3)/2 =(D3-D2)/(C3-C2) 3 A3 B3 =(A3+A4)/2 =(B4-B3)/(A4-A3) =(C3+C4)/2 =(D4-D3)/(C4-C3) 4 A4 B4 =(A4+A5)/2 =(B5-B4)/(A5-A4) =(C4+C5)/2 =(D5-D4)/(C5-C4) 5 A5 B5 =(A5+A6)/2 =(B6-B5)/(A6-A5) =(C5+C6)/2 =(D6-D5)/(C6-C5) 6 A6 B6 =(A6+A7)/2 =(B7-B6)/(A7-A6) 7 A7 B7 Note: The last cell in C and D and the last two cells of E and F will contain no data. 29

5 2. For Part I, make a plot of ph vs ml of NaOH solution added, a first derivative plot and a second derivative plot. The plots are column B versus column A, column D versus column C, and column F versus column E. The equivalence point is found at the volume corresponding to the x-intercept of the second derivative curve. This point should be coincident with the inflection point (the point at which the curve changes direction) of the original data plot and the peak of the first derivative plot. Read the equivalence point volume, to 4 significant figures, off the graph. Expand the x axis to read it accurately. 3. For Part II, find the volume of sodium hydroxide at the first and the second equivalence points by plotting the first and second derivative of your good data as in #2 above. 4. Calculate the molarity of the original acetic acid solution using the equivalence point off the graph. The volume of the original solution was ml. Do not include the 25 ml of water added from the graduated cylinder. You are still titrating moles. 5. Calculate the molarity of the original phosphoric acid solution using both equivalence points and give the average. Conclusion In order to calculate the molarity of the H 3 PO 4 solution, use the first equivalence point in a 1:1 reaction and use the difference between the second equivalence point and the first also in a 1:1 reaction. Take the average of the two molarities. Give the unknown number and the molarity of the acetic acid solution and the unknown number and the molarity of the phosphoric acid solution. Also address: In part II, are the first equivalence point and the difference from the second equivalence point identical? If not, suggest a reason. What is the advantage to using a ph electrode and meter to find the equivalence point versus a visual indicator? 30

ph: Measurement and Uses

ph: Measurement and Uses ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic

More information

Chem 1B Saddleback College Dr. White 1. Experiment 8 Titration Curve for a Monoprotic Acid

Chem 1B Saddleback College Dr. White 1. Experiment 8 Titration Curve for a Monoprotic Acid Chem 1B Saddleback College Dr. White 1 Experiment 8 Titration Curve for a Monoprotic Acid Objectives To learn the difference between titration curves involving a strong acid with a strong base and a weak

More information

Experiment 6 Titration II Acid Dissociation Constant

Experiment 6 Titration II Acid Dissociation Constant 6-1 Experiment 6 Titration II Acid Dissociation Constant Introduction: An acid/base titration can be monitored with an indicator or with a ph meter. In either case, the goal is to determine the equivalence

More information

DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS

DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS LAB PH 8 From Chemistry with Calculators, Vernier Software & Technology, 2000 INTRODUCTION Phosphoric acid is one of several weak acids that present

More information

Acid Base Titration: ph Titration Curve

Acid Base Titration: ph Titration Curve Acid Base Titration: ph Titration Curve OVERVIEW In this experiment, you will perform a ph-monitored titration of acetic acid and of an unknown acid. From the ph titration of the acetic acid, you will

More information

Determination of K a and Identification of an Unknown Weak Acid

Determination of K a and Identification of an Unknown Weak Acid 1 Determination of K a and Identification of an Unknown Weak Acid Introduction Purpose: To determine the molar mass and acid dissociation constant K a for an unknown weak acid and thereby identify the

More information

Experiment 4 (Future - Lab needs an unknown)

Experiment 4 (Future - Lab needs an unknown) Experiment 4 (Future - Lab needs an unknown) USING A ph TITRATION TO DETERMINE THE ACID CONTENT OF SOFT DRINKS 2 lab periods Reading: Chapter 9, 185-197; Chapter 10, pg 212-218; Chapter 14 pg 317-323,

More information

EXPERIMENT 10: TITRATION AND STANDARDIZATION

EXPERIMENT 10: TITRATION AND STANDARDIZATION EXPERIMENT 10: TITRATION AND STANDARDIZATION PURPOSE To determine the molarity of a NaOH solution by titrating it with a standard HCl solution. To determine the molarity of acetic acid in vinegar using

More information

Turn in your graphs and pages 9-12 ONLY

Turn in your graphs and pages 9-12 ONLY CHEM 152 WINTER 2010 POTENTIOMETRIC TITRATIONS Fill-in, Prelab attached (p 12) Name Turn in your graphs and pages 9-12 ONLY LEARNING OBJECTIVES: After completing this experiment, you should feel comfortable:

More information

Determination of the Identity of an Unknown Weak Acid

Determination of the Identity of an Unknown Weak Acid Determination of the Identity of an Unknown Weak Acid Adapted from R. C. Kerber et. al http://www.sinc.sunysb.edu/class/orgolab/che199_susb014.pdf; W.F. Kinard et.al http://www.cofc.edu/~kinard/221lchem/2002chem221labschedule.htm;

More information

Acid Base Titrations

Acid Base Titrations Acid Base Titrations Introduction A common question chemists have to answer is how much of something is present in a sample or a product. If the product contains an acid or base, this question is usually

More information

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration.

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration. S HIFT INTO NEUTRAL 15. Acid-Base Titration Shift into Neutral Student Instruction Sheet Challenge Discover the concentration of an unknown acid solution using acid-base titration. Equipment and Materials

More information

To calibrate a ph probe. To become familiar with acid-base titration curves. To determine the concentration of an unknown acid.

To calibrate a ph probe. To become familiar with acid-base titration curves. To determine the concentration of an unknown acid. Experiment 7 Titration Curves of Strong and Weak Acids and Bases To calibrate a ph probe. To become familiar with acid-base titration curves. To determine the concentration of an unknown acid. Goals Equipment

More information

Determining the Identity of an Unknown Weak Acid

Determining the Identity of an Unknown Weak Acid Purpose The purpose of this experiment is to observe and measure a weak acid neutralization and determine the identity of an unknown acid by titration. Introduction The purpose of this exercise is to identify

More information

Acid-Base Titrations. Setup for a Typical Titration. Titration 1

Acid-Base Titrations. Setup for a Typical Titration. Titration 1 Titration 1 Acid-Base Titrations Molarities of acidic and basic solutions can be used to convert back and forth between moles of solutes and volumes of their solutions, but how are the molarities of these

More information

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide below. HF (aq) + NaOH (aq) H2O (l) + NaF (aq)

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide below. HF (aq) + NaOH (aq) H2O (l) + NaF (aq) Weak Acid Titration v120413 You are encouraged to carefully read the following sections in Tro (2 nd ed.) to prepare for this experiment: Sec 4.8, pp 158-159 (Acid/Base Titrations), Sec 16.4, pp 729-43

More information

To determine the equivalence points of two titrations from plots of ph versus ml of titrant added.

To determine the equivalence points of two titrations from plots of ph versus ml of titrant added. Titration Curves PURPOSE To determine the equivalence points of two titrations from plots of ph versus ml of titrant added. GOALS 1 To gain experience performing acid-base titrations with a ph meter. 2

More information

ph Measurement and Titration

ph Measurement and Titration Name: Section LEARNING GOALS Chemistry 118 Laboratory University of Massachusetts Boston Measurement and Titration 1. Gain experience using acid/base indicators 2. Learn how to use a meter 3. Gain experience

More information

Acid Dissociation Constants and the Titration of a Weak Acid

Acid Dissociation Constants and the Titration of a Weak Acid Acid Dissociation Constants and the Titration of a Weak Acid One of the most important applications of equilibria is the chemistry of acids and bases. The Brønsted-Lowry acid-base theory defines an acid

More information

ANALYSIS OF SODA ASH

ANALYSIS OF SODA ASH Chemistry Experiment 213 ANALYSIS OF SODA ASH The objectives of this experiment are to: LEARNING OBJECTIVES - understand the titration curve for a diprotic base. - use the titration curve to calculate

More information

GA/7 Potentiometric Titration

GA/7 Potentiometric Titration Rev. 7/99 7-1 INTRODUCTION GA/7 Potentiometric Titration The potentiometric titration is a useful means of characterizing an acid. The ph of a solution is measured as a function of the amount of titrant

More information

The introduction of your report should be written on the on the topic of the role of indicators on acid base titrations.

The introduction of your report should be written on the on the topic of the role of indicators on acid base titrations. Experiment # 13A TITRATIONS INTRODUCTION: This experiment will be written as a formal report and has several parts: Experiment 13 A: Basic methods (accuracy and precision) (a) To standardize a base (~

More information

9. Analysis of an Acid-Base Titration Curve: The Gran Plot

9. Analysis of an Acid-Base Titration Curve: The Gran Plot 9. Analysis of an Acid-Base Titration Curve: The Gran Plot In this experiment, you will titrate a sample of pure potassium hydrogen phthalate (Table 10-4) with standard NaOH. A Gran plot will be used to

More information

Experiment 17: Potentiometric Titration

Experiment 17: Potentiometric Titration 1 Experiment 17: Potentiometric Titration Objective: In this experiment, you will use a ph meter to follow the course of acid-base titrations. From the resulting titration curves, you will determine the

More information

POTENTIOMETRIC TITRATION OF A WEAK ACID

POTENTIOMETRIC TITRATION OF A WEAK ACID POTENTIOMETRIC TITRATION OF A WEAK ACID A Weak Acid/Strong Base Titration For this experiment: 1. Complete the Prelab and obtain a stamp before you begin the experiment. 2. Write your lab notebook prelab

More information

UNIT 14 - Acids & Bases

UNIT 14 - Acids & Bases COMMON ACIDS NOTES lactic acetic phosphoric citric malic PROPERTIES OF ACIDS 1. 1. PROPERTIES OF BASES 2. 2. 3. 3. 4. 4. 5. 5. NAMING ACIDS NOTES Binary acids (H + one element) Practice: 1. hydro- - HF

More information

Acid-Base Titration. Evaluation copy. Figure 1

Acid-Base Titration. Evaluation copy. Figure 1 Acid-Base Titration Computer 24 A titration is a process used to determine the volume of a solution needed to react with a given amount of another substance. In this experiment, you will titrate hydrochloric

More information

ANALYSIS of DRAIN CLEANERS WITH a ph METER

ANALYSIS of DRAIN CLEANERS WITH a ph METER ANALYSIS of DRAIN CLEANERS WITH a ph METER LAB PH 3 From Juniata College SIM INTRODUCTION Most common household cleaners contain acids or bases. Acidic cleaners, such as toilet bowl cleaners, often contain

More information

The Determination of Acid Content in Vinegar

The Determination of Acid Content in Vinegar The Determination of Acid Content in Vinegar Reading assignment: Chang, Chemistry 10 th edition, pages 153-156. Goals We will use a titration to determine the concentration of acetic acid in a sample of

More information

EXPERIMENT INTRODUCTION TO INDICATORS AND ACID-BASE TITRATIONS

EXPERIMENT INTRODUCTION TO INDICATORS AND ACID-BASE TITRATIONS EXPERIMENT INTRODUCTION TO INDICATORS AND ACID-BASE TITRATIONS By Dale A. Hammond, PhD, Brigham Young University Hawaii LEARNING OBJECTIVES The objectives of this experiment are... an introduction to ph

More information

Electrical Conductivity of Aqueous Solutions

Electrical Conductivity of Aqueous Solutions Electrical Conductivity of Aqueous Solutions PRE-LAB ASSIGNMENT: Reading: Chapter 4.-4.3 in Brown, LeMay, Bursten & Murphy.. Using Table in this handout, determine which solution has a higher conductivity,.

More information

AP FREE RESPONSE QUESTIONS ACIDS/BASES

AP FREE RESPONSE QUESTIONS ACIDS/BASES AP FREE RESPONSE QUESTIONS ACIDS/BASES 199 D A chemical reaction occurs when 100. milliliters of 0.200molar HCl is added dropwise to 100. milliliters of 0.100molar Na 3 P0 solution. (a) Write the two net

More information

18 Conductometric Titration

18 Conductometric Titration Lab Activity 18 CONDUCTOMETRIC TITRATION LAB ACTIVITY 18 Conductometric Titration Background Titration is the a method of determining the concentration of an unknown solution (the analyte) by reacting

More information

Titrations. Acid-Base Indicators and Titration Curves. Shapes of Titration Curves. A titration curve is a graphical history of a titration

Titrations. Acid-Base Indicators and Titration Curves. Shapes of Titration Curves. A titration curve is a graphical history of a titration Acid-Base Indicators and Titration Curves Titrations In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical

More information

Titration Curve of a Weak Acid

Titration Curve of a Weak Acid Titration Curve of a Weak Acid Amina Khalifa El-Ashmawy, Ph.D. Collin College Department of Chemistry Introduction: Titration is an analytical process whereby two reactant solutions are carefully reacted

More information

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0 ACID-BASE TITRATION LAB PH 2.PALM INTRODUCTION Acids and bases represent a major class of chemical substances. We encounter them every day as we eat, clean our homes and ourselves, and perform many other

More information

Pipette 1 buret Ring stand and buret clamp 0.10M NaOH

Pipette 1 buret Ring stand and buret clamp 0.10M NaOH HASPI Medical Chemistry Lab Objectives 1. Calculate the number of moles of aspirin in each of the tablets 2. Calculate the number of moles of needed to titrate the aspirin 3. Calculate the volume of 0.10M

More information

ph Measurement and its Applications

ph Measurement and its Applications ph Measurement and its Applications Objectives: To measure the ph of various solutions using ph indicators and meter. To determine the value of K a for an unknown acid. To perform a ph titration (OPTIONAL,

More information

17B. An Acid Base Titration Curve

17B. An Acid Base Titration Curve 17B. An Acid Base Titration Curve Time: 2 hours Required chemicals and solutions: Reagent Requirement/5 Pairs Preparation of 1 L Potassium hydrogen phthalate 5.1 g NaOH, 0.1 M 250 ml 4.0 g of NaOH Other

More information

Chemistry 119: Experiment 7. Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets

Chemistry 119: Experiment 7. Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets Chemistry 119: Experiment 7 Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets Vitamin C is another name for ascorbic acid (C 6 H 8 O 6, see below ), a weak acid that can be determined by titration

More information

Analysis of Commerical Antacids Containing Calcium Carbonate Prelab (Week 1)

Analysis of Commerical Antacids Containing Calcium Carbonate Prelab (Week 1) Analysis of Commerical Antacids Containing Calcium Carbonate Prelab (Week 1) Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Show the calculation for determining

More information

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer Titration of a Diprotic Acid: Identifying an Unknown Computer 25 A diprotic acid is an acid that yields two H + ions per acid molecule. Examples of diprotic acids are sulfuric acid, H 2 SO 4, and carbonic

More information

Auto-ionization of Water

Auto-ionization of Water 2H 2 O H 3 O + + OH Hydronium ion hydroxide ion Q: But how often does this happen? This is the fundamental concept of all acid-base chemistry In pure water, how much of it is water and how much is ions?

More information

TITRATION CURVES, INDICATORS, AND ACID DISSOCIATION CONSTANTS

TITRATION CURVES, INDICATORS, AND ACID DISSOCIATION CONSTANTS TITRATION CURVES, INDICATORS, AND ACID DISSOCIATION CONSTANTS Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997 INTRODUCTION Titration is the volumetric measurement of a solution

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry 5.310 Laboratory Chemistry THE POTENTIOMETRIC TITRATION OF AN ACID MIXTURE 1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry 5.310 Laboratory Chemistry THE POTENTIOMETRIC TITRATION OF AN ACID MIXTURE 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry 5.310 Laboratory Chemistry EXPERIMENT #5 THE POTENTIOMETRIC TITRATION OF AN ACID MIXTURE 1 I. PURPOSE OF THE EXPERIMENT In this experiment

More information

Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115

Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115 Volumetric Analysis Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115 Experimental Aims To prepare and standardize (determine concentration) a NaOH solution Using your standardized NaOH calculate

More information

Lab 4: The titration of amino acids

Lab 4: The titration of amino acids hemistry 103 Objective: Lab 4: The titration of amino acids Introduction: Alpha amino acids are the building blocks of proteins. Almost all proteins consist of various combinations of the same 20 amino

More information

3 The Preparation of Buffers at Desired ph

3 The Preparation of Buffers at Desired ph 3 The Preparation of Buffers at Desired ph Objectives: To become familiar with operating a ph meter, and to learn how to use the Henderson-Hasselbalch equation to make buffer solutions at a desired ph

More information

Titration of Vinegar

Titration of Vinegar EXPERIMENT 12 Prepared by Edward L. Brown, Lee University and Verrill M. Norwood, Cleveland State Community College The student will become familiar with the techniques of titration and expressing a solution

More information

Phenolphthalein-NaOH Kinetics

Phenolphthalein-NaOH Kinetics Phenolphthalein-NaOH Kinetics Phenolphthalein is one of the most common acid-base indicators used to determine the end point in acid-base titrations. It is also the active ingredient in some laxatives.

More information

Write the acid-base equilibria connecting all components in the aqueous solution. Now list all of the species present.

Write the acid-base equilibria connecting all components in the aqueous solution. Now list all of the species present. Chapter 16 Acids and Bases Concept Check 16.1 Chemists in the seventeenth century discovered that the substance that gives red ants their irritating bite is an acid with the formula HCHO 2. They called

More information

AP Chemistry- Acids and Bases General Properties of Acids and Bases. Bases- originally defined as any substance that neutralized an acid

AP Chemistry- Acids and Bases General Properties of Acids and Bases. Bases- originally defined as any substance that neutralized an acid AP Chemistry Acids and Bases General Properties of Acids and Bases Acids Electrolyte Taste Litmus Phenolphthalein React with metals to give off H 2 gas H 2 SO 4 (aq) + Mg (s) MgSO 4 (aq) + H 2 (g) Ionize

More information

The Titration of Amino Acids

The Titration of Amino Acids The Titration of Amino Acids Introduction: Alpha amino acids are the building blocks of proteins. Almost all proteins consist of various combinations of the same 20 amino acids. Amino acids are compounds

More information

Lab #10 How much Acetic Acid (%) is in Vinegar?

Lab #10 How much Acetic Acid (%) is in Vinegar? Lab #10 How much Acetic Acid (%) is in Vinegar? SAMPLE CALCULATIONS NEED TO BE DONE BEFORE LAB MEETS!!!! Purpose: You will determine the amount of acetic acid in white vinegar (sold in grocery stores)

More information

TITRATION OF AN ACID; USING A ph METER. The ph meter is an instrument that measures the ph of a solution and affords a

TITRATION OF AN ACID; USING A ph METER. The ph meter is an instrument that measures the ph of a solution and affords a 62 Experiment #5. Titration of an Acid; Using a ph Meter TITRATION OF AN ACID; USING A ph METER Introduction The ph meter is an instrument that measures the ph of a solution and affords a direct method

More information

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 OBJECTIVE The objective of this experiment will be the standardization of sodium hydroxide using potassium hydrogen phthalate by the titration

More information

Analyzing the Acid in Vinegar

Analyzing the Acid in Vinegar Analyzing the Acid in Vinegar Purpose: This experiment will analyze the percentage of acetic acid in store bought vinegar using titration. Introduction: Vinegar can be found in almost any home. It can

More information

8 Titration of Acids and bases

8 Titration of Acids and bases 8 Titration of Acids and bases Name: Date: Section: Objectives Reinforce acid-base chemistry principles from chapter 4 in Silberberg Standardize a sodium hydroxide solution Determine the molarity of an

More information

pka AND MOLAR MASS OF A WEAK ACID

pka AND MOLAR MASS OF A WEAK ACID Experiment 10 pka AND MOLAR MASS OF A WEAK ACID Adapted by the Chemistry Faculty of Eastern Michigan University from EQUL 305,written by Richard C. Bell, Lebanon Valley College, published by Chemical Education

More information

ChE 203 - Physicochemical Systems Laboratory EXPERIMENT 7: CONDUCTOMETRIC AND POTENTIOMETRIC TITRATIONS

ChE 203 - Physicochemical Systems Laboratory EXPERIMENT 7: CONDUCTOMETRIC AND POTENTIOMETRIC TITRATIONS ChE 203 - Physicochemical Systems Laboratory EXPERIMENT 7: CONDUCTOMETRIC AND POTENTIOMETRIC TITRATIONS Before the experiment: Read the booklet carefully. Be aware of the safety issues. a. CONDUCTOMETRIC

More information

CHM1 Review for Exam 12

CHM1 Review for Exam 12 Topics Solutions 1. Arrhenius Acids and bases a. An acid increases the H + concentration in b. A base increases the OH - concentration in 2. Strong acids and bases completely dissociate 3. Weak acids and

More information

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride. PRINCIPLES: Once the Rate Law for a reaction has been experimentally established the next step is its explanation in terms

More information

Expt. 4: ANALYSIS FOR SODIUM CARBONATE

Expt. 4: ANALYSIS FOR SODIUM CARBONATE Expt. 4: ANALYSIS FOR SODIUM CARBONATE Introduction In this experiment, a solution of hydrochloric acid is prepared, standardized against pure sodium carbonate, and used to determine the percentage of

More information

ionic substances (separate) based on! Liquid Mixtures miscible two liquids that and form a immiscible two liquids that form a e.g.

ionic substances (separate) based on! Liquid Mixtures miscible two liquids that and form a immiscible two liquids that form a e.g. Unit 7 Solutions, Acids & Bases Solution mixture + solvent - substance present in the amount solute - in the solvent solvent molecules solute particles ionic substances (separate) based on! Liquid Mixtures

More information

CHEM 102: Sample Test 5

CHEM 102: Sample Test 5 CHEM 102: Sample Test 5 CHAPTER 17 1. When H 2 SO 4 is dissolved in water, which species would be found in the water at equilibrium in measurable amounts? a. H 2 SO 4 b. H 3 SO + 4 c. HSO 4 d. SO 2 4 e.

More information

Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration

Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration GOAL AND OVERVIEW Antacids are bases that react stoichiometrically with acid. The number of moles of acid that

More information

Standardization of NaOH

Standardization of NaOH EXPERIMENT 18 Prepared by Edward L. Brown, Lee University The student will become familiar with the techniques of titration and the use of a primary standard, Potassium Hydrogen Phthalate (KHP). Buret

More information

7 Investigation of Buffer Systems

7 Investigation of Buffer Systems 7 Investigation of Buffer Systems Name: Date: Section: Objectives Reinforce concepts of buffer, buffer range and buffer capacity Learn how to prepare acid-base buffers Learn how to calculate the of a buffer

More information

1. What do you think is the definition of an acid? Of a base?

1. What do you think is the definition of an acid? Of a base? Concepts of ph Why? The level of acidity or basicity affects many important biological and environmental processes: enzymes function effectively only in narrowly defined ranges of ph; blood ph in part

More information

1. To perform a potentiometric titration of a sample of Liquid Drano with hydrochloric acid.

1. To perform a potentiometric titration of a sample of Liquid Drano with hydrochloric acid. INTRODUCTION ANALYSIS OF DRAIN CLEANER (Revised: 1-25-93) Many common household cleaners contain acids or bases. Acidic cleaners, such as toilet bowl cleaners, often contain hydrochloric acid or sodium

More information

Determination of [H + ] and various acid compounds in musts and wines

Determination of [H + ] and various acid compounds in musts and wines Determination of [H + ] and various acid compounds in musts and wines Barry H. Gump, Ph.D. Professor of Beverage Management Florida International University Acids dissociate to produce protons (hydrogen

More information

Chapter 7 Mixtures of Acids and Bases

Chapter 7 Mixtures of Acids and Bases Chapter 7 Mixtures of Acids and Bases Introduction In Chapter 6, we examined the equilibrium concentrations in solutions of acids and solutions of bases. In this chapter, we continue our discussion of

More information

Chem101: General Chemistry Lecture 9 Acids and Bases

Chem101: General Chemistry Lecture 9 Acids and Bases : General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water

More information

Experiment 8. Determination of the Molar Mass of an Unknown Acid by Acid-Base Titration

Experiment 8. Determination of the Molar Mass of an Unknown Acid by Acid-Base Titration Experiment 8. Determination of the Molar Mass of an Unknown Acid by Acid-Base Titration In this experiment you will: Prepare and standardize a solution of sodium hydroxide Determine the molecular weight

More information

Equilibrium, Acids and Bases Unit Summary:

Equilibrium, Acids and Bases Unit Summary: Equilibrium, Acids and Bases Unit Summary: Prerequisite Skills and Knowledge Understand concepts of concentration, solubility, saturation point, pressure, density, viscosity, flow rate, and temperature

More information

Neutralization of Pond Water

Neutralization of Pond Water Neutralization of Pond Water Introduction: The neutralization of pond water lab demonstrates the neutralization (ph adjustment) of process pond water the Phosphate Industry goes through to protect the

More information

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND #3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric

More information

AP CHEMISTRY 2010 SCORING GUIDELINES (Form B)

AP CHEMISTRY 2010 SCORING GUIDELINES (Form B) AP CHEMISTRY 2010 SCORING GUIDELINES (Form B) Question 5 (9 points) A solution of 0.100 M HCl and a solution of 0.100 M NaOH are prepared. A 40.0 ml sample of one of the solutions is added to a beaker

More information

CHM101 Lab Acids and Bases Grading Rubric

CHM101 Lab Acids and Bases Grading Rubric Name Team Name CHM101 Lab Acids and Bases Grading Rubric To participate in this lab you must have splash-proof goggles, proper shoes and attire. Criteria Points possible Points earned Lab Performance Printed

More information

AP CHEMISTRY 2011 SCORING GUIDELINES (Form B)

AP CHEMISTRY 2011 SCORING GUIDELINES (Form B) AP CHEMISTRY 2011 SCORING GUIDELINES (Form B) Question 5 (9 points) A student is instructed to prepare 100.0 ml of 1.250 M NaOH from a stock solution of 5.000 M NaOH. The student follows the proper safety

More information

CHEM 101/105 Aqueous Solutions (continued) Lect-07

CHEM 101/105 Aqueous Solutions (continued) Lect-07 CHEM 101/105 Aqueous Solutions (continued) Lect-07 aqueous acid/base reactions a. a little bit more about water Water is a polar substance. This means water is able to "solvate" ions rather well. Another

More information

ACID-BASE TITRATIONS

ACID-BASE TITRATIONS ACID-BASE TITRATIONS 1 In this exercise you will use Excel to construct titration curves for a titration between a strong acid and strong base and between a weak acid and strong base. To set up a spreadsheet

More information

EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT

EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT PURPOSE: 1. To determine experimentally the molar solubility of potassium acid tartrate in water and in a solution of potassium nitrate. 2. To examine the effect of a common ion on the solubility of slightly

More information

Experiment # 6 Determining the percent composition of a mixture by acid-base

Experiment # 6 Determining the percent composition of a mixture by acid-base Experiment # 6 Determining the percent composition of a mixture by acid-base Objective Determine the percent composition of a mixture of sodium carbonate (Na 2 CO 3 ), sodium bicarbonate (NaHCO 3 ) and

More information

Acids and Bases. When an acid loses a proton, the resulting species is its conjugate base. For example, NH 3 + H +

Acids and Bases. When an acid loses a proton, the resulting species is its conjugate base. For example, NH 3 + H + Acids and Bases Definitions An acid is a proton donor, e.g. HCl. For example, consider the reaction between HCl and H 2 O. HCl + H 2 O H 3 O + + Cl - Acid In this reaction, HCl donates a proton to H 2

More information

Titrating A Known Acid Using A ph Meter to Determine the Endpoint of Titration

Titrating A Known Acid Using A ph Meter to Determine the Endpoint of Titration Titrating A Known Acid Using A ph Meter to Determine the Endpoint of Titration Introduction Up to this point in your chemistry career, you have utilized visual endpoints to know when to stop titrating.

More information

Worksheet 23 Strong Acid/Strong Base Titrations

Worksheet 23 Strong Acid/Strong Base Titrations Worksheet 2 Strong Acid/Strong Base Titrations A. Initial ph This is always determined based solely on the initial concentration of the acid or base being titrated. Every mole of acid or base will produce

More information

Titration of Hydrochloric Acid with Sodium Hydroxide

Titration of Hydrochloric Acid with Sodium Hydroxide Cautions: Hydrochloric acid solution is a strong acid. Sodium hydroxide solution is a strong base. Both are harmful to skin and eyes. Affected areas should be washed thoroughly with copious amounts of

More information

CHAPTERS 15 FAKE TEST QUESTIONS. 1. According to the Brønsted Lowry definition, which species can function both as an acid and as a base?

CHAPTERS 15 FAKE TEST QUESTIONS. 1. According to the Brønsted Lowry definition, which species can function both as an acid and as a base? You might need to know the following K values: CHAPTERS 15 FAKE TEST QUESTIONS CH 3 COOH K a = 1.8 x 10 5 Benzoic Acid K a = 6.5 x 10 5 HNO 2 K a = 4.5 x 10 4 NH 3 K b = 1.8 x 10 5 HF K a = 7.2 x 10 4

More information

SCH 4C Summative - QUANTITATIVE TITRATION - Part 1

SCH 4C Summative - QUANTITATIVE TITRATION - Part 1 SCH 4C Summative - QUANTITATIVE TITRATION - Part 1 PURPOSE: Design a procedure to make a 0.300mol/L solution of NaOH from solid NaOH pellets. MATERIALS: Solid NaOH Electronic Balance Distilled water Safety

More information

The technique used to measure the volume of sodium hydroxide solution required to react with the acid solution is called titration.

The technique used to measure the volume of sodium hydroxide solution required to react with the acid solution is called titration. Experiment 12 Chem 110 Lab TITRATION I. INTRODUCTION In this experiment you will be determining the molarity of an unknown acid solution by measuring the volume of a sodium hydroxide solution of known

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Procedure Each Part of lab requires a separate data table. You might want to put each table on a separate page so you can leave room to show equations and calculations.

More information

Ionization Constants of Cysteine

Ionization Constants of Cysteine Ionization Constants of Cysteine Introduction Cysteine is an important amino acid which, when protonated at low ph, has three acidic hydrogens: carbonyl ( COOH), amino ( NH 3 + ), and thiol ( SH): H HS

More information

Acids, Bases, Salts, and Buffers

Acids, Bases, Salts, and Buffers Acids, Bases, Salts, and Buffers GOAL AND OVERVIEW Hydrolysis of salts will be used to study the acid-base properties of dissolved ions in aqueous solutions. The approximate ph of these solutions will

More information

Chemical equilibria Buffer solutions

Chemical equilibria Buffer solutions Chemical equilibria Buffer solutions Definition The buffer solutions have the ability to resist changes in ph when smaller amounts of acid or base is added. Importance They are applied in the chemical

More information

An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution.

An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution. Chapter 8 Acids and Bases Definitions Arrhenius definitions: An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution.

More information

Chapter 15: Acids, Bases, and Salts. 15.1: Acids and Bases

Chapter 15: Acids, Bases, and Salts. 15.1: Acids and Bases Chapter 15: Acids, Bases, and Salts Name: 15.1: Acids and Bases Define an Acid: Define a Base: Ex of an acid in aqueous solution: Ex of a base in aqueous solution: List some of the properties of acids

More information

4 Titration Curve of an Amino Acid

4 Titration Curve of an Amino Acid p H 4 Titration Curve of an Amino Acid Simple amino acid Acidic amino acid Basic amino acid 7 OH - equivalents Objectives: A) To determine the titration curve for an amino acid and B) to use this curve

More information

Chapter 19: Acids and Bases Homework Packet (50 pts) Name: Score: / 50

Chapter 19: Acids and Bases Homework Packet (50 pts) Name: Score: / 50 Chapter 19: Acids and Bases Homework Packet (50 pts) Topic pg Section 19.1 1-3 Section 19.2 3-6 Section 19.3 6-7 Section 19.4 8 Naming Acids 9 Properties of Acids/Bases 10-11 Conjugate Acid/Base Pairs

More information

Determination of Ascorbic Acid in Vitamin C Tablets by Redox and Acid/Base Titrations

Determination of Ascorbic Acid in Vitamin C Tablets by Redox and Acid/Base Titrations hemistry 211 Spring 2011 Purpose: Determination of Ascorbic Acid in Vitamin Tablets by Redox and Acid/Base Titrations To determine the quantity of Vitamin (ascorbic acid) found in commercially available

More information