Molecular Modelling of DNA. Charlie Laughton University of Nottingham

Size: px
Start display at page:

Download "Molecular Modelling of DNA. Charlie Laughton University of Nottingham"

Transcription

1 Molecular Modelling of DNA Charlie Laughton University of Nottingham

2 Why model DNA? Sequences/structures you can t crystallise or get by NMR Drug design Understanding protein-dna recognition Quantitating aspects of recognition From a static to a dynamic picture The tyranny of the lattice Proc Natl Acad Sci USA :

3 History Begins in 1983 (Levitt, Karplus) 7 years later than proteins why? Electrostatics of DNA Screening by counterions and solvent

4 Post 1995 the new era Faster computers means better forcefields Can include water Better ways to treat electrostatics 1990: no water 1995: water 2000: water+ewald

5 Forcefields for Nucleic Acids Both AMBER and CHARMM are parameterised Each has its pros and cons: AMBER-99 and CHARMM-27 pretty OK

6 Solvent Periodic boxes of explicit solvent (e.g. TIP3P) generally best Cheap implicit models (e.g. =r ij ) bad Latest implicit models, e.g. GB-SA, fairly good but not cheap.

7 Electrostatics Use methods like Ewald for long-range corrections Include counterions but where do you put them? Phosphate bisectors Electrostatic potential Random

8 Nucleic acid structures Don t be afraid of: RNA, PNAs, modified bases Triplexes, quadruplexes, ribozymes, Some of these may be easier with AMBER (easier to parameterise)

9 DNA environments Stretch it, squash it (AFM) In organic solvents In high vacuum (Mass Spec)

10 Molecular Dynamics DNA is flexible use MD whenever you can to get proper sampling

11 Worked example Why does this ligand recognise this sequence with this affinity?

12 Worked example Step 1: Parameterise the ligand

13 Worked example Step 2: Solvate system with box of water 10 Å buffer Think ahead

14 Box problems

15 Box problems (Truncated octahedral boxes often safest)

16 Worked example Step 3: Add counterions K+ seems best Minimal salt? Placement

17 Equilibration Initially-built system is unlikely to be energetically optimal Bad nb-contacts voids in solvent Bad electrostatic iteractions Need to be careful, or may blow up in MD Energy mins Low-T dynamics on solvent Raise T slowly, relaxing restraints on DNA All this may need c. 100 ps.

18 How long is a piece of string? When MD starts, system may still be relaxing when is it complete? Once relaxed, how long to collect data for ( production run ) parameter equilibration production time

19 Measures of equilibration Energy/temperature: bad RMSD: from start structure: can be misleading from avg better PCA probably best

20 Measures of sampling Normal distributions in parameters, without drift

21 Analysing the data Standard geometrical measures as on Xray structure If your simulation is long enough and well-equilibrated, the trajectory is equivalent to Boltzmann-weighted ensemble get thermodynamics!

22 Ergodic hypothesis

23 Ergodic hypothesis

24 Analysing the ensemble Linear free energy relationships G = <E q > + <E vdw > Tricky - needs lots of parameterisation

25 Analysing the ensemble MM-GBSA approaches G = <E complex >-(<E receptor > + <E ligand >) + (entropy terms) Better for relative than absolute energies Doesn t cope well with induced fit

26 Analysing the ensemble Free energy perturbation (FEP) approaches The Gold standard approach Technically and computationally demanding

27 Some examples

28 Drug Design Structural change predicted to give tighter binding 100x better antitumour agent Wells, (2005)

29 Understanding co-operativity The formation of a 2:1 complex is favoured over the 1:1 complex, because of entropic factors could be calculated from modelling, invisible from NMR data. Harris, (2001) J. Am. Chem. Soc., 123:12658

30 Understanding AFM Proper thermodynamic analysis of simulations of DNA stretching explained why all previous work failed to agree with experiments Harris, (2005) Biophys J., 88:1684

31 Understanding molecular motors Modelling used to predict an energeticallyreasonable pathway between two states observed crystallographically, allowing a movie of the operation of the molecular motor to be produced. Wang (2005)

32 High throughput MD PDB2MD (using NGS service) Laughton (2005) See also Biophys. J. 2004, 87,

33 Conclusions Nowadays, nothing particularly difficult about modelling DNA Properly applied, can give insights into structures, dynamics and recognition properties that can t be obtained by just looking at the original - e.g. Xray structure. Add value to your data!

34 Support Coming soon: CCPB A new BBSRC-funded Collaborative Computational Project: for Biomolecular Simulation Meetings, specialist workshops, lecture tours, web site with guides, contacts, software, etc. Starts 2006.

35 Acknowledgements Sarah Harris Ed Sherer Chris Grindon Zara Sands Peter Girard Huw Williams Mark Beardsell Supat Jiranusornkul Angelo Pugliese Mark Searle Malcolm Stevens Ian Dryden Jonathan Wattis EPSRC BBSRC CR-UK Fulbright Wellcome Trust Modesto Orozco & Javier Luque Peter Coveney & Shantenu Jha Hooshang Nikjoo Ben Luisi & Chris Calladine David Thurston & Steve Neidle

Biomolecular Modelling

Biomolecular Modelling Biomolecular Modelling Carmen Domene Physical & Theoretical Chemistry Laboratory University of Oxford, UK THANKS Dr Joachim Hein Dr Iain Bethune Dr Eilidh Grant & Qi Huangfu 2 EPSRC Grant, Simulations

More information

Molecular Dynamics Simulations

Molecular Dynamics Simulations Molecular Dynamics Simulations Yaoquan Tu Division of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH) 2011-06 1 Outline I. Introduction II. Molecular Mechanics Force Field III. Molecular

More information

Hands-on exercises on solvent models & electrostatics EMBnet - Molecular Modeling Course 2005

Hands-on exercises on solvent models & electrostatics EMBnet - Molecular Modeling Course 2005 Hands-on exercises on solvent models & electrostatics EMBnet - Molecular Modeling Course 2005 Exercise 1. The purpose of this exercise is to color the solvent accessible surface of a protein according

More information

Structure Check. Authors: Eduard Schreiner Leonardo G. Trabuco. February 7, 2012

Structure Check. Authors: Eduard Schreiner Leonardo G. Trabuco. February 7, 2012 University of Illinois at Urbana-Champaign NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute Computational Biophysics Workshop Structure Check Authors: Eduard Schreiner Leonardo

More information

Introduction to Molecular Dynamics Simulations

Introduction to Molecular Dynamics Simulations Introduction to Molecular Dynamics Simulations Roland H. Stote Institut de Chimie LC3-UMR 7177 Université Louis Pasteur Strasbourg France 1EA5 Title Native Acetylcholinesterase (E.C. 3.1.1.7) From Torpedo

More information

Scoring Functions and Docking. Keith Davies Treweren Consultants Ltd 26 October 2005

Scoring Functions and Docking. Keith Davies Treweren Consultants Ltd 26 October 2005 Scoring Functions and Docking Keith Davies Treweren Consultants Ltd 26 October 2005 Overview Applications Docking Algorithms Scoring Functions Results Demonstration Docking Applications Drug Design Lead

More information

Module 2 overview SPRING BREAK

Module 2 overview SPRING BREAK 1 Module 2 overview lecture lab 1. Introduction to the module 1. Start-up protein eng. 2. Rational protein design 2. Site-directed mutagenesis 3. Fluorescence and sensors 3. DNA amplification 4. Protein

More information

01 02 03 04 05 06 Haemophilus influenza 07 08 09 Proc. Natl. Acad. Sci. U.S.A. Proc. Acad. Natl. Sci. U.S.A. Nature Science Anal. Chem. Anal.Chem Nuc. Acids Res Anal. Chem Nature Science Haemophilus influenzae

More information

BBSRC TECHNOLOGY STRATEGY: TECHNOLOGIES NEEDED BY RESEARCH KNOWLEDGE PROVIDERS

BBSRC TECHNOLOGY STRATEGY: TECHNOLOGIES NEEDED BY RESEARCH KNOWLEDGE PROVIDERS BBSRC TECHNOLOGY STRATEGY: TECHNOLOGIES NEEDED BY RESEARCH KNOWLEDGE PROVIDERS 1. The Technology Strategy sets out six areas where technological developments are required to push the frontiers of knowledge

More information

How To Understand Protein Ligand Interaction

How To Understand Protein Ligand Interaction V Contents List of Contributors XIII Preface XVII A Personal Foreword XIX Part I Binding Thermodynamics 1 1 Statistical Thermodynamics of Binding and Molecular Recognition Models 3 Kim A. Sharp 1.1 Introductory

More information

RNA Structure and folding

RNA Structure and folding RNA Structure and folding Overview: The main functional biomolecules in cells are polymers DNA, RNA and proteins For RNA and Proteins, the specific sequence of the polymer dictates its final structure

More information

The strength of the hydrogen bond in the linking of protein

The strength of the hydrogen bond in the linking of protein Energetics of hydrogen bonds in peptides Sheh-Yi Sheu*, Dah-Yen Yang, H. L. Selzle, and E. W. Schlag *Department of Life Science, National Yang-Ming University, Taipei 112, Taiwan; Institute of Atomic

More information

arxiv:cond-mat/9709083v1 [cond-mat.stat-mech] 6 Sep 1997

arxiv:cond-mat/9709083v1 [cond-mat.stat-mech] 6 Sep 1997 Are Protein Folds Atypical? arxiv:cond-mat/97983v1 [cond-mat.stat-mech] 6 Sep 1997 Hao Li, Chao Tang, and Ned S. Wingreen NEC Research Institute, 4 Independence Way, Princeton, New Jersey 854 (August 29,

More information

Language: English Lecturer: Gianni de Fabritiis. Teaching staff: Language: English Lecturer: Jordi Villà i Freixa

Language: English Lecturer: Gianni de Fabritiis. Teaching staff: Language: English Lecturer: Jordi Villà i Freixa MSI: Molecular Simulations Descriptive details concerning the subject: Name of the subject: Molecular Simulations Code : MSI Type of subject: Optional ECTS: 5 Total hours: 125.0 Scheduling: 11:00-13:00

More information

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. 1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. Solar energy A. Answer a is incorrect. Kinetic energy is the energy of

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy Module 2D - Energy and Metabolism Objective # 19 All living organisms require energy for survival. In this module we will examine some general principles about chemical reactions and energy usage within

More information

Free energy calculations of protein-ligand complexes with computational molecular dynamics

Free energy calculations of protein-ligand complexes with computational molecular dynamics Free energy calculations of protein-ligand complexes with computational molecular dynamics Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität

More information

Topic 2: Energy in Biological Systems

Topic 2: Energy in Biological Systems Topic 2: Energy in Biological Systems Outline: Types of energy inside cells Heat & Free Energy Energy and Equilibrium An Introduction to Entropy Types of energy in cells and the cost to build the parts

More information

The Structure of a Network and Its Functions

The Structure of a Network and Its Functions Elastic properties and heterogeneous stiffness of the Phi29 motor connector channel Rajendra Kumar and Helmut Grubmüller Max Planck Institute for Biophysical Chemistry, Department of Theoretical and Computational

More information

Importance of Polar Solvation for Cross-Reactivity of Antibody and Its Variants with Steroids

Importance of Polar Solvation for Cross-Reactivity of Antibody and Its Variants with Steroids pubs.acs.org/jpcb Importance of Polar Solvation for Cross-Reactivity of Antibody and Its Variants with Steroids Parimal Kar,, Reinhard Lipowsky, and Volker Knecht*, Department of Theory and Bio-Systems,

More information

Supporting Information

Supporting Information Supporting Information Nature of Molecular Interactions of Peptides with Gold, Palladium, and Pd-Au Bimetal Surfaces in Aqueous Solution Hendrik Heinz, 1 * Barry L. Farmer, 2 Ras B. Pandey, 3 Joseph M.

More information

Molecular Docking: A Problem With Thousands Of Degrees Of Freedom

Molecular Docking: A Problem With Thousands Of Degrees Of Freedom Molecular Docking: A Problem With Thousands Of Degrees Of Freedom Miguel L. Teodoro 1 mteodoro@rice.edu George N. Phillips Jr 2 phillips@biochem.wisc.edu Lydia E. Kavraki 3 kavraki@rice.edu 1 Department

More information

CHAPTER 4: Enzyme Structure ENZYMES

CHAPTER 4: Enzyme Structure ENZYMES CHAPTER 4: ENZYMES Enzymes are biological catalysts. There are about 40,000 different enzymes in human cells, each controlling a different chemical reaction. They increase the rate of reactions by a factor

More information

1 Review of Newton Polynomials

1 Review of Newton Polynomials cs: introduction to numerical analysis 0/0/0 Lecture 8: Polynomial Interpolation: Using Newton Polynomials and Error Analysis Instructor: Professor Amos Ron Scribes: Giordano Fusco, Mark Cowlishaw, Nathanael

More information

The Application of Distributed Computing to the Investigation of Protein Conformational Change

The Application of Distributed Computing to the Investigation of Protein Conformational Change The Application of Distributed Computing to the Investigation of Protein Conformational Change C. J. Woods, J. G. Frey, J. W. Essex School of Chemistry, University of Southampton, SO17 1BJ, UK Abstract

More information

The Quixote Project: a pioneering work in managing Computational Chemistry research data

The Quixote Project: a pioneering work in managing Computational Chemistry research data 1 The Quixote Project: a pioneering work in managing Computational Chemistry research data Pablo Echenique http://www.pabloechenique.com echenique.p@gmail.com 2 The protein folding problem Folding Native

More information

Hydrogen Bonds The electrostatic nature of hydrogen bonds

Hydrogen Bonds The electrostatic nature of hydrogen bonds Hydrogen Bonds Hydrogen bonds have played an incredibly important role in the history of structural biology. Both the structure of DNA and of protein a-helices and b-sheets were predicted based largely

More information

Gold (Genetic Optimization for Ligand Docking) G. Jones et al. 1996

Gold (Genetic Optimization for Ligand Docking) G. Jones et al. 1996 Gold (Genetic Optimization for Ligand Docking) G. Jones et al. 1996 LMU Institut für Informatik, LFE Bioinformatik, Cheminformatics, Structure based methods J. Apostolakis 1 Genetic algorithms Inspired

More information

Introduction to Proteins and Enzymes

Introduction to Proteins and Enzymes Introduction to Proteins and Enzymes Basics of protein structure and composition The life of a protein Enzymes Theory of enzyme function Not all enzymes are proteins / not all proteins are enzymes Enzyme

More information

High flexibility of DNA on short length scales probed by atomic force microscopy

High flexibility of DNA on short length scales probed by atomic force microscopy High flexibility of DNA on short length scales probed by atomic force microscopy Wiggins P. A. et al. Nature Nanotechnology (2006) presented by Anja Schwäger 23.01.2008 Outline Theory/Background Elasticity

More information

Molecular Docking. - Computational prediction of the structure of receptor-ligand complexes. Receptor: Protein Ligand: Protein or Small Molecule

Molecular Docking. - Computational prediction of the structure of receptor-ligand complexes. Receptor: Protein Ligand: Protein or Small Molecule Scoring and Docking Molecular Docking - Computational prediction of the structure of receptor-ligand complexes Receptor: Protein Ligand: Protein or Small Molecule Protein-Protein Docking Protein-Small

More information

RNA) - - - = 1 1 = 1 EU

RNA) - - - = 1 1 = 1 EU Colorimetric Methods for Determining Protein Concentration. Goals: 1. Learn how to use colorimetric (Lowry, BCA, and Bradford) methods to determine protein concentration in mg/ml. 2. Use intrinsic biomolecular

More information

1. Free energy with controlled uncertainty 2. The modes of ligand binding to DNA

1. Free energy with controlled uncertainty 2. The modes of ligand binding to DNA 1. Free energy with controlled uncertainty 2. The modes of ligand binding to DNA Tomáš Kubař Institute of Organic Chemistry and Biochemistry Praha, Czech Republic Thermodynamic Integration Alchemical change

More information

What is molecular dynamics (MD) simulation and how does it work?

What is molecular dynamics (MD) simulation and how does it work? What is molecular dynamics (MD) simulation and how does it work? A lecture for CHM425/525 Fall 2011 The underlying physical laws necessary for the mathematical theory of a large part of physics and the

More information

Biacore X BIACORE. The versatile high sensitivity system

Biacore X BIACORE. The versatile high sensitivity system Biacore X The versatile high sensitivity system Work with high sensitivity Study binding in non-aqueous and aqueous samples Reduce sample consumption Perform the most advanced kinetic evaluation Use proven

More information

Refinement of a pdb-structure and Convert

Refinement of a pdb-structure and Convert Refinement of a pdb-structure and Convert A. Search for a pdb with the closest sequence to your protein of interest. B. Choose the most suitable entry (or several entries). C. Convert and resolve errors

More information

Melting Range 1 Experiment 2

Melting Range 1 Experiment 2 Melting Range 1 Experiment 2 Background Information The melting range of a pure organic solid is the temperature range at which the solid is in equilibrium with its liquid. As heat is added to a solid,

More information

Network Tomography and Internet Traffic Matrices

Network Tomography and Internet Traffic Matrices Network Tomography and Internet Traffic Matrices Matthew Roughan School of Mathematical Sciences 1 Credits David Donoho Stanford Nick Duffield AT&T Labs-Research Albert

More information

What happens to the food we eat? It gets broken down!

What happens to the food we eat? It gets broken down! Enzymes Essential Questions: What is an enzyme? How do enzymes work? What are the properties of enzymes? How do they maintain homeostasis for the body? What happens to the food we eat? It gets broken down!

More information

Hydrophobic Tendencies of Polar Groups as a Major Force in Molecular Recognition

Hydrophobic Tendencies of Polar Groups as a Major Force in Molecular Recognition Tigran V. Chalikian Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 19 Russell St., Toronto, Ontario M5S 2S2, Canada Hydrophobic Tendencies of Polar Groups

More information

PNA BRAF Mutation Detection Kit

PNA BRAF Mutation Detection Kit - PNA BRAF Mutation Detection Kit Catalog Number KA2102 50 tests/kit Version: 01 Intended for research use only www.abnova.com Introduction and Background Intended use The PNA BRAF Mutation Detection Kit

More information

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. Energy & Enzymes Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. 1 Energy exists in two forms - potential and kinetic. Potential

More information

1 Peptide bond rotation

1 Peptide bond rotation 1 Peptide bond rotation We now consider an application of data mining that has yielded a result that links the quantum scale with the continnum level electrostatic field. In other cases, we have considered

More information

2038-20. Conference: From DNA-Inspired Physics to Physics-Inspired Biology. 1-5 June 2009. How Proteins Find Their Targets on DNA

2038-20. Conference: From DNA-Inspired Physics to Physics-Inspired Biology. 1-5 June 2009. How Proteins Find Their Targets on DNA 2038-20 Conference: From DNA-Inspired Physics to Physics-Inspired Biology 1-5 June 2009 How Proteins Find Their Targets on DNA Anatoly B. KOLOMEISKY Rice University, Department of Chemistry Houston TX

More information

Previous lecture: Today:

Previous lecture: Today: Previous lecture: The energy requiring step from substrate to transition state is an energy barrier called the free energy of activation G Transition state is the unstable (10-13 seconds) highest energy

More information

ABI Position paper. Supplement to ED/2009/12 Financial Instruments: Amortised Cost and Impairment

ABI Position paper. Supplement to ED/2009/12 Financial Instruments: Amortised Cost and Impairment ABI Position paper Supplement to ED/2009/12 Financial Instruments: Amortised Cost and Impairment March 2011 Page 1 of 17 Dear Sir/Madam, The Italian Banking Association welcomes the publication of the

More information

CHM333 LECTURE 13 14: 2/13 15/13 SPRING 2013 Professor Christine Hrycyna

CHM333 LECTURE 13 14: 2/13 15/13 SPRING 2013 Professor Christine Hrycyna INTRODUCTION TO ENZYMES Enzymes are usually proteins (some RNA) In general, names end with suffix ase Enzymes are catalysts increase the rate of a reaction not consumed by the reaction act repeatedly to

More information

Assessing Checking the the reliability of protein-ligand structures

Assessing Checking the the reliability of protein-ligand structures Assessing Checking the the reliability of protein-ligand structures Aim A common task in structure-based drug design is the validation of protein-ligand structures. This process needs to be quick, visual

More information

DNA SPOOLING 1 ISOLATION OF DNA FROM ONION

DNA SPOOLING 1 ISOLATION OF DNA FROM ONION DNA SPOOLING 1 ISOLATION OF DNA FROM ONION INTRODUCTION This laboratory protocol will demonstrate several basic steps required for isolation of chromosomal DNA from cells. To extract the chromosomal DNA,

More information

agucacaaacgcu agugcuaguuua uaugcagucuua

agucacaaacgcu agugcuaguuua uaugcagucuua RNA Secondary Structure Prediction: The Co-transcriptional effect on RNA folding agucacaaacgcu agugcuaguuua uaugcagucuua By Conrad Godfrey Abstract RNA secondary structure prediction is an area of bioinformatics

More information

Ensemble Docking Revisited

Ensemble Docking Revisited Ensemble Docking Revisited Oliver Korb Cambridge Crystallographic Data Centre korb@ccdc.cam.ac.uk Outline Introduction Simulated Ensemble Docking / Screening GOLD Ensemble Docking Future Work Introduction

More information

Action settings and interactivity

Action settings and interactivity Interactivity in Powerpoint Powerpoint includes a small set of actions that can be set to occur when the user clicks, or simply moves the cursor over an object. These actions consist of links to other

More information

A Semiempirical Free Energy Force Field with Charge-Based Desolvation

A Semiempirical Free Energy Force Field with Charge-Based Desolvation Software News and Update A Semiempirical Free Energy Force Field with Charge-Based Desolvation RUTH HUEY, GARRETT M. MORRIS, ARTHUR J. OLSON, DAVID S. GOODSELL Department of Molecular Biology, Scripps

More information

Hydrophobic Effect, Water Structure, and Heat Capacity Changes

Hydrophobic Effect, Water Structure, and Heat Capacity Changes J. Phys. Chem. B 1997, 101, 4343-4348 4343 Hydrophobic Effect, Water Structure, and Heat Capacity Changes Kim A. Sharp* and Bhupinder Madan Department of Biochemistry & Biophysics, UniVersity of PennsylVania,

More information

EXPRESSING LIKES, DISLIKES AND PREFERENCES DIALOGUE SCRIPT AND GLOSSARY

EXPRESSING LIKES, DISLIKES AND PREFERENCES DIALOGUE SCRIPT AND GLOSSARY EXPRESSING LIKES, DISLIKES AND PREFERENCES DIALOGUE SCRIPT AND GLOSSARY INTRODUCTION In this podcast we re going to be looking a various ways of expressing likes, dislikes and preferences. It is very easy

More information

Overview of NAMD and Molecular Dynamics

Overview of NAMD and Molecular Dynamics Overview of NAMD and Molecular Dynamics Jim Phillips Low-cost Linux Clusters for Biomolecular Simulations Using NAMD Outline Overview of molecular dynamics Overview of NAMD NAMD parallel design NAMD config

More information

Chapter 3. Protein Structure and Function

Chapter 3. Protein Structure and Function Chapter 3 Protein Structure and Function Broad functional classes So Proteins have structure and function... Fine! -Why do we care to know more???? Understanding functional architechture gives us POWER

More information

Effect of the Protein Denaturants Urea and Guanidinium on Water Structure: A Structural and Thermodynamic Study

Effect of the Protein Denaturants Urea and Guanidinium on Water Structure: A Structural and Thermodynamic Study 10748 J. Am. Chem. Soc. 1998, 120, 10748-10753 Effect of the Protein Denaturants Urea and Guanidinium on Water Structure: A Structural and Thermodynamic Study Francesco Vanzi, Bhupinder Madan, and Kim

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism 1. Discuss energy conversions and the 1 st and 2 nd law of thermodynamics. Be sure to use the terms work, potential energy, kinetic energy, and entropy. 2. What are Joules

More information

NetPrimer Manual. PREMIER Biosoft International. 3786 Corina Way, Palo Alto, CA 94303-4504 Tel: 650-856-2703 FAX: 650-618-1773

NetPrimer Manual. PREMIER Biosoft International. 3786 Corina Way, Palo Alto, CA 94303-4504 Tel: 650-856-2703 FAX: 650-618-1773 NetPrimer Manual PREMIER Biosoft International 3786 Corina Way, Palo Alto, CA 94303-4504 Tel: 650-856-2703 FAX: 650-618-1773 E-mail: sales@premierbiosoft.com 1 Copyright 2009 by PREMIER Biosoft International.

More information

Chemical Exchange in NMR Spectroscopy

Chemical Exchange in NMR Spectroscopy COURSE#1022: Biochemical Applications of NMR Spectroscopy http://www.bioc.aecom.yu.edu/labs/girvlab/nmr/course/ Chemical Exchange in NMR Spectroscopy LAST UPDATE: 3/28/2012 1 References Bain, A. D. (2003).

More information

LUCKY AHMED Department of Chemistry and Biochemistry Yale University, New Haven, CT 06511 Email: lucky.ahmed@yale.edu

LUCKY AHMED Department of Chemistry and Biochemistry Yale University, New Haven, CT 06511 Email: lucky.ahmed@yale.edu LUCKY AHMED Department of Chemistry and Biochemistry Yale University, New Haven, CT 06511 Email: lucky.ahmed@yale.edu EDUCATION PhD in Computational Chemistry Spring- Dissertation Title: Computational

More information

Current Motif Discovery Tools and their Limitations

Current Motif Discovery Tools and their Limitations Current Motif Discovery Tools and their Limitations Philipp Bucher SIB / CIG Workshop 3 October 2006 Trendy Concepts and Hypotheses Transcription regulatory elements act in a context-dependent manner.

More information

Aggregation and Dispersion of Small Hydrophobic Particles in Aqueous Electrolyte Solutions

Aggregation and Dispersion of Small Hydrophobic Particles in Aqueous Electrolyte Solutions 22736 J. Phys. Chem. B 2006, 110, 22736-22741 Aggregation and Dispersion of Small Hydrophobic Particles in Aqueous Electrolyte Solutions Ronen Zangi and B. J. Berne* Department of Chemistry and Center

More information

Carboxylic Acid Derivatives and Nitriles

Carboxylic Acid Derivatives and Nitriles Carboxylic Acid Derivatives and itriles Carboxylic Acid Derivatives: There are really only four things to worry about under this heading; acid chlorides, anhydrides, esters and amides. We ll start with

More information

HIGH ACCURACY APPROXIMATION ANALYTICAL METHODS FOR CALCULATING INTERNAL RATE OF RETURN. I. Chestopalov, S. Beliaev

HIGH ACCURACY APPROXIMATION ANALYTICAL METHODS FOR CALCULATING INTERNAL RATE OF RETURN. I. Chestopalov, S. Beliaev HIGH AUAY APPOXIMAIO AALYIAL MHODS FO ALULAIG IAL A OF U I. hestopalov, S. eliaev Diversity of methods for calculating rates of return on investments has been propelled by a combination of ever more sophisticated

More information

Data Mining Analysis of HIV-1 Protease Crystal Structures

Data Mining Analysis of HIV-1 Protease Crystal Structures Data Mining Analysis of HIV-1 Protease Crystal Structures Gene M. Ko, A. Srinivas Reddy, Sunil Kumar, and Rajni Garg AP0907 09 Data Mining Analysis of HIV-1 Protease Crystal Structures Gene M. Ko 1, A.

More information

Review of Chemical Equilibrium 7.51 September 1999. free [A] (µm)

Review of Chemical Equilibrium 7.51 September 1999. free [A] (µm) Review of Chemical Equilibrium 7.51 September 1999 Equilibrium experiments study how the concentration of reaction products change as a function of reactant concentrations and/or reaction conditions. For

More information

Worksheet for Teaching Module Probability (Lesson 1)

Worksheet for Teaching Module Probability (Lesson 1) Worksheet for Teaching Module Probability (Lesson 1) Topic: Basic Concepts and Definitions Equipment needed for each student 1 computer with internet connection Introduction In the regular lectures in

More information

OPERATIONAL CASE STUDY PRACTICE EXAM ANSWERS

OPERATIONAL CASE STUDY PRACTICE EXAM ANSWERS OPERATIONAL CASE STUDY PRACTICE EXAM ANSWERS The Practice Exam can be viewed at http://www.pearsonvue.com/cima/practiceexams/ These answers have been provided by CIMA for information purposes only. The

More information

STM, LEED and Mass spectrometry

STM, LEED and Mass spectrometry STM, LEED and Mass spectrometry R. Schloderer, S. Griessl, J. Freund, M. Edelwirth, W.M. Heckl Introduction TDS UHV technique Preparation STM LEED QMS Concept of new UHV chamber Conclusion P. Cole, M.

More information

Protein Dynamics Intro

Protein Dynamics Intro Protein Dynamics Intro From rigid structures to motions on energy landscapes Do you all remember Anfinsen? What concept now associated with his name made Anfinsen famous? Right, it is the concept that

More information

BIOINF 525 Winter 2016 Foundations of Bioinformatics and Systems Biology http://tinyurl.com/bioinf525-w16

BIOINF 525 Winter 2016 Foundations of Bioinformatics and Systems Biology http://tinyurl.com/bioinf525-w16 Course Director: Dr. Barry Grant (DCM&B, bjgrant@med.umich.edu) Description: This is a three module course covering (1) Foundations of Bioinformatics, (2) Statistics in Bioinformatics, and (3) Systems

More information

Ions cannot cross membranes. Ions move through pores

Ions cannot cross membranes. Ions move through pores Ions cannot cross membranes Membranes are lipid bilayers Nonpolar tails Polar head Fig 3-1 Because of the charged nature of ions, they cannot cross a lipid bilayer. The ion and its cloud of polarized water

More information

9.63 Laboratory in Cognitive Science. Factorial Design

9.63 Laboratory in Cognitive Science. Factorial Design 9.63 Laboratory in Cognitive Science Fall 25 Lecture 4a Factorial Design: Interaction Aude Oliva Ben Balas, Charles Kemp Factorial Design Two or more factors in such a way that all the possible combinations

More information

Integrating Bioinformatics, Medical Sciences and Drug Discovery

Integrating Bioinformatics, Medical Sciences and Drug Discovery Integrating Bioinformatics, Medical Sciences and Drug Discovery M. Madan Babu Centre for Biotechnology, Anna University, Chennai - 600025 phone: 44-4332179 :: email: madanm1@rediffmail.com Bioinformatics

More information

Closed Loop Pressure Control for the Extrusion Process

Closed Loop Pressure Control for the Extrusion Process Closed Loop Pressure Control for the Extrusion Process By John Pacini Updated by Douglas Joy Extrusion is a continuous process and successful economic production depends on maintaining stable output and

More information

Gas Chromatography. Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC.

Gas Chromatography. Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC. Gas Chromatography Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC. Samples in 10mL sealed glass vials were placed in the MPS-2

More information

The Steps. 1. Transcription. 2. Transferal. 3. Translation

The Steps. 1. Transcription. 2. Transferal. 3. Translation Protein Synthesis Protein synthesis is simply the "making of proteins." Although the term itself is easy to understand, the multiple steps that a cell in a plant or animal must go through are not. In order

More information

Department of Biochemistry, University of British Columbia, Vancouver, B.C., Canada V6T 1W5

Department of Biochemistry, University of British Columbia, Vancouver, B.C., Canada V6T 1W5 volume 10 Number 11982 Nucleic Acids Research A DNA sequence handling program A.D.Delaney Department of Biochemistry, University of British Columbia, Vancouver, B.C., Canada V6T 1W5 Received 10 November

More information

There is a simple equation for calculating dilutions. It is also easy to present the logic of the equation.

There is a simple equation for calculating dilutions. It is also easy to present the logic of the equation. Solutions: Dilutions. A. Dilutions: Introduction... 1 B. The dilution equation... 2 C. The logic of the dilution equation... 3 D. Should you memorize the dilution equation? -- Attention X11 students...

More information

M.Sc. in Nano Technology with specialisation in Nano Biotechnology

M.Sc. in Nano Technology with specialisation in Nano Biotechnology M.Sc. in Nano Technology with specialisation in Nano Biotechnology Nanotechnology is all about designing, fabricating and controlling materials, components and machinery with dimensions on the nanoscale,

More information

Biological Sciences Initiative. Human Genome

Biological Sciences Initiative. Human Genome Biological Sciences Initiative HHMI Human Genome Introduction In 2000, researchers from around the world published a draft sequence of the entire genome. 20 labs from 6 countries worked on the sequence.

More information

Writing Journal Articles

Writing Journal Articles Writing Journal Articles C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Updated May 2015 1 Introduction These notes include some advice on how to write a paper for

More information

Water s Hydrogen Bonds in the Hydrophobic Effect: A Simple Model

Water s Hydrogen Bonds in the Hydrophobic Effect: A Simple Model J. Phys. Chem. B 2005, 109, 23611-23617 23611 Water s Hydrogen Bonds in the Hydrophobic Effect: A Simple Model Huafeng Xu and Ken A. Dill* Department of Pharmaceutical Chemistry and Graduate Group of Biophysics,

More information

Sanger Sequencing and Quality Assurance. Zbigniew Rudzki Department of Pathology University of Melbourne

Sanger Sequencing and Quality Assurance. Zbigniew Rudzki Department of Pathology University of Melbourne Sanger Sequencing and Quality Assurance Zbigniew Rudzki Department of Pathology University of Melbourne Sanger DNA sequencing The era of DNA sequencing essentially started with the publication of the enzymatic

More information

RNA Movies 2: sequential animation of RNA secondary structures

RNA Movies 2: sequential animation of RNA secondary structures W330 W334 Nucleic Acids Research, 2007, Vol. 35, Web Server issue doi:10.1093/nar/gkm309 RNA Movies 2: sequential animation of RNA secondary structures Alexander Kaiser 1, Jan Krüger 2 and Dirk J. Evers

More information

ab139418 Propidium Iodide Flow Cytometry Kit for Cell Cycle Analysis

ab139418 Propidium Iodide Flow Cytometry Kit for Cell Cycle Analysis ab139418 Propidium Iodide Flow Cytometry Kit for Cell Cycle Analysis Instructions for Use To determine cell cycle status in tissue culture cell lines by measuring DNA content using a flow cytometer. This

More information

RAF Application. The Origin of Life. E. Bingham 1 L. Hutton-Smith 2 E. Rolls 2. Oxford Summer School in Computational Biology, 2013

RAF Application. The Origin of Life. E. Bingham 1 L. Hutton-Smith 2 E. Rolls 2. Oxford Summer School in Computational Biology, 2013 The Origin of Life E. Bingham 1 L. Hutton-Smith 2 E. Rolls 2 1 Department of Mathematics University of North Carolina 2 Mathematical Institute University of Oxford Oxford Summer School in Computational

More information

Introduction to NMR spectroscopy. Swiss Institute of Bioinformatics I.Phan & J. Kopp

Introduction to NMR spectroscopy. Swiss Institute of Bioinformatics I.Phan & J. Kopp Introduction to NMR spectroscopy Swiss Institute of Bioinformatics I.Phan & J. Kopp NMR: the background Complex technique. Requires knowledge in: Mathematics Physics Chemistry Biology (Medicin) Involves

More information

HPC Innovation in Healthcare and Energy: Bridging academia and industry " Riam Kanso! CBK Sci Con Ltd.! March 25, 2014!

HPC Innovation in Healthcare and Energy: Bridging academia and industry  Riam Kanso! CBK Sci Con Ltd.! March 25, 2014! HPC Innovation in Healthcare and Energy: Bridging academia and industry " Riam Kanso CBK Sci Con Ltd. March 25, 2014 CBK Sci Con Limited" CBK Sci Con is a consultancy devoted to the provision of high end

More information

Supporting Information. application in human rrna methylation analysis of clinical specimens

Supporting Information. application in human rrna methylation analysis of clinical specimens Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2015 Supporting Information N 6 -methyladenine hinders RNA- and DNA- directed DNA synthesis:

More information

Dendrimer S Static/Bonding Characteristics - A Comparison Between PEO and Dendi System

Dendrimer S Static/Bonding Characteristics - A Comparison Between PEO and Dendi System PAPER www.rsc.org/pccp Physical Chemistry Chemical Physics Molecular dynamics simulations of polyamidoamine dendrimers and their complexes with linear poly(ethylene oxide) at different ph conditions: static

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Introduction to Molecular Mechanics C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology

Introduction to Molecular Mechanics C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Introduction to Molecular Mechanics C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Introduction Molecular Mechanics or force-field methods use classical type models

More information

Pulleys, Work, and Energy

Pulleys, Work, and Energy Pulleys, Work, and Energy In this laboratory, we use pulleys to study work and mechanical energy. Make sure that you have the following pieces of equipment. two triple-pulley assemblies apparatus from

More information

CHM333 LECTURE 13 14: 2/13 15/12 SPRING 2012 Professor Christine Hrycyna

CHM333 LECTURE 13 14: 2/13 15/12 SPRING 2012 Professor Christine Hrycyna INTRODUCTION TO ENZYMES Enzymes are usually proteins (some RNA) In general, names end with suffix ase Enzymes are catalysts increase the rate of a reaction not consumed by the reaction act repeatedly to

More information

LabGenius. Technical design notes. The world s most advanced synthetic DNA libraries. hi@labgeni.us V1.5 NOV 15

LabGenius. Technical design notes. The world s most advanced synthetic DNA libraries. hi@labgeni.us V1.5 NOV 15 LabGenius The world s most advanced synthetic DNA libraries Technical design notes hi@labgeni.us V1.5 NOV 15 Introduction OUR APPROACH LabGenius is a gene synthesis company focussed on the design and manufacture

More information

MATCH Commun. Math. Comput. Chem. 61 (2009) 781-788

MATCH Commun. Math. Comput. Chem. 61 (2009) 781-788 MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 61 (2009) 781-788 ISSN 0340-6253 Three distances for rapid similarity analysis of DNA sequences Wei Chen,

More information

How To Understand The Chemistry Of A 2D Structure

How To Understand The Chemistry Of A 2D Structure Finding Better Leads using Molecular Fields Sally Rose, Tim Cheeseright, Cresset BioMolecular Discovery Ltd 2D drawings are a ubiquitous representation for molecular structures. Despite this, they provide

More information