6. p o s I T I v e r e I n f o r c e M e n T

Size: px
Start display at page:

Download "6. p o s I T I v e r e I n f o r c e M e n T"

Transcription

1 6. p o s I T I v e r e I f o r c e M e T The way positive reiforcemet is carried out is more importat tha the amout. B.F. Skier We all eed positive reiforcemet. Whether or ot we are cosciously aware of it, reiforcemet is the reaso we cotiue to do may thigs. Eve as adults, we look for positive reiforcemet to exted our motivatio to do thigs. A idividual who is tryig to lose weight is motivated by the fried who gives a complimet o his or her appearace. How may of us would cotiue to work at our jobs if our employer stopped payig us? Providig Maitoba studets with somethig they value i order to icrease a desired behaviour ca be as simple as offerig a smile or as complex as settig up a toke system. Persoal recogitio lets studets kow that teachers are iterested i them ad how they behave, ad are cocered about supportig them i makig positive chages i their behaviour ad learig. Positive reiforcemet also helps to build positive relatioships by modellig appropriate ways of iteractig with others. choose effective reiforcers Effective positive reiforcemet is age-appropriate is at the studet s level of fuctioig has admiistrative ad paretal support is geuie Eve extravagat rewards caot motivate studets to demostrate skills they have ot leared or do ot uderstad. Positive reiforcemet works best whe give immediately after the desired behaviour, or as soo as possible. If the desired behaviour icreases as a result, the the reiforcemet was positive. If ot, the reiforcemet did ot occur. May teachers set up a moitorig system to measure whether desired behaviours are icreasig. For more iformatio, please see Key Elemet 8, Gatherig Data to Uderstad Classroom Behaviour. s u p p o r t i g p o s i t i v e B e h a v i o u r i M a i t o b a c l a s s r o o m s 45

2 Watch for uiteded cosequeces. For example, if studets egage i egative behaviour to get attetio ad the teacher s respose provides that attetio, the egative behaviour will likely icrease. Equal is ot always fair. For some studets, the educator will eed to approach disciplie i a maer that cosiders the studet s exceptioal learig eeds, icludig whether the studet was able to access the iformatio the studet could uderstad the policy or rules the discipliary actios used for the majority of the studets are appropriate for the studet (Maitoba Educatio, Citizeship ad Youth, 2006a, 18) Specific reiforcers that work for oe studet or oe group of studets may ot work for aother. Fidig appropriate reiforcers requires careful attetio ad a uderstadig of idividual studet eeds. Be alert for studets iterests. Typical reiforcers iclude extra recess time, extra computer time, carig for a class pet, or usig special art supplies. Ask studets, parets, last year s teachers, ad other staff what might be a effective reiforcer for a particular studet. Studets of ay age ca complete a checklist of reiforcers to idetify the rewards they would like to ear. Alteratively, teachers ca create a reiforcemet sampler from which studets ca choose. A sampler meu cotaiig a variety of reiforcers also keeps studets motivated. See Tool 5: Elemetary Reiforcer Meu ad Tool 7: Secodary Reiforcer Meu for sample reiforcer meus. Also see Sectio 6: Disciplie Strategies ad Itervetios Support Materials i Towards Iclusio: From Challeges to Possibilities: Plaig for Behaviour (Maitoba Educatio, Traiig ad Youth, 2001) Always give the reiforcer after the desired behaviour, ever before. If the desired behaviour does ot occur ad the reiforcer has already bee give, the result ca be coflict ad oppositioal behaviour. 46 T o w a r d s I c l u s i o

3 Effective reiforcers are cosiderate of the age ad stage of the studet ad idividual eed (i.e., some studets are extremely self-coscious ad do ot wat attetio draw to themselves) are provided immediately after the behaviour has occurred are provided frequetly are paired with a clear verbal descriptio of the behaviour are delivered with ethusiasm are varied eough to maitai iterest are delivered cotiuously at first, ad the more itermittetly later o ca happe o a fixed schedule (e.g., every time a behaviour is observed or every third time a behaviour is observed) or o a variable schedule (e.g., radomly give o the first respose, the the fourth, the the secod, but averaged to a predetermied umber) fade out over time begi combiig material rewards or privileges with social reiforcemet o a cotiuous schedule, movig toward a icreasigly itermittet schedule; gradually move from artificial to more atural reiforcemet social reiforcemet A smile, commet, ad/or complimet ca go a log way toward icreasig or maitaiig positive studet behaviour. May studets eed sigificat amouts of social reiforcemet ad positive attetio. Walkig aroud the classroom gives the teacher opportuities to socially reiforce positive behaviour (ad to aticipate ad proactively hadle problems). Beig at the door to greet studets as they arrive ad spedig at least half the class time walkig amog studets as they work are perhaps the easiest ad most proactive approaches a teacher ca take to reiforce positive classroom behaviour. Build aticipatio Positive reiforcemet builds motivatio (ad possibly excitemet) aroud a expected behaviour. Whe studets kow what reiforcemet they ca expect if they demostrate a particular behaviour, the desired behaviour is likely to occur more quickly ad more ofte. Aticipatio strategies come before the behaviour occurs ad serve to icrease or maitai that behaviour. Tell studets what types of behaviour you are lookig for. Tell them what will happe if they demostrate this behaviour. s u p p o r t i g p o s i t i v e B e h a v i o u r i M a i t o b a c l a s s r o o m s 47

4 Whe they demostrate the behaviour, give them immediate positive feedback ad the reiforcer. Some schools have successfully built aticipatio related to positive reiforcemet whe developig their school-based positive behaviour support ad itervetio usig The Pricipal s 200 Club ad Mystery Motivator strategy (Jeso et al., 2006). I The Tough Kid: Pricipal s Briefcase by Jeso et al., the authors propose establishig a Pricipal s 200 Club, which works o the priciple of Catch Them Beig Good. All staff participate i recogizig studets by givig them 200 Club Tickets as they are successfully followig the expectatios/ demostratig the target behaviour of the school. Studets use the tickets to put their ames o radomly chose squares o a 15 x 15 grid. Whe the grid has a row, colum, or diagoal of 15 wiig ames, the lucky studets get to come dow to the office to receive the Mystery Motivator. The Mystery Motivator is, as its ame implies, a mystery to all the studets up util the wiers are declared. It is a large evelope with a questio mark draw o the outside ad posted i a very visible, iaccessible spot i the school. Iside the evelope, the positive reiforcemet is writte, idicatig what the wiig 15 will receive. It ca be as elaborate or as simple as you wat to make it. The secret of success for the mystery motivator is whe studets do t kow what it will be. They ca t say Oh, I already have oe of those or Who wats to have luch with the pricipal ayways! It builds aticipatio because of the ukow. Iterdepedet Group Cotigecies Iterdepedet group cotigecy programs require a etire group of studets to reach a desigated goal i order to receive reiforcemet. There are several advatages to usig iterdepedet group cotigecies, makig them a appealig optio for teachers. They have bee foud to be cost-effective, time efficiet, ad easy to implemet. I whole-group cotigecy programs, either oe or all of the studets meet the goal ad receive reiforcemet. This makes it less complicated procedurally ad, at the same time, allows for more activities to become available for reiforcemet. I ay type of iterdepedet cotigecy program, cooperatio ad ecouragemet are more likely to occur because it is i everyoe s best iterests to meet the goal. 48 T o w a r d s I c l u s i o

5 A Maitoba teacher shares these iterdepedet cotigecy techiques, which have bee used successfully i the classroom: (1) 30 Days of No Blue Cards = Field Trip or Class Afteroo Party: I had a card chart i the classroom with each perso s ame. If oe of the five classroom rules were violated, a card was flipped uder that studet s ame. Yellow card = warig, red card = 15 miutes after school, ad blue card = 30 miutes after school ad a call home to parets. I tallied each day that o blue card was flipped o the board, ad we cotiued to do this util 30 days were reached. The the class got to pla a field trip. We reached 30 days three times throughout the year. (2) PARTNER POINTS: The studets were seated i parter groups, which chaged at the begiig of each moth. Each parter group was awarded poits for a variety of thigs. The group with the most poits at the ed of the moth received a prize (games, books, gift certificates). I made the prizes very motivatig ad this techique maitaied its usefuless throughout the year! This techique was most beeficial i promotig smooth trasitios betwee subjects, keepig studets o task durig work time, ad keepig the classroom/desks orgaized. May of the teachers i our school (who believe i group seatig versus rows i the classroom) use this tool with MUCH success. The PIZZA PARTY was used specifically for homework checks ad work completio. I set the umber of checks (50), put studets ito homework groups o the chart, ad the summarized the umber of homework checks each group had at the ed of the set period of time. This system of groupig them o the chart istead of doig it idividually ecouraged studets to help their teammates had i the work, fid it, remid each other that thigs are due, etc. Ay studet who got all the checks (eve from a differet group) were also ivited to the pizza party. The Good Behaviour Game is a evidece-based classroom maagemet strategy that rewards youth for ot egagig i aggressive ad disruptive behaviours. Studets are formed ito teams, which are proportioately mixed by geder ad behaviour. Each team receives a check mark wheever a team member exhibits disruptive behaviour, ad a poit for every period of time without (or with few) disruptive behaviours. Iitially, the team with the most poits at the ed of each game period ad week receives a tagible or activity icetive. Later, teams receive more abstract rewards. S u p p o r t i g P o s i t i v e B e h a v i o u r i M a i t o b a C l a s s r o o m s 49

Professional Networking

Professional Networking Professioal Networkig 1. Lear from people who ve bee where you are. Oe of your best resources for etworkig is alumi from your school. They ve take the classes you have take, they have bee o the job market

More information

G r a d e. 2 M a t h e M a t i c s. statistics and Probability

G r a d e. 2 M a t h e M a t i c s. statistics and Probability G r a d e 2 M a t h e M a t i c s statistics ad Probability Grade 2: Statistics (Data Aalysis) (2.SP.1, 2.SP.2) edurig uderstadigs: data ca be collected ad orgaized i a variety of ways. data ca be used

More information

13 Management Practices That Waste Time & Money (and what to do instead)

13 Management Practices That Waste Time & Money (and what to do instead) 13 Maagemet Practices That Waste Time & Moey (ad what to do istead) By Dr. Aubrey C. Daiels Just Because Every Orgaizatio Uses Them, Does t Make Them Effective To achieve maagemet excellece, you eed to

More information

The Forgotten Middle. research readiness results. Executive Summary

The Forgotten Middle. research readiness results. Executive Summary The Forgotte Middle Esurig that All Studets Are o Target for College ad Career Readiess before High School Executive Summary Today, college readiess also meas career readiess. While ot every high school

More information

A guide to School Employees' Well-Being

A guide to School Employees' Well-Being A guide to School Employees' Well-Beig Backgroud The public school systems i the Uited States employ more tha 6.7 millio people. This large workforce is charged with oe of the atio s critical tasks to

More information

G r a d e. 5 M a t h e M a t i c s. Patterns and relations

G r a d e. 5 M a t h e M a t i c s. Patterns and relations G r a d e 5 M a t h e M a t i c s Patters ad relatios Grade 5: Patters ad Relatios (Patters) (5.PR.1) Edurig Uderstadigs: Number patters ad relatioships ca be represeted usig variables. Geeral Outcome:

More information

Flood Emergency Response Plan

Flood Emergency Response Plan Flood Emergecy Respose Pla This reprit is made available for iformatioal purposes oly i support of the isurace relatioship betwee FM Global ad its cliets. This iformatio does ot chage or supplemet policy

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

NASUWT. Briefing for teachers on the special educational needs and disability (SEND) reforms. The Teachers Union. Teachers

NASUWT. Briefing for teachers on the special educational needs and disability (SEND) reforms. The Teachers Union. Teachers The Teachers Uio Briefig for teachers o the special educatioal eeds ad disability (SEND) reforms Teachers Itroductio Special educatioal eeds ad disability (SEND) reforms were itroduced i 2014. I order

More information

GOOD PRACTICE CHECKLIST FOR INTERPRETERS WORKING WITH DOMESTIC VIOLENCE SITUATIONS

GOOD PRACTICE CHECKLIST FOR INTERPRETERS WORKING WITH DOMESTIC VIOLENCE SITUATIONS GOOD PRACTICE CHECKLIST FOR INTERPRETERS WORKING WITH DOMESTIC VIOLENCE SITUATIONS I the sprig of 2008, Stadig Together agaist Domestic Violece carried out a piece of collaborative work o domestic violece

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature. Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.

More information

STUDENTS PARTICIPATION IN ONLINE LEARNING IN BUSINESS COURSES AT UNIVERSITAS TERBUKA, INDONESIA. Maya Maria, Universitas Terbuka, Indonesia

STUDENTS PARTICIPATION IN ONLINE LEARNING IN BUSINESS COURSES AT UNIVERSITAS TERBUKA, INDONESIA. Maya Maria, Universitas Terbuka, Indonesia STUDENTS PARTICIPATION IN ONLINE LEARNING IN BUSINESS COURSES AT UNIVERSITAS TERBUKA, INDONESIA Maya Maria, Uiversitas Terbuka, Idoesia Co-author: Amiuddi Zuhairi, Uiversitas Terbuka, Idoesia Kuria Edah

More information

Solving Inequalities

Solving Inequalities Solvig Iequalities Say Thaks to the Authors Click http://www.ck12.org/saythaks (No sig i required) To access a customizable versio of this book, as well as other iteractive cotet, visit www.ck12.org CK-12

More information

Setting Up a Contract Action Network

Setting Up a Contract Action Network CONTRACT ACTION NETWORK Settig Up a Cotract Actio Network This is a guide for local uio reps who wat to set up a iteral actio etwork i their worksites. This etwork cosists of: The local uio represetative,

More information

Concept #1. Goals for Presentation. I m going to be a mathematics teacher: Where did this stuff come from? Why didn t I know this before?

Concept #1. Goals for Presentation. I m going to be a mathematics teacher: Where did this stuff come from? Why didn t I know this before? I m goig to be a mathematics teacher: Why did t I kow this before? Steve Williams Associate Professor of Mathematics/ Coordiator of Secodary Mathematics Educatio Lock Have Uiversity of PA swillia@lhup.edu

More information

A Resource for Free-standing Mathematics Qualifications Working with %

A Resource for Free-standing Mathematics Qualifications Working with % Ca you aswer these questios? A savigs accout gives % iterest per aum.. If 000 is ivested i this accout, how much will be i the accout at the ed of years? A ew car costs 16 000 ad its value falls by 1%

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

ABCs. of Diabetes Care

ABCs. of Diabetes Care ABCs of Diabetes Care Stayig healthy whe you have diabetes ca be challegig. But the more you focus o the positive results of a healthy diet, medicatio routie ad regular exercise, the easier it will be

More information

Domain 1: Designing a SQL Server Instance and a Database Solution

Domain 1: Designing a SQL Server Instance and a Database Solution Maual SQL Server 2008 Desig, Optimize ad Maitai (70-450) 1-800-418-6789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis

Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, P-value Type I Error, Type II Error, Sigificace Level, Power Sectio 8-1: Overview Cofidece Itervals (Chapter 7) are

More information

Searching Algorithm Efficiencies

Searching Algorithm Efficiencies Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay

More information

CREATIVE MARKETING PROJECT 2016

CREATIVE MARKETING PROJECT 2016 CREATIVE MARKETING PROJECT 2016 The Creative Marketig Project is a chapter project that develops i chapter members a aalytical ad creative approach to the marketig process, actively egages chapter members

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

Descriptive statistics deals with the description or simple analysis of population or sample data.

Descriptive statistics deals with the description or simple analysis of population or sample data. Descriptive statistics Some basic cocepts A populatio is a fiite or ifiite collectio of idividuals or objects. Ofte it is impossible or impractical to get data o all the members of the populatio ad a small

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

Privacy Guide for Small Businesses: The Basics

Privacy Guide for Small Businesses: The Basics Office of the Privacy Commissioer of Caada PIPEDA Privacy Guide for Small Busiesses: The Basics Privacy is the best policy Hadlig privacy cocers correctly ca help improve your orgaizatio s reputatio. Whe

More information

The geometric series and the ratio test

The geometric series and the ratio test The geometric series ad the ratio test Today we are goig to develop aother test for covergece based o the iterplay betwee the it compariso test we developed last time ad the geometric series. A ote about

More information

How to use what you OWN to reduce what you OWE

How to use what you OWN to reduce what you OWE How to use what you OWN to reduce what you OWE Maulife Oe A Overview Most Caadias maage their fiaces by doig two thigs: 1. Depositig their icome ad other short-term assets ito chequig ad savigs accouts.

More information

The Importance of Media in the Classroom

The Importance of Media in the Classroom 01-TilestoVol09.qxd 8/25/03 3:47 PM Page 1 1 The Importace of Media i the Classroom As teachers, we have a wealth of iformatio from which to choose for our classrooms. We ca ow brig history ito the classroom

More information

Desktop Management. Desktop Management Tools

Desktop Management. Desktop Management Tools Desktop Maagemet 9 Desktop Maagemet Tools Mac OS X icludes three desktop maagemet tools that you might fid helpful to work more efficietly ad productively: u Stacks puts expadable folders i the Dock. Clickig

More information

One Goal. 18-Months. Unlimited Opportunities.

One Goal. 18-Months. Unlimited Opportunities. 18 fast-track 18-Moth BACHELOR S DEGREE completio PROGRAMS Oe Goal. 18-Moths. Ulimited Opportuities. www.ortheaster.edu/cps Fast-Track Your Bachelor s Degree ad Career Goals Complete your bachelor s degree

More information

Chapter Gaussian Elimination

Chapter Gaussian Elimination Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

PENSION ANNUITY. Policy Conditions Document reference: PPAS1(7) This is an important document. Please keep it in a safe place.

PENSION ANNUITY. Policy Conditions Document reference: PPAS1(7) This is an important document. Please keep it in a safe place. PENSION ANNUITY Policy Coditios Documet referece: PPAS1(7) This is a importat documet. Please keep it i a safe place. Pesio Auity Policy Coditios Welcome to LV=, ad thak you for choosig our Pesio Auity.

More information

RADICALS AND SOLVING QUADRATIC EQUATIONS

RADICALS AND SOLVING QUADRATIC EQUATIONS RADICALS AND SOLVING QUADRATIC EQUATIONS Evaluate Roots Overview of Objectives, studets should be able to:. Evaluate roots a. Siplify expressios of the for a b. Siplify expressios of the for a. Evaluate

More information

Sum of Exterior Angles of Polygons TEACHER NOTES

Sum of Exterior Angles of Polygons TEACHER NOTES Sum of Exterior Agles of Polygos TEACHER NOTES Math Objectives Studets will determie that the iterior agle of a polygo ad a exterior agle of a polygo form a liear pair (i.e., the two agles are supplemetary).

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

Get advice now. Are you worried about your mortgage? New edition

Get advice now. Are you worried about your mortgage? New edition New editio Jauary 2009 Are you worried about your mortgage? Get advice ow If you are strugglig to pay your mortgage, or you thik it will be difficult to pay more whe your fixed-rate deal eds, act ow to

More information

G r a d e. 5 M a t h e M a t i c s. shape and space

G r a d e. 5 M a t h e M a t i c s. shape and space G r a d e 5 M a t h e M a t i c s shape ad space Grade 5: Shape ad Space (Measuremet) (5.SS.1) Edurig Uderstadigs: there is o direct relatioship betwee perimeter ad area. Geeral Outcome: Use direct or

More information

AGC s SUPERVISORY TRAINING PROGRAM

AGC s SUPERVISORY TRAINING PROGRAM AGC s SUPERVISORY TRAINING PROGRAM Learig Today...Leadig Tomorrow The Kowledge ad Skills Every Costructio Supervisor Must Have to be Effective The Associated Geeral Cotractors of America s Supervisory

More information

Information about Bankruptcy

Information about Bankruptcy Iformatio about Bakruptcy Isolvecy Service of Irelad Seirbhís Dócmhaieachta a héirea Isolvecy Service of Irelad Seirbhís Dócmhaieachta a héirea What is the? The Isolvecy Service of Irelad () is a idepedet

More information

Hypergeometric Distributions

Hypergeometric Distributions 7.4 Hypergeometric Distributios Whe choosig the startig lie-up for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you

More information

UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT 2 DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS.

UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT 2 DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS. Name: Group Members: UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS. EACH ACTIVITY HAS A COLOR THAT CORRESPONDS

More information

Handling. Collection Calls

Handling. Collection Calls Hadlig the Collectio Calls We do everythig we ca to stop collectio calls; however, i the early part of our represetatio, you ca expect some of these calls to cotiue. We uderstad that the first few moths

More information

Juvenile Probation and Mentoring

Juvenile Probation and Mentoring TECHNICAL ASSISTANCE PROFILE Examiig the Referral Stage for Metorig High-Risk Youth I Six Differet Juveile Justice Settigs Depedecy Court, Deliquecy Court, Juveile Detetio, Juveile Correctios, Juveile

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Ken blanchard college of business

Ken blanchard college of business Ke blachard College of BUSINESS a history of excellece Established i 1949, Grad Cayo Uiversity has more tha a 60-year track record of helpig studets achieve their academic goals. The Ke Blachard College

More information

Conservative treatment:

Conservative treatment: Coservative treatmet: Choosig ot to start dialysis T H E K I D N E Y F O U N D A T I O N O F C A N A D A 1 Coservative treatmet: Choosig ot to start dialysis You have the right to make your ow choices

More information

Geometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4

Geometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4 3330_0903qxd /5/05 :3 AM Page 663 Sectio 93 93 Geometric Sequeces ad Series 663 Geometric Sequeces ad Series What you should lear Recogize, write, ad fid the th terms of geometric sequeces Fid th partial

More information

Grade 10 Physical Education/ Health Education (20F) A Course for Independent Study

Grade 10 Physical Education/ Health Education (20F) A Course for Independent Study Grade 10 Physical Educatio/ Health Educatio (20F) A Course for Idepedet Study G r a d E 1 0 P h y s i c a l E d u c a t i o / h E a l t h E d u c a t i o ( 2 0 F ) a course for idepedet study 2012 Maitoba

More information

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on. Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have

More information

Hypothesis Tests Applied to Means

Hypothesis Tests Applied to Means The Samplig Distributio of the Mea Hypothesis Tests Applied to Meas Recall that the samplig distributio of the mea is the distributio of sample meas that would be obtaied from a particular populatio (with

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

MESSAGE TO TEACHERS: NOTE TO EDUCATORS:

MESSAGE TO TEACHERS: NOTE TO EDUCATORS: MESSAGE TO TEACHERS: NOTE TO EDUCATORS: Attached herewith, please fid suggested lesso plas for term 1 of MATHEMATICS Grade 12. Please ote that these lesso plas are to be used oly as a guide ad teachers

More information

Amendments to employer debt Regulations

Amendments to employer debt Regulations March 2008 Pesios Legal Alert Amedmets to employer debt Regulatios The Govermet has at last issued Regulatios which will amed the law as to employer debts uder s75 Pesios Act 1995. The amedig Regulatios

More information

Confidence Intervals and Sample Size

Confidence Intervals and Sample Size 8/7/015 C H A P T E R S E V E N Cofidece Itervals ad Copyright 015 The McGraw-Hill Compaies, Ic. Permissio required for reproductio or display. 1 Cofidece Itervals ad Outlie 7-1 Cofidece Itervals for the

More information

Learning English Vocabulary With a foreword by Paul Nation and Word Lists from the British National Corpus. Teacher s Guide

Learning English Vocabulary With a foreword by Paul Nation and Word Lists from the British National Corpus. Teacher s Guide Learig Eglish Vocabulary With a foreword by Paul Natio ad Word Lists from the British Natioal Corpus Itroductio Teacher s Guide A lot has bee writte about the teachig of the readig skill, but the most

More information

STAFFING THE UNIVERSITY LIBRARY FOR THE NEXT MILLENNIUM:

STAFFING THE UNIVERSITY LIBRARY FOR THE NEXT MILLENNIUM: STAFFING THE UNIVERSITY LIBRARY FOR THE NEXT MILLENNIUM: DIVERSITY,TEAM-BUILDING, AND CONFLICT RESOLUTION ISSUES TONI OLSHEN YORK UNIVERSITY CANADIAN LIBRARY ASSOCIATION TORONTO JUNE 19, 1999 TRAITS FOR

More information

The second difference is the sequence of differences of the first difference sequence, 2

The second difference is the sequence of differences of the first difference sequence, 2 Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

Predictive Modeling Data. in the ACT Electronic Student Record

Predictive Modeling Data. in the ACT Electronic Student Record Predictive Modelig Data i the ACT Electroic Studet Record overview Predictive Modelig Data Added to the ACT Electroic Studet Record With the release of studet records i September 2012, predictive modelig

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Pre-Suit Collection Strategies

Pre-Suit Collection Strategies Pre-Suit Collectio Strategies Writte by Charles PT Phoeix How to Decide Whether to Pursue Collectio Calculatig the Value of Collectio As with ay busiess litigatio, all factors associated with the process

More information

Deceased organ donation

Deceased organ donation Deceased orga doatio Let's talk about it Table of Cotets Itroductio Why orga doatio is so importat Facig the facts Kidey trasplats are highly successful What exactly is deceased doatio? What orgas ca be

More information

Mocks.ie Maths LC HL Further Calculus mocks.ie Page 1

Mocks.ie Maths LC HL Further Calculus mocks.ie Page 1 Maths Leavig Cert Higher Level Further Calculus Questio Paper By Cillia Fahy ad Darro Higgis Mocks.ie Maths LC HL Further Calculus mocks.ie Page Further Calculus ad Series, Paper II Q8 Table of Cotets:.

More information

I. Why is there a time value to money (TVM)?

I. Why is there a time value to money (TVM)? Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios

More information

Snap. Jenine's formula. The SNAP probability is

Snap. Jenine's formula. The SNAP probability is Sap The game of SNAP is played with stadard decks of cards. The decks are shuffled ad cards are dealt simultaeously from the top of each deck. SNAP is called if the two dealt cards are idetical (value

More information

PUBLIC RELATIONS PROJECT 2016

PUBLIC RELATIONS PROJECT 2016 PUBLIC RELATIONS PROJECT 2016 The purpose of the Public Relatios Project is to provide a opportuity for the chapter members to demostrate the kowledge ad skills eeded i plaig, orgaizig, implemetig ad evaluatig

More information

Quadratics - Revenue and Distance

Quadratics - Revenue and Distance 9.10 Quadratics - Reveue ad Distace Objective: Solve reveue ad distace applicatios of quadratic equatios. A commo applicatio of quadratics comes from reveue ad distace problems. Both are set up almost

More information

Making training work for your business

Making training work for your business Makig traiig work for your busiess Itegratig core skills of laguage, literacy ad umeracy ito geeral workplace traiig makes sese. The iformatio i this pamphlet will help you pla for ad build a successful

More information

CHAPTER 11 Financial mathematics

CHAPTER 11 Financial mathematics CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula

More information

Introductory Explorations of the Fourier Series by

Introductory Explorations of the Fourier Series by page Itroductory Exploratios of the Fourier Series by Theresa Julia Zieliski Departmet of Chemistry, Medical Techology, ad Physics Momouth Uiversity West Log Brach, NJ 7764-898 tzielis@momouth.edu Copyright

More information

Lesson 12. Sequences and Series

Lesson 12. Sequences and Series Retur to List of Lessos Lesso. Sequeces ad Series A ifiite sequece { a, a, a,... a,...} ca be thought of as a list of umbers writte i defiite order ad certai patter. It is usually deoted by { a } =, or

More information

Ideate, Inc. Training Solutions to Give you the Leading Edge

Ideate, Inc. Training Solutions to Give you the Leading Edge Ideate, Ic. Traiig News 2014v1 Ideate, Ic. Traiig Solutios to Give you the Leadig Edge New Packages For All Your Traiig Needs! Bill Johso Seior MEP - Applicatio Specialist Revit MEP Fudametals Ad More!

More information

FLEXIBLE GUARANTEE BOND SERIES 2

FLEXIBLE GUARANTEE BOND SERIES 2 FLEXIBLE GUARANTEE BOND SERIES 2 Key features of the Flexible Guaratee Bod Series 2 The Fiacial Coduct Authority is a fiacial services regulator. It requires us, LV=, to give you this importat iformatio

More information

A Podiatrists Guide to Earning More, Working Less and Enjoying What You Do Each Day. Tyson E. Franklin

A Podiatrists Guide to Earning More, Working Less and Enjoying What You Do Each Day. Tyson E. Franklin A Podiatrists Guide to Earig More, Workig Less ad Ejoyig What You Do Each Day Tyso E. Frakli MOVING OUT OF YOUR COMFORT ZONE 1Years ago, if someoe had told me I d be livig i Cairs oe day I would have laughed.

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

FACTSHEET 1: DEVELOPING A STRATEGIC MANAGEMENT PLAN

FACTSHEET 1: DEVELOPING A STRATEGIC MANAGEMENT PLAN FACTSHEET 1: DEVELOPING A STRATEGIC MANAGEMENT PLAN THIS FACTSHEET RELATES TO QUESTION 2.3 OF THE MSPI (MUSEUM STANDARDS PROGRAMME FOR IRELAND) 1. Itroductio Writig a Strategic Maagemet Pla ca provide

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the

More information

CCH CRM Books Online Software Fee Protection Consultancy Advice Lines CPD Books Online Software Fee Protection Consultancy Advice Lines CPD

CCH CRM Books Online Software Fee Protection Consultancy Advice Lines CPD Books Online Software Fee Protection Consultancy Advice Lines CPD Books Olie Software Fee Fee Protectio Cosultacy Advice Advice Lies Lies CPD CPD facig today s challeges As a accoutacy practice, maagig relatioships with our cliets has to be at the heart of everythig

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology

INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology Adoptio Date: 4 March 2004 Effective Date: 1 Jue 2004 Retroactive Applicatio: No Public Commet Period: Aug Nov 2002 INVESTMENT PERFORMANCE COUNCIL (IPC) Preface Guidace Statemet o Calculatio Methodology

More information

Statistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals

Statistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals Statistics 111 - Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio

More information

How to read A Mutual Fund shareholder report

How to read A Mutual Fund shareholder report Ivestor BulletI How to read A Mutual Fud shareholder report The SEC s Office of Ivestor Educatio ad Advocacy is issuig this Ivestor Bulleti to educate idividual ivestors about mutual fud shareholder reports.

More information

Standard Errors and Confidence Intervals

Standard Errors and Confidence Intervals Stadard Errors ad Cofidece Itervals Itroductio I the documet Data Descriptio, Populatios ad the Normal Distributio a sample had bee obtaied from the populatio of heights of 5-year-old boys. If we assume

More information

2014 Menu of Agency Support Services 17 TOP OF MIND TOUCH POINTS

2014 Menu of Agency Support Services 17 TOP OF MIND TOUCH POINTS 2014 Meu of Agecy Support Services 17 TOP OF MIND TOUCH POINTS Table of Cotets Turig a moolie customer ito a multi-lie customer icreases retetio by 7x! ORGANIC GROWTH Policy Reewal Appoitmet Calls.4 Life

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of

More information

Creating a Culture of Health

Creating a Culture of Health Creatig a Culture of Health Creatig a culture of health is vital to improvig the health ad productivity of your workforce ad your bottom lie. To establish the right foudatio, you must have the right programs

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

CDs Bought at a Bank verses CD s Bought from a Brokerage. Floyd Vest

CDs Bought at a Bank verses CD s Bought from a Brokerage. Floyd Vest CDs Bought at a Bak verses CD s Bought from a Brokerage Floyd Vest CDs bought at a bak. CD stads for Certificate of Deposit with the CD origiatig i a FDIC isured bak so that the CD is isured by the Uited

More information