CFD Modeling of a Turbo-charged Common-rail Diesel Engine

Size: px
Start display at page:

Download "CFD Modeling of a Turbo-charged Common-rail Diesel Engine"

Transcription

1 JSAE / SAE CFD Modeling of a Turbo-charged Common-rail Diesel Engine Guan-Jhong Wang, Chia-Jui Chiang, Yu-Hsuan Su National Taiwan University of Science and Technology, Taiwan Yong-Yuan Ku Automotive Research and Testing Center, Taiwan Copyright 2013 SAE Japan and Copyright 2013 SAE International ABSTRACT In this study, a single cylinder diesel engine model is built via the ANSYS FLUENT CFD solver to simulate the phenomenon during each stroke. The initial conditions and boundary conditions are set based on experimental data obtained from a turbo-charged common-rail diesel engine developed by Mitsubishi. The variables that can be observed from the CFD model include cylinder pressure, gas velocity, cylinder temperature, fuel particle tracks, and mass fraction of cylinder gas components. The simulation results display the effects of the fuel injection timings on the combustion heat release process, cylinder pressure and cylinder temperature at different engine operation conditions. The pure diesel (C 10 H 22 ) is adopted in this simulation study. In the FLUENT setup, k epsilon is used in the viscous model, and the autoignition model is used to simulate the spontaneous combustion. The flow field obtained from simulation results such as the tumbling motion can be used to explain the macroscopic phenomena observed from experiment results. This research also discusses the effect of fuel injection timing on the cylinder pressure. Results show that as the fuel injection timing advances, the combustion phasing advances, resulting in higher peak cylinder pressure and peak cylinder temperature. INTRODUCTION With the excellent fuel efficiency and high torque output, diesel engines are particularly suitable for heavy-duty vehicle applications. However, diesel engines also suffer from the undesired byproduct of pollutants such as particulate matter (PM), NOx, CO2, CO, and HC existing in the combustion exhausts. Recent progress in actuators such as the common-rail fuel injection system not only increases the engine power output but also reduces the emission of exhaust pollutants. In an effort to understand the mechanism of the common-rail diesel engine combustion and to achieve optimized engine performance and reduce emissions, a computational fluid dynamics (CFD) model of a diesel engine is constructed in this paper. The CFD simulation allows us to investigate the combustion process of diesel engine after compression ignition and may cut down on the number of costly in-situ experiments. In addition, more design parameters can be varied in simulation, the design cycle can be shortened, and product development cost can be minimized. Furthermore, formation of pollutants [1] [2] can be studied numerically. Simulation also offer the possibility of conducting fuel injection strategy research [3] [4] effectively. The combustion heat release process and flame propagation [5] can be identified and studied. CFD has been used to study the effect of different injection strategy in diesel engines [6, 7, 8, 9]. In [6], CFD modeling is used to estimate the formation of pollutants in the combustion process and to find the optimum injection strategy that reduces exhaust pollutants. The CFD study in [7] shows that soot formation can be suppressed via multi-injection. Specifically, the start of injection timing (SOI) and split-main ratio have strong effect on the soot formation. Retarded SOI and higher split-main ratio lead to more soot pollutant. The CFD simulation results reveal the soot formation process and location clearly [8]. The author in [9] studied the effects of injection timing and intake pressure on direct injection diesel engines. Simulation results show that advanced injection timing increases cylinder pressure, temperature, heat release rate, and NOx emission. On the other hand, as the intake pressure is increases, the heat release process speeds up and soot exhaust pollutant is decreased, while NOx emission is increased [9]. In this paper, a CFD diesel engine model is developed to study the common rail diesel engine combustion. Specifically, the characteristics of the gas velocity, in-cylinder pressure and temperature, common-rail fuel injection trajectories and mass fraction of gas components are obtained from the CFD simulation. The effect of the fuel injection timings on the combustion heat release process is investigated and validated against cylinder pressure measurement. ENGINE SPECIFICATIONS The engine used in this study is a Mitsubishi 4M42-4AT2 turbo-charged common-rail diesel engine as shown in Figure 1. This engine is equipped with turbo charger, common-rail direct injection system and exhaust gas recirculation (EGR) system. The engine specifications are summarized in Table

2 1. The initial conditions and boundary conditions in the CFD model are set based on the experimental data. Due to space limitation, only the results at 2000rpm without EGR are show in this paper. Table 1. Engine specifications Engine Type MITSUBISHI 4M42-4AT2 Displacement 2977 c.c. Rated Power 92.0 kw/3200rpm Rated Torque 294 Nm/1700rpm Cylinders In-line 4 Cylinder/4 Stroke Compression Ratio 17:1 Fuel System Common Rail (Direct Injection) Injection Pressure 1600 bar max. Nozzle Hole Air Intake System Turbocharged with intercooler Emission Control System CAT, PCV, EGR Intake Valve Opening 13 btdc Intake Valve Closing 46 abdc Exhaust Valve Opening 60 bbdc Exhaust Valve Closing 12 atdc where V c is the clearance volume, B is the bore diameter, is the ratio of the length of connecting rod l to crank radius a. Figure 6. Engine geometry VALVE LIFT PROFILES Figure 1. MITSUBISHI 4M42-4AT2 CFD MODELING In order to obtain a realistic model of the engine, a spare engine was disassembled and parts (such as the piston head and valves) were cut open to determine the exact dimensions of various parts. There are 4 four valves on the top of cylinder of our engine, including 2 inlet and 2 outlet valves. The motion of the valve head is controlled by the cam-link-valve assembly. Figure 8 shows the cam, links and valve geometry. The parameter is the cam rotation angle, l 4 is the distance between the pivot point (o) and the center of the roller, l 2 is the distance between the axis of the cam and the center of the roller, l 3 is the distance between the valve tip and the pivot point (o), d is the radius of roller, is the angle between radius r and d, is the angle between link l 1 and the horizontal, and is the angle between link l 4 and the horizontal. Based on the geometry in Figure 7, the relationship between and can be found and the valve lift can be calculated. CYLINDER DISPLACEMENT The geometric configuration of the piston-crank driving mechanism of our engine is shown in Figure 6. With some simple geometric relationships, the cylinder volume V can be expressed in terms of the rotating angle θ as follows: Figure 8 shows the cam geometry in the polar coordinate. For convenience, the profile of the cam is divided into four segments L1, L2, L3, L4, respectively. The radius of L4 is s, the radius of L2 is m, and n is the distance between two

3 centers. The curves L2 and L4 are connected by two straight lines L1 and L3. L1 ( ) : L2 ( ) : L3 ( ) : Figure 8. Cam geometry ENGINE MODEL L4 ( ) : The engine model is constructed using AUTOCAD based on the specifications of the MITSUBISHI diesel engine shown in Table 1 and measurement of key engine components, such as the piston bowl and valve stems shown in Figure 9 and Figure 10 respectively. The combination of cylinder, piston and valves forms the engine model shown in Figure 11. The gas filling volume forms the numerical simulation zone shown in Figure 12. The complicated manifolds of the inlet ports are not modeled at current stage. Figure 7. Cam, link and valve geometry Figure 9. The profile and coordinate of piston and piston model Combining (2) to (7), the valve lift profile can be determined. Figure 10. Valve and valve model

4 Figure 11. Engine model Figure 13. Mesh NUMERICAL METHODS MESH Figure 12. Fluid model The choice of meshing methods depends on the shape of the model and the movement of each component. The meshing method used in this study follows the works [10] [11] and ANSYS FLUENT Guide [12]. As shown in Figure 13, tetrahedrons method is used to the fill irregular shape of the piston crown. The fluid close to cylinder head and in the inlet and outlet ports adopts the sweeping method for application of the Layering Mesh Method. The element sizes are between 1 mm and 2.1 mm. And the number of nodes and elements are and respectively. In order to simulate the flow field in the combustion chamber, the standard k-epsilon model is adopted in this study. The engine intake model is pressure inlet. In this model, the intake pressure, temperature and air compositions can be determined. The plain orifice atomizer and droplet collision and breakup are used respectively in injection type and spray model to simulate the fuel injection. For the diesel engine compression ignition, ignition delay model is selected in the autoignition model. The minimum time step is As the engine is equipped with turbo charger and EGR, the intake pressure and intake gas compositions are determined based on the experimental data. SIMULATION RESULTS In the CFD simulation, the cylinder variables in each cycle are calculated from crank angle 360 to 1080 that includes four strokes such as intake, compression, expansion and exhaust respectively. The combustion top dead center (TDC) is located at 720. Table 2 shows the initial conditions, boundary conditions and nozzle specification set based on the experimental data obtained from the MITSUBISHI 4M42-4AT2 diesel engine. In the following figures, the left port is inlet and the right port is outlet. The CFD simulation provides the in-cylinder pressure, velocity, temperature and gas components. In other words, cylinder

5 conditions during each stroke can be obtained for evaluation of the engine design and control strategy. Figure 14 and Figure 15 show the pressure and velocity fields inside the combustion chamber during the intake stroke. Significantly strong tumbling motion can be clearly observed in Figure 16. Figures show the temperature, fuel vapor C 10 H 22 mass fraction and O 2 mass fraction during the combustion stroke near top dead center. The simulation results reveal details of C 10 H 22 and O 2 compositions during the combustion process. Figure 17 exhibits that the burning starts from the inside wall of cylinder bowl. Consequently, at the corresponding areas in Figure 18 and Figure 19 it can be observed that the C 10 H 22 and O 2 are consumed more than other areas. Table 2. Engine conditions for simulation Engine Speed 2000 rpm Intake Pressure bar Intake Temperature 301 K Initial Cylinder Pressure bar Initial Cylinder Temperature 484 K Initial Gas Composition O2 : 8.85% CO2 : 7.11% H2O : 2.626% Number of injector holes 7 Injector hole diameter mm Fuel flow rate of each hole kg/s Injection duration s Figure 15. Velocity field at 87 bbdc Figure 16. Tumble at 14.1 abdc Figure 14. Pressure field at 87 bbdc Figure 17. Temperature field at 2 atdc

6 Figure 18. C 10 H 22 mass fraction at 2 atdc Figure 20. The effects of the fuel injection timing on cylinder gas pressure (TDC is at 720 ) Figure 19. O 2 mass fraction at 2 atdc The cylinder pressures at various injection timings show in Figure 20 are validated against experimental measurement. The cylinder pressures in Figure 20 result from the shift in the combustion phasing at different injection timings. The retarded injection of fuel leads to lower peak pressure as the combustion is initiated late in the expansion stroke. Shift in temperature at different injection timings is also observed in Figure 21. The peak temperature is also decrease as the injection timing retards. The temperature is decreased before the combustion takes place due to the fuel vaporization. This phenomenon can be observed in Figure 22 and Figure 23 as the vaporization of fuel causes the temperature drop in the piston crown. Figure 21. The effects of the fuel injection timing on cylinder gas temperature (TDC is at 720 ) Figure 22. In-cylinder temperature at 3 btdc

7 Figure 23. Fuel vapor distributes at 3 btdc CONCLUSIONS A CFD model for a turbo-charged common-rail diesel engine is constructed in this paper. Physical variables such as cylinder pressure, gas velocity, cylinder temperature and mass fraction of cylinder gas components can be easily obtained from simulations. It can be used to explain the macroscopic phenomena such as the cylinder gas temperature dropping due to the fuel vaporization. This research also discusses the effect of fuel injection timing on the cylinder pressure and temperature. Results show that as the fuel injection timing advances and the combustion phasing advances, and the peak cylinder pressure and the peak cylinder temperature raise. In this paper, the initial and boundary conditions are set based on the measurement of the pressure, temperature and gas compositions. The simulation results are then validated against cylinder pressure measurement at various fuel injection timings. REFERENCES 1. Harun M.I., H.K. Ng, S. Gan, Evaluation of CFD Sub-models for In-Cylinder Light-Duty Diesel Engine Simulation, Proceedings of ICEE rd International Conference on Energy and Environment,7-8 December 2009, Malacca, Malaysia. 2. K.M. Pang, H.K. Ng, S. Gan, Light-Duty Diesel Engine Modelling with Integrated Detailed Chemistry in 3-D CFD Study, Proceedings of ICEE rd International Conference on Energy and Environment, 7-8 December 2009, Malacca, Malaysia. 3. Hu Mingjiang, Shen Chaoying, Research on Predicting Fuel Spray Characteristics of Diesel Engine, 2010 International Conference on Intelligent Computation Technology and Automation. 4. Shang Yong, Liu Fu-shui, Li Xiang-rong, Numerical Simulation on Forced Swirl Combustion Chamber in Diesel Engine, 2010 International Conference on Digital Manufacturing & Automation. 5. Sage L. Kokjohn, Rolf D. Reitz, Investigation of the Roles of Flame Propagation, Turbulent Mixing, and Volumetric Heat Release in Conventional and Low Temperature Diesel Combustion, Journal of Engineering for Gas Turbines and Power-Transactions of the ASME Volume: 133, Gianluca D Errico, Tommaso Lucchini, Frank Atzler, Rossella Rotondi, Computational Fluid Dynamics Simulation of Diesel Engines with Sophisticated Injection Strategies for In-Cylinder Pollutant Controls, ENERGY & FUELS Volume: 26 Issue: 7 Pages: , Raouf Mobasheri, Zhijun Peng, Seyed Mostafa Mirsalim, Analysis the Effect of Advanced Injection Strategies on Engine Performance and Pollutant Emissions in a Heavy Duty DI-Diesel Engine by CFD Modeling, International Journal of Heat and Fluid Flow Volume: 33 Issue: 1 Pages: 59-69, Kar Mun Pang,, Hoon Kiat Ng, Suyin Gan, Simulation of Temporal and Spatial Soot Evolution in an Automotive Diesel Engine Using the Moss-Brookes Soot Model, Energy Conversion and Management Volume: 58 Pages: , B. Jayashankara, V. Ganesan, Effect of Fuel Injection Timing and Intake Pressure on the Performance of a DI Diesel Engine - A Parametric Study Using CFD, Energy Conversion and Management Volume: 51 Issue: 10 Pages: , Harun Mohamed Ismail, HoonKiatNg, SuyinGan, Evaluation of Non-Premixed Combustion and Fuel Spray Models for In-Cylinder Diesel Engine Simulation, Applied Energy 90 (2012) 张 志 荣, 冉 景 煜, 张 力, 蒲 舸, 内 燃 机 缸 内 气 体 CFD 瞬 态 分 析 中 动 态 网 格 划 分 技 术, Journal of Chongqing University (Natural Science Edition) Vol.28 No ANSYS FLUENT Guide, Copyright c 2009 by ANSYS, Inc. CONTACT INFORMATION Guan-Jhong Wang Graduate Student Research Assistant National Taiwan University of Science and Technology, Taipei, Taiwan m @mail.ntust.edu.tw Chia-Jui Chiang Assistant Professor National Taiwan University of Science and Technology, Taipei, Taiwan cjchiang@mail.ntust.edu.tw Yu-Hsuan Su Assistant Professor National Taiwan University of Science and Technology, Taipei, Taiwan ysu@mail.ntust.edu.tw Yong-Yuan Ku

8 Project Engineer Automotive Research and Testing Center, Taiwan ACKNOWLEDGMENTS The authors would like to thank the funding support from Bureau of Energy, Ministry of Economic Affairs, Taiwan, R.O.C., under contract 102-D0107. ABBREVIATIONS CFD SOI EGR TDC computational fluid dynamics start of injection exhaust gas recirculation top dead center btdc before top dead center atdc after top dead center bbdc before bottom dead center abdc after bottom dead center

CFD Simulation of HSDI Engine Combustion Using VECTIS

CFD Simulation of HSDI Engine Combustion Using VECTIS CFD Simulation of HSDI Engine Combustion Using VECTIS G. Li, S.M. Sapsford Ricardo Consulting Engineer s Ltd., Shoreham-by-Sea, UK ABSTRACT As part of the VECTIS code validation programme, CFD simulations

More information

EXPERIMENTAL VALIDATION AND COMBUSTION CHAMBER GEOMETRY OPTIMIZATION OF DIESEL ENGINE BY USING DIESEL RK

EXPERIMENTAL VALIDATION AND COMBUSTION CHAMBER GEOMETRY OPTIMIZATION OF DIESEL ENGINE BY USING DIESEL RK INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

Diesel injection, ignition, and fuel air mixing

Diesel injection, ignition, and fuel air mixing Diesel injection, ignition, and fuel air mixing 1. Fuel spray phenomena. Spontaneous ignition 3. Effects of fuel jet and charge motion on mixingcontrolled combustion 4. Fuel injection hardware 5. Challenges

More information

CONVERGE Features, Capabilities and Applications

CONVERGE Features, Capabilities and Applications CONVERGE Features, Capabilities and Applications CONVERGE CONVERGE The industry leading CFD code for complex geometries with moving boundaries. Start using CONVERGE and never make a CFD mesh again. CONVERGE

More information

Engine Heat Transfer. Engine Heat Transfer

Engine Heat Transfer. Engine Heat Transfer Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel

More information

DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM

DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM 1 Ervin Adorean *, 1 Gheorghe-Alexandru Radu 1 Transilvania University of Brasov, Romania KEYWORDS - diesel, engine, CFD, simulation, OpenFOAM ABSTRACT

More information

Introductory Study of Variable Valve Actuation for Pneumatic Hybridization

Introductory Study of Variable Valve Actuation for Pneumatic Hybridization 2007-01-0288 Introductory Study of Variable Valve Actuation for Pneumatic Hybridization Copyright 2007 SAE International Sasa Trajkovic, Per Tunestål and Bengt Johansson Division of Combustion Engines,

More information

EXPERIMENT NO. 3. Aim: To study the construction and working of 4- stroke petrol / diesel engine.

EXPERIMENT NO. 3. Aim: To study the construction and working of 4- stroke petrol / diesel engine. EXPERIMENT NO. 3 Aim: To study the construction and working of 4- stroke petrol / diesel engine. Theory: A machine or device which derives heat from the combustion of fuel and converts part of this energy

More information

Optimization of Operating Parameters for a 2-stroke DI Engine with KIVA 3V and a Genetic Algorithm Search Technique

Optimization of Operating Parameters for a 2-stroke DI Engine with KIVA 3V and a Genetic Algorithm Search Technique Optimization of Operating Parameters for a 2-stroke DI Engine with KIVA 3V and a Genetic Algorithm Search Technique Mark N. Subramaniam and Rolf D. Reitz Engine Research Center, University of Wisconsin-Madison

More information

Exhaust emissions of a single cylinder diesel. engine with addition of ethanol

Exhaust emissions of a single cylinder diesel. engine with addition of ethanol www.ijaser.com 2014 by the authors Licensee IJASER- Under Creative Commons License 3.0 editorial@ijaser.com Research article ISSN 2277 9442 Exhaust emissions of a single cylinder diesel engine with addition

More information

Fully Automatic In-cylinder Workflow Using HEEDS / es-ice / STAR-CD

Fully Automatic In-cylinder Workflow Using HEEDS / es-ice / STAR-CD Fully Automatic In-cylinder Workflow Using HEEDS / es-ice / STAR-CD Simon Fischer Senior ICE Application Support Engineer CD-adapco Nuremberg Office Gerald Schmidt Director/Powertrain - CD-adapco New York

More information

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK

More information

Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers

Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers -- Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers Per Tunestål, Magnus Christensen, Patrik Einewall, Tobias Andersson, Bengt Johansson Lund

More information

Principles of Engine Operation

Principles of Engine Operation Internal Combustion Engines ME 422 Yeditepe Üniversitesi Principles of Engine Operation Prof.Dr. Cem Soruşbay Information Prof.Dr. Cem Soruşbay İstanbul Teknik Üniversitesi Makina Fakültesi Otomotiv Laboratuvarı

More information

Development of the High Speed 2ZZ-GE Engine

Development of the High Speed 2ZZ-GE Engine SAE TECHNICAL PAPER SERIES 2000-01-0671 Development of the High Speed 2ZZ-GE Engine Takasuke Shikida, Yoshikatsu Nakamura, Tamio Nakakubo and Hiroyuki Kawase Toyota Motor Corp. SAE 2000 World Congress

More information

HEAVY-DUTY, REDEFINED. REDEFINED.

HEAVY-DUTY, REDEFINED. REDEFINED. HEAVY-DUTY, REDEFINED. TO GET YOUR TOUGHEST JOBS DONE, you need an engine that works even harder than you do. That s why Caterpillar offers the CT13 engine for our vocational trucks. It delivers every

More information

Chapter 19 - Common Rail High Pressure Fuel Injection Systems

Chapter 19 - Common Rail High Pressure Fuel Injection Systems Chapter 19 - Common Rail High Pressure Fuel Injection Systems Diesel Engine Technology For Automotive Technicians Understanding & Servicing Contemporary Clean Diesel Technology What is Common Rail? Common

More information

A.Pannirselvam*, M.Ramajayam, V.Gurumani, S.Arulselvan and G.Karthikeyan *(Department of Mechanical Engineering, Annamalai University)

A.Pannirselvam*, M.Ramajayam, V.Gurumani, S.Arulselvan and G.Karthikeyan *(Department of Mechanical Engineering, Annamalai University) A.Pannirselvam, M.Ramajayam, V.Gurumani, S.Arulselvan, G.Karthikeyan / International Journal of Vol. 2, Issue 2,Mar-Apr 212, pp.19-27 Experimental Studies on the Performance and Emission Characteristics

More information

THE INFLUENCE OF VARIABLE VALVE ACTUATION ON THE PART LOAD FUEL ECONOMY OF A MODERN LIGHT-DUTY DIESEL ENGINE

THE INFLUENCE OF VARIABLE VALVE ACTUATION ON THE PART LOAD FUEL ECONOMY OF A MODERN LIGHT-DUTY DIESEL ENGINE --8 THE INFLUENCE OF VARIABLE VALVE ACTUATION ON THE PART LOAD FUEL ECONOMY OF A MODERN LIGHT-DUTY DIESEL ENGINE Copyright 998 Society of Automotive Engineers, Inc. Tim Lancefield Mechadyne International

More information

Effects of Direct Water Injection on DI Diesel Engine Combustion

Effects of Direct Water Injection on DI Diesel Engine Combustion -1-938 Effects of Direct Water Injection on DI Diesel Engine Combustion F. Bedford and C. Rutland Engine Research Center, UW Madison Copyright Society of Automotive Engineers, Inc. P. Dittrich, A. Raab

More information

Diesel and gas engine systems for EURO VI on-highway applications

Diesel and gas engine systems for EURO VI on-highway applications Diesel and gas engine systems for EURO VI on-highway applications Mercedes-Benz engines in the OM 93X and OM 47X model series. Outstanding design and efficiency. Specifically developed to comply with the

More information

GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS

GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS 2 nd International Seminar on ORC Power Systems October 7 th & 8 th, 213 De Doelen, Rotterdam, NL GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS M. Morini,

More information

INTERNAL COMBUSTION (IC) ENGINES

INTERNAL COMBUSTION (IC) ENGINES INTERNAL COMBUSTION (IC) ENGINES An IC engine is one in which the heat transfer to the working fluid occurs within the engine itself, usually by the combustion of fuel with the oxygen of air. In external

More information

Pushing the limits. Turbine simulation for next-generation turbochargers

Pushing the limits. Turbine simulation for next-generation turbochargers Pushing the limits Turbine simulation for next-generation turbochargers KWOK-KAI SO, BENT PHILLIPSEN, MAGNUS FISCHER Computational fluid dynamics (CFD) has matured and is now an indispensable tool for

More information

The Ogunmuyiwa Engine Cycle

The Ogunmuyiwa Engine Cycle The Ogunmuyiwa Engine Cycle Dapo Ogunmuyiwa M.Sc VDI Chairman / CEO Tel: (+49) 162 961 04 50 E-mail: Dapo.Ogunmuyiwa@omttec.eu Ogunmuyiwa Motorentechnik GmbH Technologie- und Gruenderzentrum (TGZ) Am Roemerturm

More information

DIMEG - University of L Aquila ITALY EXPERIMENTAL ACTIVITY ENGINE LABORATORY

DIMEG - University of L Aquila ITALY EXPERIMENTAL ACTIVITY ENGINE LABORATORY DIMEG - University of L Aquila ITALY EXPERIMENTAL ACTIVITY ENGINE LABORATORY Torre di Raffreddamento Bilan cia Combustibile DIMEG:ENGINE LABORATORY PLANTS Torre di Raffreddamento P C o o z l z d o P C

More information

Internal Combustion Optical Sensor (ICOS)

Internal Combustion Optical Sensor (ICOS) Internal Combustion Optical Sensor (ICOS) Optical Engine Indication The ICOS System In-Cylinder Optical Indication 4air/fuel ratio 4exhaust gas concentration and EGR 4gas temperature 4analysis of highly

More information

Dear Reader, Quality is an attribute that all OEMs and suppliers covet; so much so, it is highlighted in most corporate mission state ments.

Dear Reader, Quality is an attribute that all OEMs and suppliers covet; so much so, it is highlighted in most corporate mission state ments. Sales figures of Hybrid Electric Vehicles (HEV) indicate a significant growth of this market segment, especially in the U.S. and Japan. Series production developments are taking place even in Korea and

More information

Ford Focus Duratorq TDCI with DPF (Diesel Particulate Filter) Ford s new, practically particulate-free generation of diesel engines

Ford Focus Duratorq TDCI with DPF (Diesel Particulate Filter) Ford s new, practically particulate-free generation of diesel engines Ford Focus Duratorq TDCI with DPF (Diesel Particulate Filter) Ford s new, practically particulate-free generation of diesel engines Complete filter unit as fitted to Ford Duratorq TDCi 1.6 and an individual

More information

FPT FIAT POWERTRAIN TECHNOLOGIES PRESENTS ITS ENGINE RANGE FOR CONSTRUCTION APPLICATIONS AT INTERMAT 2009

FPT FIAT POWERTRAIN TECHNOLOGIES PRESENTS ITS ENGINE RANGE FOR CONSTRUCTION APPLICATIONS AT INTERMAT 2009 FPT FIAT POWERTRAIN TECHNOLOGIES PRESENTS ITS ENGINE RANGE FOR CONSTRUCTION APPLICATIONS AT INTERMAT 2009 FPT Fiat Powertrain Technologies, is the Fiat Group Company dedicated to the research, development,

More information

Engineering, Bharathiyar College of Engineering and Technology, Karaikal, Pondicherry 609 609, India

Engineering, Bharathiyar College of Engineering and Technology, Karaikal, Pondicherry 609 609, India 74 The Open Fuels & Energy Science Journal, 2008, 1, 74-78 Open Access Some Comparative Performance and Emission Studies on DI Diesel Engine Fumigated with Methanol and Methyl Ethyl Ketone Using Microprocessor

More information

Engine Efficiency and Power Density: Distinguishing Limits from Limitations

Engine Efficiency and Power Density: Distinguishing Limits from Limitations Engine Efficiency and Power Density: Distinguishing Limits from Limitations Chris F. Edwards Advanced Energy Systems Laboratory Department of Mechanical Engineering Stanford University Exergy to Engines

More information

Internal Combustion Engines

Internal Combustion Engines Lecture-18 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Combustion in CI Engine Combustion

More information

Experimental Optimization and Analysis of Intake and Exhaust Pipeline for Small Engine Motorcycle

Experimental Optimization and Analysis of Intake and Exhaust Pipeline for Small Engine Motorcycle Journal of Applied Science and Engineering, Vol. 15, No. 1, pp. 21 30 (2012) 21 Experimental Optimization and Analysis of Intake and Exhaust Pipeline for Small Engine Motorcycle Chien-Jong Shih 1 *, Chi-Nan

More information

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1 Fault codes DM1 Industrial engines DC09, DC13, DC16 Marine engines DI09, DI13, DI16 03:10 Issue 5.0 en-gb 1 DM1...3 Abbreviations...3 Fault type identifier...3...4 03:10 Issue 5.0 en-gb 2 DM1 DM1 Fault

More information

COMBUSTION PROCESS IN CI ENGINES

COMBUSTION PROCESS IN CI ENGINES COMBUSTION PROCESS IN CI ENGINES In SI engine, uniform A: : F mixture is supplied, but in CI engine A: : F mixture is not homogeneous and fuel remains in liquid particles, therefore quantity of air supplied

More information

A Common Engine Platform for Engine LES Development and Validation

A Common Engine Platform for Engine LES Development and Validation A Common Engine Platform for Engine LES Development and Validation Volker Sick, D. Reuss, P. Abraham, A. Alharbi, O. Almagri, & H. Chen University of Michigan, Ann Arbor, MI, USA Chris Rutland & Y. Zhang,

More information

Emissions pollutant from diesel, biodiesel and natural gas refuse collection vehicles in urban areas

Emissions pollutant from diesel, biodiesel and natural gas refuse collection vehicles in urban areas Emissions pollutant from diesel, biodiesel and natural gas refuse collection vehicles in urban areas José Mª López, Nuria Flores, Felipe Jiménez, Francisco Aparicio Polytechnic University of Madrid (UPM),

More information

Effect of GTL Diesel Fuels on Emissions and Engine Performance

Effect of GTL Diesel Fuels on Emissions and Engine Performance Rudolf R. Maly Research and Technology, Stuttgart Effect of GTL Diesel Fuels on Emissions and Engine Performance 10th Diesel Engine Emissions Reduction Conference August 29 - September 2, 2004 Coronado,

More information

With Twin Independent Cam Phasing THESIS. By Jason Meyer * * * * * The Ohio State University 2007

With Twin Independent Cam Phasing THESIS. By Jason Meyer * * * * * The Ohio State University 2007 Engine Modeling of an Internal Combustion Engine With Twin Independent Cam Phasing THESIS Presented in Partial Fulfillment of the Requirements for Graduation with Distinction at The Ohio State University

More information

OPTIMISATION OF THE 2.2 LITER HIGH SPEED DIESEL ENGINE FOR PROPOSED BHARAT STAGE 5 EMISSION NORMS IN INDIA

OPTIMISATION OF THE 2.2 LITER HIGH SPEED DIESEL ENGINE FOR PROPOSED BHARAT STAGE 5 EMISSION NORMS IN INDIA Ghodke, P. R., Suryawanshi, J. G.: Optimisation of the 2.2 Liter High Speed Diesel... THERMAL SCIENCE: Year 2014, Vol. 18, No. 1, pp. 169-178 169 OPTIMISATION OF THE 2.2 LITER HIGH SPEED DIESEL ENGINE

More information

Hydrogen as a fuel for internal combustion engines

Hydrogen as a fuel for internal combustion engines Hydrogen as a fuel for internal combustion engines Contents: Introduction External mixture formation for hydrogen operated engines Experimental engine for hydrogen in Stralsund Internal mixture formation

More information

EFC Topic 4.2 Simulation-to-Simulation Benchmarking (LES, RANS) Objectives of the 4.2

EFC Topic 4.2 Simulation-to-Simulation Benchmarking (LES, RANS) Objectives of the 4.2 EFC Topic 4.2 Simulation-to-Simulation Benchmarking (LES, RANS) Presented by Cecile PERA (IFPEN) Objectives of the 4.2 Summarize: some guidelines for engine simulations 1 Introduction Spray Spark ignition

More information

Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison

Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison Chapters 7 SI vs CI Performance Comparison Performance Comparison of CI and SI Engines The CI engine cycle can be carried out in either 2 or 4 strokes of the piston, with the 4-cycle CI engine being more

More information

RESEARCH PROJECTS. For more information about our research projects please contact us at: info@naisengineering.com

RESEARCH PROJECTS. For more information about our research projects please contact us at: info@naisengineering.com RESEARCH PROJECTS For more information about our research projects please contact us at: info@naisengineering.com Or visit our web site at: www.naisengineering.com 2 Setup of 1D Model for the Simulation

More information

Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions

Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions Environ. Eng. Res. Vol. 14, No. 2, pp. 95~101, 2009 Korean Society of Environmental Engineers Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions Haeng

More information

P = n M 9550 [kw] Variable Intake Manifold in VR Engines. Self-study programme 212. Principles and Description of Operation. Service.

P = n M 9550 [kw] Variable Intake Manifold in VR Engines. Self-study programme 212. Principles and Description of Operation. Service. Service. Self-study programme 212 Variable Intake Manifold in VR Engines Principles and Description of Operation P = n M 9550 [kw] M [Nm] P [kw] n [min -1 ] 212_020 The output and torque of an engine have

More information

US Heavy Duty Fleets - Fuel Economy

US Heavy Duty Fleets - Fuel Economy US Heavy Duty Fleets - Fuel Economy Feb. 22, 2006 Anthony Greszler Vice President Advanced Engineering VOLVO POWERTRAIN CORPORATION Drivers for FE in HD Diesel Pending oil shortage Rapid oil price increases

More information

REDESIGN OF THE INTAKE CAMS OF A FORMULA STUDENT RACING CAR

REDESIGN OF THE INTAKE CAMS OF A FORMULA STUDENT RACING CAR FISITA2010-SC-P-24 REDESIGN OF THE INTAKE CAMS OF A FORMULA STUDENT RACING CAR Sándor, Vass Budapest University of Technology and Economics, Hungary KEYWORDS valvetrain, camshaft, cam, Formula Student,

More information

WHY WOULD A NATURAL GAS ENGINE NEED A PARTICLE FILTER? Gordon McTaggart-Cowan 09-02-2016

WHY WOULD A NATURAL GAS ENGINE NEED A PARTICLE FILTER? Gordon McTaggart-Cowan 09-02-2016 WHY WOULD A NATURAL GAS ENGINE NEED A PARTICLE FILTER? Gordon McTaggart-Cowan 09-02-2016 Outline» NG vehicles context (3 min)» Why NG? (5 min)» NG engine technologies (7 min)» Particulate matter emissions

More information

EPA emission regulations: What they mean for diesel powered generating systems

EPA emission regulations: What they mean for diesel powered generating systems Power topic #9001 Technical information from Cummins Power Generation EPA emission regulations: What they mean for diesel powered generating systems > White paper By Aniruddha Natekar, Sales Application

More information

Marine after-treatment from STT Emtec AB

Marine after-treatment from STT Emtec AB Marine after-treatment from STT Emtec AB For Your Vessel and the Environment 6 7 8 1 11 1 10 9 1. Pick up. Flow direction valve. Filters. Cooler. Condensate trap 6. Flow meter 7. EGR-valve 8. Secondary

More information

Optimization of the Combustion Chamber of Direct Injection Diesel Engines

Optimization of the Combustion Chamber of Direct Injection Diesel Engines 2003-01-1064 Optimization of the Combustion Chamber of Direct Injection Diesel Engines Arturo de Risi, Teresa Donateo and Domenico Laforgia Università di Lecce Dipartimento di Ingegneria dell Innovazione,

More information

E - THEORY/OPERATION

E - THEORY/OPERATION E - THEORY/OPERATION 1995 Volvo 850 1995 ENGINE PERFORMANCE Volvo - Theory & Operation 850 INTRODUCTION This article covers basic description and operation of engine performance-related systems and components.

More information

GT2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS

GT2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS ASME Turbo Expo 2011 June 6 10, 2011 Vancouver, Canada GT 2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS M. Cadorin 1,M. Pinelli

More information

Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and a Three Way Catalyst Einewall, Patrik; Tunestål, Per; Johansson, Bengt

Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and a Three Way Catalyst Einewall, Patrik; Tunestål, Per; Johansson, Bengt Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and a Three Way Catalyst Einewall, Patrik; Tunestål, Per; Johansson, Bengt Published in: SAE Special Publications Published: -1-1 Link

More information

PERFORMANCE & EMISSION OPTIMIZATION OF SINGLE CYLINDER DIESEL ENGINE TO MEET BS-IV NORMS

PERFORMANCE & EMISSION OPTIMIZATION OF SINGLE CYLINDER DIESEL ENGINE TO MEET BS-IV NORMS PERFORMANCE & EMISSION OPTIMIZATION OF SINGLE CYLINDER DIESEL ENGINE TO MEET BS-IV NORMS Mayur S. Sawade 1, Sandeep S. Kore 2 1 Student, Mechanical Engineering, Sinhgad Academy of Engineering, Maharashtra,

More information

SIMULATION MODEL OF THE SINGLECYLINDER COMBUSTION ENGINE MZ125

SIMULATION MODEL OF THE SINGLECYLINDER COMBUSTION ENGINE MZ125 SIMULATION MODEL OF THE SINGLECYLINDER COMBUSTION ENGINE MZ125 Pavel Dresler 1, Michal Richtář 2 Summary: The use of one-dimensional CFD engine simulation is an essential tool to the engine development

More information

Diesel Fuel Additive Heavy Duty Applications. December 2011

Diesel Fuel Additive Heavy Duty Applications. December 2011 Diesel Fuel Additive Heavy Duty Applications December 2011 Diesel Fuel Additives Long term performance Long term benefits have been measured in both light duty and heavy duty vehicles with respect to;

More information

A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior

A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior Kum-Chul, Oh 1, Sang-Woo Cha 1 and Ji-Ho Kim 1 1 R&D Center, Hyundai Motor Company

More information

Pollution by 2-Stroke Engines

Pollution by 2-Stroke Engines Pollution by 2-Stroke Engines By Engr. Aminu Jalal National Automotive Council At The Nigerian Conference on Clean Air, Clean Fuels and Vehicles, Abuja, 2-3 May 2006 Introduction to the 2-Stroke Engine

More information

POLITECNICO DI MILANO Department of Energy

POLITECNICO DI MILANO Department of Energy 1D-3D coupling between GT-Power and OpenFOAM for cylinder and duct system domains G. Montenegro, A. Onorati, M. Zanardi, M. Awasthi +, J. Silvestri + ( ) Dipartimento di Energia - Politecnico di Milano

More information

Common Rail - An Attractive Fuel Injection System for Passenger Car DI Diesel Engines

Common Rail - An Attractive Fuel Injection System for Passenger Car DI Diesel Engines SAE TECHNICAL PAPER SERIES 960870 Common Rail - An Attractive Fuel Injection System for Passenger Car DI Diesel Engines Gerhard Stumpp and Mario Ricco Robert Bosch GmbH Reprinted from: Fuel Spray Technology

More information

Combustion process in high-speed diesel engines

Combustion process in high-speed diesel engines Combustion process in high-speed diesel engines Conventional combustion characteristics New combustion concept characteristics Benefits and drawbacks Carlo Beatrice Istituto Motori CNR The Requirements

More information

Testing of various fuel and additive options in a compression-ignited heavy-duty alcohol engine

Testing of various fuel and additive options in a compression-ignited heavy-duty alcohol engine Testing of various fuel and additive options in a compression-ignited heavy-duty alcohol engine 2015 Polttomoottori- ja turboteknologian seminaari Espoo, 7.5.2015 Timo Murtonen, Nils-Olof Nylund, Mårten

More information

Closed-Loop Control of Spark Advance and Air-Fuel Ratio in SI Engines Using Cylinder Pressure

Closed-Loop Control of Spark Advance and Air-Fuel Ratio in SI Engines Using Cylinder Pressure SAE TECHNICAL PAPER SERIES 2000-01-0933 Closed-Loop Control of Spark Advance and Air-Fuel Ratio in SI Engines Using Cylinder Pressure Paljoo Yoon, Seungbum Park and Myoungho Sunwoo Hanyang Univ. Inyong

More information

Performance Analysis of a. for a Diesel Engine

Performance Analysis of a. for a Diesel Engine 12 th GT-Suite User s Conference Performance Analysis of a Decompression Brake System for a Diesel Engine Ivan Miguel Trindade Vinicius J. M. Peixoto MWM International Motores November, 10th 2008 Presentation

More information

Water/Methanol Injection: Frequently Asked Questions

Water/Methanol Injection: Frequently Asked Questions Water/Methanol Injection: Frequently Asked Questions Water/methanol injection is nothing new. It has been used as far back as World War II to help power German fighter planes. Yet it never seemed to catch

More information

Understanding Tier 4 Interim and Tier 4 Final EPA regulations for generator set applications

Understanding Tier 4 Interim and Tier 4 Final EPA regulations for generator set applications Understanding Tier 4 Interim and Tier 4 Final EPA regulations for generator set applications While Tier 4 standards that begin to take effect in 2011 do not apply to generator sets used strictly for emergency

More information

EVERY ROUTE. ISB FOR SCHOOL BUS APPLICATIONS

EVERY ROUTE. ISB FOR SCHOOL BUS APPLICATIONS EVERY ROUTE. TM ISB FOR SCHOOL BUS APPLICATIONS SCHOOL BUS APPLICATIONS. The Cummins ISB is the perfect engine to power your school bus. Reliable, efficient and quiet, the ISB delivers the power you need

More information

ISX15 and ISX Well Servicing Applications. ISX15 (EPA 2010) 2-3 400-600 hp (298-447 kw) ISX (EPA 2007) 4-5 400-600 hp (298-447 kw)

ISX15 and ISX Well Servicing Applications. ISX15 (EPA 2010) 2-3 400-600 hp (298-447 kw) ISX (EPA 2007) 4-5 400-600 hp (298-447 kw) ISX15 and ISX Well Servicing Applications Model Pages ISX15 (EPA 2010) 2-3 400-600 hp (298-447 kw) ISX (EPA 2007) 4-5 400-600 hp (298-447 kw) Better Every Mile. ISX15 For EPA 2010. n Cooled Exhaust Gas

More information

Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA

Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA Automotive Powertrain Controls: Fundamentals and Frontiers Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA Julie Buckland Research & Advanced Engineering

More information

Diesel Fuel Systems. Injection Nozzles

Diesel Fuel Systems. Injection Nozzles Diesel Fuel Systems Injection Nozzles Unit Terms Injection nozzle Nozzle, nozzle holder, valve, spring assembly Nozzle assembly Valve, body, and spray valve Orifice Small hole Pintle Valve which the end

More information

HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM

HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM 8 th European Symposium on Aerothermodynamics for space vehicles HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM M. Di Clemente, R. Votta, G. Ranuzzi, F. Ferrigno March 4, 2015 Outline

More information

CFD Analysis of a butterfly valve in a compressible fluid

CFD Analysis of a butterfly valve in a compressible fluid CFD Analysis of a butterfly valve in a compressible fluid 1 G.TAMIZHARASI, 2 S.KATHIRESAN 1 Assistant Professor,Professor,Departmentment of Electronics and Instrumentation,Bharath university, chennai.

More information

The control of a free-piston engine generator. Part 1: fundamental analyses

The control of a free-piston engine generator. Part 1: fundamental analyses The control of a free-piston engine generator. Part : fundamental analyses R. Mikalsen, A.P. Roskilly Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne, NE 7RU, England,

More information

A study into the fuel savings potential by a major rebuild of propulsion system

A study into the fuel savings potential by a major rebuild of propulsion system A study into the fuel savings potential by a major rebuild of propulsion system Per Rønnedal Senior Manager New Design Research & Development Marine Low Speed < 1 > Agenda 1 Introduction of MAN and our

More information

Fuel Requirements for HCCI Engine Operation. Tom Ryan Andrew Matheaus Southwest Research Institute

Fuel Requirements for HCCI Engine Operation. Tom Ryan Andrew Matheaus Southwest Research Institute Fuel Requirements for HCCI Engine Operation Tom Ryan Andrew Matheaus Southwest Research Institute 1 HCCI Fuel & Air Charge Undergoes Compression Spontaneous Reaction Throughout Cylinder Low Temperature

More information

Light Duty Natural Gas Engine Characterization THESIS

Light Duty Natural Gas Engine Characterization THESIS Light Duty Natural Gas Engine Characterization THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By David

More information

REFINED ENGINE COMPONENTS

REFINED ENGINE COMPONENTS MBE 900 FIRE & EMERGENCY The Obvious Choice for commercial fire and emergency apparatus Since diesel engines were first installed in fire apparatus, Detroit Diesel has been the leader. Combining our long

More information

Investigation of a Single Cylinder Diesel Engine Performance under Recycling and Conditioning of Exhaust for Air Intake

Investigation of a Single Cylinder Diesel Engine Performance under Recycling and Conditioning of Exhaust for Air Intake 3 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT- 3, May 6 8, 9, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +() 459 43638, Fax:

More information

Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines

Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines 36 Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines KEIICHI SHIRAISHI *1 YOSHIHISA ONO *2 YUKIO YAMASHITA *3 MUSASHI SAKAMOTO *3 The extremely slow steaming of ships has become

More information

Diesel Engine Fundamentals Course# ME406

Diesel Engine Fundamentals Course# ME406 Diesel Engine Fundamentals Course# ME406 EZpdh.com All Rights Reserved Department of Energy Fundamentals Handbook MECHANICAL SCIENCE Module 1 Diesel Engine Fundamentals Diesel Engine Fundamentals DOE-HDBK-1018/1-93

More information

Vectra Caravan 1.8 90kW/122hp 5-speed station wagon 5 doors 1

Vectra Caravan 1.8 90kW/122hp 5-speed station wagon 5 doors 1 Vectra Caravan 1.8 90kW/122hp 5-speed station wagon 5 doors 1 1.8 ECOTEC front, transverse in front of axle, 7 50' forward inclined Bore (mm): 80.5 Stroke (mm): 88.2 Displacement (cc): 1796 Compression

More information

ANALYSIS OF COMPRESSED NATURAL GAS BURN RATE AND FLAME PROPAGATION ON A SUB-COMPACT VEHICLE ENGINE. 26600 Pekan, Pahang, Malaysia

ANALYSIS OF COMPRESSED NATURAL GAS BURN RATE AND FLAME PROPAGATION ON A SUB-COMPACT VEHICLE ENGINE. 26600 Pekan, Pahang, Malaysia International Journal of Automotive and Mechanical Engineering (IJAME) ISSN: 2229-8649 (Print); ISSN: 2180-1606 (Online); Volume 11, pp. 2405-2416, January-June 2015 Universiti Malaysia Pahang DOI: http://dx.doi.org/10.15282/ijame.11.2015.21.0202

More information

OPTIMIZATION OF DIAMETER RATIO FOR ALPHA-TYPE STIRLING ENGINES

OPTIMIZATION OF DIAMETER RATIO FOR ALPHA-TYPE STIRLING ENGINES OPTIMIZATION OF DIAMETER RATIO FOR ALPHA-TYPE STIRLING ENGINES VLAD MARIO HOMUTESCU* DAN-TEODOR BĂLĂNESCU* * Gheorghe Asachi Technical University of Iassy Department of of ermotechnics ermal Engines and

More information

Analysis of knocking phenomena in a high performance engine

Analysis of knocking phenomena in a high performance engine Analysis of knocking phenomena in a high performance engine Federico Millo, Luciano Rolando 1 st GTI Italian User Conference March 18 th, 2013 Turin OUTLINE Introduction Experimental setup Results & discussion

More information

C18 ACERT Fire Pump Tier 3 448 bkw/600 bhp @ 1750 rpm

C18 ACERT Fire Pump Tier 3 448 bkw/600 bhp @ 1750 rpm CATERPILLAR ENGINE SPECIFICATIONS I-6, 4-Stroke-Cycle Diesel Bore...145.0 mm (5.71 in) Stroke...183.0 mm (7.2 in) Displacement... 18.1 L (1,104.53 in3) Aspiration...Turbocharged Aftercooled Compression

More information

Marine after-treatment from STT Emtec AB

Marine after-treatment from STT Emtec AB Marine after-treatment from STT Emtec AB For Your Vessel and the Environment SCR Technology How it works The selective catalytic reduction of nitrous oxides (NOx) by nitrogen compounds such as urea solutions

More information

Extending Exhaust Gas Recirculation Limits in Diesel Engines

Extending Exhaust Gas Recirculation Limits in Diesel Engines Extending Exhaust Gas Recirculation Limits in Diesel Engines Robert M. Wagner, Johney B. Green, Jr., John M. Storey, and C. Stuart Daw Oak Ridge National Laboratory P. O. Box 29 Oak Ridge, TN 37831-888

More information

Application and Design of the ebooster from BorgWarner

Application and Design of the ebooster from BorgWarner Application and Design of the ebooster from BorgWarner Knowledge Library Knowledge Library Application and Design of the ebooster from BorgWarner With an electrically assisted compressor, the ebooster,

More information

Control of NO x from A DI Diesel Engine With Hot EGR And Ethanol Fumigation: An Experimental Investigation

Control of NO x from A DI Diesel Engine With Hot EGR And Ethanol Fumigation: An Experimental Investigation IOSR Journal of Engineering (IOSRJEN) ISSN: 2250-3021 Volume 2, Issue 7(July 2012), PP 45-53 Control of NO x from A DI Diesel Engine With Hot EGR And Ethanol Fumigation: An Experimental Investigation GURUMOORTHY

More information

ENGINE OPTIMIZATION BY USING VARIABLE VALVE TIMING SYSTEM AT LOW ENGINE REVOLUTION

ENGINE OPTIMIZATION BY USING VARIABLE VALVE TIMING SYSTEM AT LOW ENGINE REVOLUTION ENGINE OPTIMIZATION BY USING VARIABLE VALVE TIMING SYSTEM AT LOW ENGINE REVOLUTION Ainul Aniyah Sabaruddin, Surjatin Wiriadidjaja, Azmin Shakrine Mohd Rafie, Fairuz I. Romli and Harijono Djojodihardjo

More information

KDI. Kohler Direct Injection

KDI. Kohler Direct Injection KDI Kohler Direct Injection Kohler/Lombardini - Ready for the Future In preparation for new regulations on emissions that are soon to take effect (final TIER 4, above 19 kw in the US; Stage IIIB, above

More information

INITIAL ASSESSMENT OF THE IMPACT OF JET FLAME HAZARD FROM HYDROGEN CARS IN ROAD TUNNELS AND THE IMPLICATION ON HYDROGEN CAR DESIGN

INITIAL ASSESSMENT OF THE IMPACT OF JET FLAME HAZARD FROM HYDROGEN CARS IN ROAD TUNNELS AND THE IMPLICATION ON HYDROGEN CAR DESIGN INITIAL ASSESSMENT OF THE IMPACT OF JET FLAME HAZARD FROM HYDROGEN CARS IN ROAD TUNNELS AND THE IMPLICATION ON HYDROGEN CAR DESIGN Wu, Y Department of Chemical and Process Engineering, University of Sheffield,

More information

AIR POWERED ENGINE INTRODUCTION. Pramod Kumar.J Mechanical Engineer, Bangalore, INDIAs

AIR POWERED ENGINE INTRODUCTION. Pramod Kumar.J Mechanical Engineer, Bangalore, INDIAs International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 66 72, Article ID: IJMET_07_02_010 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

Parametric study and optimization of diesel engine operation for low emissions using different injectors

Parametric study and optimization of diesel engine operation for low emissions using different injectors Iowa State University Digital Repository @ Iowa State University Graduate Theses and Dissertations Graduate College 29 Parametric study and optimization of diesel engine operation for low emissions using

More information

Flow in data racks. 1 Aim/Motivation. 3 Data rack modification. 2 Current state. EPJ Web of Conferences 67, 02070 (2014)

Flow in data racks. 1 Aim/Motivation. 3 Data rack modification. 2 Current state. EPJ Web of Conferences 67, 02070 (2014) EPJ Web of Conferences 67, 02070 (2014) DOI: 10.1051/ epjconf/20146702070 C Owned by the authors, published by EDP Sciences, 2014 Flow in data racks Lukáš Manoch 1,a, Jan Matěcha 1,b, Jan Novotný 1,c,JiříNožička

More information