PHYLOGENY AND EVOLUTION OF NEWCASTLE DISEASE VIRUS GENOTYPES

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "PHYLOGENY AND EVOLUTION OF NEWCASTLE DISEASE VIRUS GENOTYPES"

Transcription

1 Eötvös Lóránd University Biology Doctorate School Classical and molecular genetics program Project leader: Dr. László Orosz, corresponding member of HAS PHYLOGENY AND EVOLUTION OF NEWCASTLE DISEASE VIRUS GENOTYPES Doctoral thesis Alíz Czeglédi Supervisor: Dr. Béla Lomniczi, D.Sc. Veterinary Medical Research Institute of the Hungarian Academy of Sciences Budapest 2007

2 2 Introduction Newcastle disease virus (NDV), an avian paramyxovirus, is the causative agent of Newcastle disease (ND), a highly contagious ailment that elicits 100% morbidity and mortality in susceptible chickens. ND was one of the most serious problems of the poultry industry in the 20. th century but vaccination introduced in the 1950s, allowed poultry industry to remain profitable even during an unprecedented growth of the number of chickens from 1 to 20 billion in the past 50 years. However, in the developing countries vaccination was not sufficient to eliminate the infection by virulent NDV-strains therefore the disease has become endemic in 80 countries while further 30 suffered one or several introduction of the virus even in the past decade. Genetic analyses, performed in our laboratory, of NDV strains isolated in the past 80 years have revealed the existence of at least 9 genotypes (and further subtypes) that showed not only region specific and host species associations but their temporal distribution was also apparent (Lomniczi és Czeglédi, 2005). It was shown that early genotypes [II.-IV. and Herts 33(W)] prevalent before the 1960s were replaced by recent genetic groups (V.-VIII.) following the introduction of vaccination. Recently sublineages of the Far East genotype VII have spread to other geographic areas, e.g. to Europe. Replacement of genotypes appears to be an evolutionary process rather than random epidemiological event in the distribution of NDV strains. The emergence of novel virulent genotypes seems to be inconsistent with the application of vaccination but experimental infections shed light on the process whereby immunized chicken population became the reservoir of the novel virulent viruses. As to the ecology two major reservoirs of NDV strains exist in nature. The primordial reservoir consists of wild water-bird species that harbour primitive (apatogenic) viruses but, surprisingly, only two genetic lineages are known in the wild: class I and genotype I (belonging to class II). By contrast, the remainder (genotypes II.-VIII.) comprises virulent strains and are maintained in the secondary (artificial) reservoirs of chickens. It is hypothesized that the chicken populations were seeded with apathogenic viruses and pathogenic strains emerged in the chicken host. Prior to the immunization period at least two independent colonisations could take place (with genotype I and II) whereas a novel strategy of generating virulent genotypes must have emerged recently.

3 3 Aims of the study 1) Phylogenetic analysis of NDV strains to reveal epidemiological relationships and infer evolutionary changes during epizootics: 1a) to reveal the temporal occurrence and replacement dynamics epidemiological types (genotypes and subtypes) in epizootics using virus strains derived from Bulgaria and encompassing four decades; 1b) to estimate of the rate of change of the virus strains under field condition derived from genetically separated endemic lineages in order to assess the approximate time when ND was introduced to Europe; 1c) genetic analysis of vaccine strains to verify the authenticity and origin of these strains based on early publication. 2) Reconstruction of the phylogenetic relationship of the NDV genotypes and subtypes based on the analysis of all genes of NDV strains: 2a) building a database comprising sequences of the 6 genes of 60 representative NDV strains; 2b) to compare the different gene-trees in order to confirm the topology and relationships of the genotypes and subtypes that was established on the basis of a region of the fusion (F) protein gene; 2c) to compare the relative divergence of genes in order to see if surface protein genes are more variables than those coding for internal proteins; 2c) to reveal recombination events based on incongruencies of the different gene trees. 3) Genealogy of NDV genotypes to assess the overrepresentations of virulent groups: 3a) analysis of molecular structural features to use in the grouping above genotypic level; 3b) relationship between genome size classes and the history of virus-host relationships.

4 4 Materials and Methods Growth of viruses, preparation of viral RNA and reverse transcription These procedures were performed without modification as described previously (Czeglédi et al., 2002). Polymerase chain reaction Partial sequencing of the 6 genes (3 -NP-P-M-F-HN-L-5 ) from 60 NDV strains, and the 5 non-coding region of the NP gene of 23 NDV strains, representing the 9 genotypes and further subtypes was performed. Primers were selected by the OLIGO 5.0 computer program. Complete genome amplification of the PHY-LMV42 virus strain by RT-PCR The genome was amplified in five overlapping portions. Three specific primers were used for the RT and three primer pairs for the amplification of the inner regions encompassing 94% of the genome. The sequences of the 3 - and 5 termini of the viral genome were amplified by 3 - and 5 -RACE. All these procedures were performed as described previously (Czeglédi et al., 2006). Cloning of the amplified products PCR products containing the 5 non-coding regions of 23 NDV strains, and the complete genome of the PHY-LMV42/66 strain were cloned into sequencing plasmids as described previously (Czeglédi et al., 2006). Sequencing and sequence analysis DNA sequences were determined at Genotype GmbH, Hirschhorn, Medigenomix GmbH, Martinsried/München, Germany and at the Agricultural Biotechnology Centre, Gödöllő, Hungary. In case of the complete genome sequencing, primer-walking technology was used. The sequence data of the 60 NDV strains were aligned by the MegAlign program using the CLUSTAL W multiple alignment algorithm. Distance matrix based phylogenetic analysis was performed using the TREECON for Windows 1.3b software, that created a distance tree by the neighbour-joining method using the Kimura two-parameter model and 100 bootstrap values to assign confidence values to topology. MEGA 2.1 was also utilized to estimate the overall averages of the characterized 6 genome regions. Character analysis of the 60 NDV strain were also performed. The best fitting nucleotide substitution model was chosen by the program Modeltest v3.06 program, then phylogenetic trees were reconstructed in PAUP*v.4.0b10 using maximum likelihood approach. Tree topologies were evaluated using a heuristic search approach (Czeglédi et al., 2006).

5 5 Results and Discussion 1) Partial sequence analysis of the fusion (F) protein gene of NDV isolates deriving from a collection made in Bulgaria and encompassing 4 decades was used to reveal epidemiological relationships and infer evolutionary change. It was estimated that the rate of change of the variable region of the F gene under field condition was 1%/decade. A number of endemic lineages composed of old European strains belonging to genotype IV and fully separated by the 1960s were identified in Bulgaria and other countries in the region. Using the above value to estimate the age of these lineages it was concluded that the most recent common ancestor (or the founder) of these viruses must have been present in Europe not later than the turn of century. This correlates with early documentation of the disease in Europe. A major division of genotype VI was shown which resulted in an Asian and African lineage by the 1970s. 2) Genetic analysis of an authentic sample of the first European isolate, Herts 33(W), revealed that it represented a highly diverged novel early lineage. Contrarily to a 1940 publication from England in which the derivation of strain H, one of the most successful early vaccines, from Herts 33(W) by egg passage was reported, genetic analysis precluded relationships between them. On the other hand, strain Mukteswar claimed to be an independent vaccine, was found to be identical with strain H. 3) The sequence analyses of the 6 genes of 60 representative NDV strains reconstructed basically the same phylogenetic relationships of genotypes and subtypes. All trees were congruent and no signs of recombination were seen at the sequenced regions. A database was established for facilitating genotyping on the bases of any of the genes. 4) Phylogenetic analysis revealed that two major separations resulting in three genome size categories occurred during the history of NDV. An ancient division in the primordial reservoir (wild waterbird species) led to two basal sister clades, class I and II, with genom sizes (due to a 12 nucleotide insert in the phosphoprotein gene) and nucleotides, respectively. Ancestors of only class II viruses colonized chicken populations and subsequently converted to virulent forms. A second division occurred in the 20th century in the secondary (chicken) host. This gave rise to the branching-off of a clade with the concomitant insertion of 6 nucleotides into the 5 non-coding region of the nucleoprotein gene thereby increasing the genome size to nucleotides. In cladistic

6 6 terms the 6 nucleotide insertion constitutes a synapomorphic character for the recent genotypes while the lack of it the plesiomorphic state. In class I the 12 nucleotide insertion corresponds to an autapomorphic character. 5) Based on the above results two distinct evolutionary mechanisms are proposed for the emergence of lineages comprising virulent strains. The first involves two major steps: independent colonisations of chicken populations with distinct lineages of primitive (avirulent) viruses from the primordial reservoir, which is followed by separate avirulent virulent conversion in the chicken host. The second is less elaborate: surviving a bottle neck effect due to environmental pressure (e.g. immunisation of the host) the virulent ancestor diversifies to further virulent lineages (adaptive radiation). Old genotypes (I.-IV.) appeared to follow the first scenario while recent ones (genotypes V.- VIII.) the second.

7 7 References 1) Czeglédi, A., Herczeg, J., Hadjiev, G., Doumanova, L., Wehmann, E., Lomniczi, B., The occurrence of five major Newcastle disease virus genotypes (II, IV, V, VI and VIIb) in Bulgaria between 1959 and Epidemiology and Infection 129, ) Wehmann, E., Czeglédi, A., Werner, O., Kaleta, E.F., Lomniczi, B., Occurrence of genotypes IV, V, VI and VIIa in Newcastle disease outbreaks in Germany between 1939 and Avian Pathology 32, ) Czeglédi, A., Wehmann, E., Lomniczi, B., On the origins and relationships of Newcastle disease virus vaccine strains Hertfordshire and Mukteswar, and virulent strain Herts 33. Avian Pathology 32, ) Lomniczi, B., Czeglédi, A., History of Newcastle disease 1. Molecular epidemiology and evolution of Newcastle disease virus. (in Hungarian) Magyar Állatorvosok Lapja 127, ) Czeglédi, A., Ujvári, D., Somogyi, E., Wehmann, E., Werner, O., Lomniczi, B., Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Research 120,

Chapter 9. Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA

Chapter 9. Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Chapter 9 Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Q&A Interferons are species specific, so that interferons to be used in humans must be produced in human cells. Can you think

More information

Avian Influenza: the moving target

Avian Influenza: the moving target Avian Influenza: the moving target Ilaria Capua 1 & Dennis J Alexander 2 OIE/FAO Reference Laboratories 1 Istituto Zooprofilattico Sperimentale delle Venezie Legnaro, Padova IT 2 VLA Weybridge, UK H5N1

More information

The correct answer is c B. Answer b is incorrect. Type II enzymes recognize and cut a specific site, not at random sites.

The correct answer is c B. Answer b is incorrect. Type II enzymes recognize and cut a specific site, not at random sites. 1. A recombinant DNA molecules is one that is a. produced through the process of crossing over that occurs in meiosis b. constructed from DNA from different sources c. constructed from novel combinations

More information

Chapter 12 - DNA Technology

Chapter 12 - DNA Technology Bio 100 DNA Technology 1 Chapter 12 - DNA Technology Among bacteria, there are 3 mechanisms for transferring genes from one cell to another cell: transformation, transduction, and conjugation 1. Transformation

More information

7.013 Spring 2005 Problem Set 7 FRIDAY May 6th, 2005

7.013 Spring 2005 Problem Set 7 FRIDAY May 6th, 2005 MI Department of Biology 7.013: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor yler Jacks, Dr. Claudette Gardel Question 1 7.013 Spring 2005 Problem Set 7 RIDAY May 6th,

More information

CONTENTS. Brief introduction. Epidemiology. Diagnosis LOGO. D. Batchuluun, B. Batsuren, Ts. Badamsuren, Ts. Erdene-Ochir, J.

CONTENTS. Brief introduction. Epidemiology. Diagnosis LOGO. D. Batchuluun, B. Batsuren, Ts. Badamsuren, Ts. Erdene-Ochir, J. УЛСЫН МАЛ ЭМНЭЛЭГ АРИУН ЦЭВРИЙН ТӨВ ЛАБОРАТОРИ STATE CENTRAL VETERINARY LABORATORY SCVL 26 September 2008 D. Batchuluun, B. Batsuren, Ts. Badamsuren, Ts. Erdene-Ochir, J. Bekh-Ochir CONTENTS 1 2 3 Brief

More information

CCR Biology - Chapter 9 Practice Test - Summer 2012

CCR Biology - Chapter 9 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 9 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Genetic engineering is possible

More information

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE Q5B

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE Q5B INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED TRIPARTITE GUIDELINE QUALITY OF BIOTECHNOLOGICAL PRODUCTS: ANALYSIS

More information

Recombinant DNA Technology

Recombinant DNA Technology PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 8 Recombinant DNA Technology The Role of Recombinant DNA Technology in Biotechnology Biotechnology

More information

Molecular typing of VTEC: from PFGE to NGS-based phylogeny

Molecular typing of VTEC: from PFGE to NGS-based phylogeny Molecular typing of VTEC: from PFGE to NGS-based phylogeny Valeria Michelacci 10th Annual Workshop of the National Reference Laboratories for E. coli in the EU Rome, November 5 th 2015 Molecular typing

More information

Document v1.0. Balazs Toth Veterinary Exotic Notifiable Diseases Unit, Animal Health. Dr Helen Roberts Global Animal Health, Defra

Document v1.0. Balazs Toth Veterinary Exotic Notifiable Diseases Unit, Animal Health. Dr Helen Roberts Global Animal Health, Defra Veterinary risk assessment on the likelihood of introduction and spread of avian notifiable disease associated with bird fairs, shows, markets, sales and other gatherings Document v1.0 Balazs Toth Veterinary

More information

Highly Pathogenic Avian Influenza Virus H5N1 and Wild Birds

Highly Pathogenic Avian Influenza Virus H5N1 and Wild Birds Highly Pathogenic Avian Influenza Virus H5N1 and Wild Birds What are avian influenza viruses? Avian influenza viruses (AIV) are Type A influenza viruses that are associated with avian species. They have

More information

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources 1 of 8 11/7/2004 11:00 AM National Center for Biotechnology Information About NCBI NCBI at a Glance A Science Primer Human Genome Resources Model Organisms Guide Outreach and Education Databases and Tools

More information

Genetic Technology. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Genetic Technology. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Genetic Technology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An application of using DNA technology to help environmental scientists

More information

European Medicines Agency

European Medicines Agency European Medicines Agency July 1996 CPMP/ICH/139/95 ICH Topic Q 5 B Quality of Biotechnological Products: Analysis of the Expression Construct in Cell Lines Used for Production of r-dna Derived Protein

More information

Biotechnology Test Test

Biotechnology Test Test Log In Sign Up Biotechnology Test Test 15 Matching Questions Regenerate Test 1. Plasmid 2. PCR Process 3. humulin 4. pluripotent 5. polymerase chain reaction (PCR) a b Is much smaller than the human genome,

More information

Chapter 10 Manipulating Genes

Chapter 10 Manipulating Genes How DNA Molecules Are Analyzed Chapter 10 Manipulating Genes Until the development of recombinant DNA techniques, crucial clues for understanding how cell works remained lock in the genome. Important advances

More information

CAP BIOINFORMATICS Su-Shing Chen CISE. 10/5/2005 Su-Shing Chen, CISE 1

CAP BIOINFORMATICS Su-Shing Chen CISE. 10/5/2005 Su-Shing Chen, CISE 1 CAP 5510-8 BIOINFORMATICS Su-Shing Chen CISE 10/5/2005 Su-Shing Chen, CISE 1 Genomic Mapping & Mapping Databases High resolution, genome-wide maps of DNA markers. Integrated maps, genome catalogs and comprehensive

More information

Biotechnology and Recombinant DNA

Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Recombinant DNA procedures - an overview Biotechnology: The use of microorganisms, cells, or cell components to make a product. Foods, antibiotics, vitamins, enzymes Recombinant

More information

NAME: Microbiology BI234 MUST be written and will not be accepted as a typed document.

NAME: Microbiology BI234 MUST be written and will not be accepted as a typed document. Chapter 8 Study Guide What is the study of genetics, and what topics does it focus on? What is a genome? NAME: Microbiology BI234 MUST be written and will not be accepted as a typed document. Describe

More information

Genetics Faculty of Agriculture and Veterinary Medicine

Genetics Faculty of Agriculture and Veterinary Medicine Genetics 10201232 Faculty of Agriculture and Veterinary Medicine Instructor: Dr. Jihad Abdallah Topic 15:Recombinant DNA Technology 1 Recombinant DNA Technology Recombinant DNA Technology is the use of

More information

Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes.

Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes. Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes. Recombinant DNA technology has had-and will havemany important

More information

Recipient Cell. DNA Foreign DNA. Recombinant DNA

Recipient Cell. DNA Foreign DNA. Recombinant DNA Module 4B Biotechnology In this module, we will examine some of the techniques scientists have developed to study and manipulate the DNA of living organisms. Objective # 7 Explain what genetic recombination

More information

Bayesian coalescent inference of population size history

Bayesian coalescent inference of population size history Bayesian coalescent inference of population size history Alexei Drummond University of Auckland Workshop on Population and Speciation Genomics, 2016 1st February 2016 1 / 39 BEAST tutorials Population

More information

Molecular and cytogenetic analysis of cervical and vulvar cancer

Molecular and cytogenetic analysis of cervical and vulvar cancer Title Molecular and cytogenetic analysis of cervical and vulvar cancer Advisor(s) Ngan, HYS Author(s) Huang, Fung-yu.; 黃鳳如 Citation Huang, F. [ 黃鳳如 ]. (2002). Molecular and cytogenetic analysis of cervical

More information

Biotechnology in Medicine and Agriculture

Biotechnology in Medicine and Agriculture Biotechnology in Medicine and Agriculture Bởi: OpenStaxCollege It is easy to see how biotechnology can be used for medicinal purposes. Knowledge of the genetic makeup of our species, the genetic basis

More information

MB3001 Medical Microbiology (5 credits; Teaching Period 2A) MB3006 Genetic Engineering and Molecular Biotechnology

MB3001 Medical Microbiology (5 credits; Teaching Period 2A) MB3006 Genetic Engineering and Molecular Biotechnology MICROBIOLOGY Spring Semester 2013/2014 academic year Timetables can be accessed at http://timetable.ucc.ie/1314/department.asp Click on Microbiology For information on building codes click on: http://timetable.ucc.ie/1314/buildingcodes.asp

More information

Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company

Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Biotechnology and reporter genes Here, a lentivirus is used to carry foreign DNA into chickens. A reporter gene (GFP)indicates that foreign DNA has been successfully transferred. Recombinant DNA continued

More information

Changing Concept of FMD diagnostics: from Central to Local. Aniket Sanyal Project Directorate on FMD Mukteswar, India

Changing Concept of FMD diagnostics: from Central to Local. Aniket Sanyal Project Directorate on FMD Mukteswar, India Changing Concept of FMD diagnostics: from Central to Local Aniket Sanyal Project Directorate on FMD Mukteswar, India OBJECTIVES OF DIAGNOSIS IN THE FIELD/LOCAL 1. To arrive at quick diagnosis 2. To implement

More information

IIID 14. Biotechnology in Fish Disease Diagnostics: Application of the Polymerase Chain Reaction (PCR)

IIID 14. Biotechnology in Fish Disease Diagnostics: Application of the Polymerase Chain Reaction (PCR) IIID 14. Biotechnology in Fish Disease Diagnostics: Application of the Polymerase Chain Reaction (PCR) Background Infectious diseases caused by pathogenic organisms such as bacteria, viruses, protozoa,

More information

AP Biology Learning Objective Cards

AP Biology Learning Objective Cards 1.1 The student is able to convert a data set from a table of numbers that reflect a change in the genetic makeup of a population over time and to apply mathematical methods and conceptual understandings

More information

Control of Newcastle and Infectious Bursal diseases in Poultry: Vaccines, Vaccination and Bio security

Control of Newcastle and Infectious Bursal diseases in Poultry: Vaccines, Vaccination and Bio security Control of Newcastle and Infectious Bursal diseases in Poultry: Vaccines, Vaccination and Bio security Nick Nwankpa, Karim Tounkara and Charles Bodjo OUTLINE OF PRESENTATION 1. INTRODUCTION 2. DEFINITIONS

More information

How to Build a Phylogenetic Tree

How to Build a Phylogenetic Tree How to Build a Phylogenetic Tree Phylogenetics tree is a structure in which species are arranged on branches that link them according to their relationship and/or evolutionary descent. A typical rooted

More information

Avian Influenza a deadly threat

Avian Influenza a deadly threat Avian Influenza a deadly threat Nobilis Influenza Vaccines Complementing an AI eradication strategy Highly Pathogenic Avian Influenza A deadly threat to world poultry production Avian influenza (AI) viruses

More information

BBS2711 Virology RESPIRATORY VIRUSES. Dr Paul Young, Department of Microbiology & Parasitology. Respiratory Viruses

BBS2711 Virology RESPIRATORY VIRUSES. Dr Paul Young, Department of Microbiology & Parasitology. Respiratory Viruses BBS2711 Virology RESPIRATORY VIRUSES Dr Paul Young, Department of Microbiology & Parasitology. p.young@mailbox.uq.edu.au Respiratory Viruses Respiratory tract is major route of invasion for a wide range

More information

FACULTY OF MEDICAL SCIENCE

FACULTY OF MEDICAL SCIENCE Doctor of Philosophy Program in Microbiology FACULTY OF MEDICAL SCIENCE Naresuan University 171 Doctor of Philosophy Program in Microbiology The time is critical now for graduate education and research

More information

AP Biology Essential Knowledge Student Diagnostic

AP Biology Essential Knowledge Student Diagnostic AP Biology Essential Knowledge Student Diagnostic Background The Essential Knowledge statements provided in the AP Biology Curriculum Framework are scientific claims describing phenomenon occurring in

More information

II. Pathways of Discovery in Microbiology. 1.6 The Historical Roots of Microbiology. Robert Hooke and Early Microscopy

II. Pathways of Discovery in Microbiology. 1.6 The Historical Roots of Microbiology. Robert Hooke and Early Microscopy II. Pathways of Discovery in Microbiology 1.6 The Historical Roots of Microbiology 1.6 The Historical Roots of Microbiology 1.7 Pasteur and the Defeat of Spontaneous Generation 1.8 Koch, Infectious Disease,

More information

This article may require cleanup to meet Wikipedia's quality standards. Please improve this article if you can. (October 2008)

This article may require cleanup to meet Wikipedia's quality standards. Please improve this article if you can. (October 2008) Avian influenza From Wikipedia, the free encyclopedia This article may require cleanup to meet Wikipedia's quality standards. Please improve this article if you can. (October 2008) Avian influenza, sometimes

More information

It took a while for biologists to figure out that genetic information was carried on DNA.

It took a while for biologists to figure out that genetic information was carried on DNA. DNA Finally, we want to understand how all of the things we've talked about (genes, alleles, meiosis, etc.) come together at the molecular level. Ultimately, what is an allele? What is a gene? How does

More information

Ch. 13 How Populations Evolve Period. 4. Describe Lamarck s proposed theory of evolution, The Theory of Acquired Traits.

Ch. 13 How Populations Evolve Period. 4. Describe Lamarck s proposed theory of evolution, The Theory of Acquired Traits. Ch. 13 How Populations Evolve Name Period California State Standards covered by this chapter: Evolution 7. The frequency of an allele in a gene pool of a population depends on many factors and may be stable

More information

Bioinformatics. Viruses, etc

Bioinformatics. Viruses, etc Bioinformatics, etc David Gilbert Bioinformatics Research Centre www.brc.dcs.gla.ac.uk Department of Computing Science, University of Glasgow Incorporating notes by Ali Al-Shahib, David Leader, and Wikipaedia

More information

Programme Specification MSc in Molecular Genetics

Programme Specification MSc in Molecular Genetics Programme Specification MSc in Molecular Genetics Entry-level Honours degree in Bioscience subject or a science degree with a relevant bioscience component. Overall minimum level 2:2. International applicants

More information

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Primary Source for figures and content: Eastern Campus Tortora, G.J. Microbiology

More information

WHO Regional Office for Europe update on avian influenza A (H7N9) virus

WHO Regional Office for Europe update on avian influenza A (H7N9) virus WHO Regional Office for Europe update on avian influenza A (H7N9) virus Situation update 2: 30 April 2013 Address requests about publications of the WHO Regional Office for Europe to: Publications WHO

More information

Public Health Laboratory Workforce Development Bioinformatics

Public Health Laboratory Workforce Development Bioinformatics Public Health Laboratory Workforce Development Bioinformatics Templates for Course Development Contents Overview... 1 Going Beyond the Introductory Courses... 1 Course Templates... 3 Template 1: Introduction

More information

Viruses (2) Eukaryotic microorganisms and viruses. RNA viruses. Classification of viruses

Viruses (2) Eukaryotic microorganisms and viruses. RNA viruses. Classification of viruses Viruses (2) Eukaryotic microorganisms and viruses Classification of viruses RNA viruses Virus diversity: Retrovirus (Reverse Transcriptase Onkovirus) Structure of a retrovirus (e.g. Human immunodefiency

More information

Plasmid Isolation. Prepared by Latifa Aljebali Office: Building 5, 3 rd floor, 5T250

Plasmid Isolation. Prepared by Latifa Aljebali Office: Building 5, 3 rd floor, 5T250 Plasmid Isolation Prepared by Latifa Aljebali Office: Building 5, 3 rd floor, 5T250 Plasmid Plasmids are small, double strand, closed circular DNA molecules. Isolated from bacterial cells. Replicate independently

More information

Innovations in Molecular Epidemiology

Innovations in Molecular Epidemiology Innovations in Molecular Epidemiology Molecular Epidemiology Measure current rates of active transmission Determine whether recurrent tuberculosis is attributable to exogenous reinfection Determine whether

More information

Human Mendelian Disorders. Genetic Technology. What is Genetics? Genes are DNA 9/3/2008. Multifactorial Disorders

Human Mendelian Disorders. Genetic Technology. What is Genetics? Genes are DNA 9/3/2008. Multifactorial Disorders Human genetics: Why? Human Genetics Introduction Determine genotypic basis of variant phenotypes to facilitate: Understanding biological basis of human genetic diversity Prenatal diagnosis Predictive testing

More information

MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS

MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS Richard L. Hodinka, Ph.D. University of South Carolina School of Medicine Greenville Greenville Health System, Greenville, SC hodinka@greenvillemed.sc.edu

More information

The role of IBV proteins in protection: cellular immune responses. COST meeting WG2 + WG3 Budapest, Hungary, 2015

The role of IBV proteins in protection: cellular immune responses. COST meeting WG2 + WG3 Budapest, Hungary, 2015 The role of IBV proteins in protection: cellular immune responses COST meeting WG2 + WG3 Budapest, Hungary, 2015 1 Presentation include: Laboratory results Literature summary Role of T cells in response

More information

A response to charges of error in Biology by Miller & Levine

A response to charges of error in Biology by Miller & Levine A response to charges of error in Biology by Miller & Levine According to TEA, a citizen disputes two sentences on page 767 of our textbook, Biology, by Miller & Levine. These sentences are: SE 767, par.

More information

REAL-TIME PCR KITS FOR DIAGNOSIS

REAL-TIME PCR KITS FOR DIAGNOSIS REAL-TIME PCR KITS FOR DIAGNOSIS 483 Reproducible, Sensitive and Precise Analysis Real Time PCR (qpcr) has revolutionized biological and medical sciences by providing quantitative detection of specific

More information

Name Class Date. KEY CONCEPT Mutations are changes in DNA that may or may not affect phenotype. frameshift mutation

Name Class Date. KEY CONCEPT Mutations are changes in DNA that may or may not affect phenotype. frameshift mutation Unit 7 Study Guide Section 8.7: Mutations KEY CONCEPT Mutations are changes in DNA that may or may not affect phenotype. VOCABULARY mutation point mutation frameshift mutation mutagen MAIN IDEA: Some mutations

More information

02/08/2010. 1. Background. Outline

02/08/2010. 1. Background. Outline Identification of immunodominant T-cell eptitopes in matrix protein of highly pathogenic porcine reproductive and respiratory syndrome virus Ya-Xin Wang, PhD Student Outline 1. Background 2. Research Contents

More information

excerpted from Reducing Pandemic Risk, Promoting Global Health For the full report go to http://report.predict.global

excerpted from Reducing Pandemic Risk, Promoting Global Health For the full report go to http://report.predict.global excerpted from Reducing Pandemic Risk, Promoting Global Health For the full report go to http://report.predict.global FUTURE DIRECTIONS Historically, attempts to control deadly viruses, such as SARS and

More information

Veterinary Microbiology 94 (2003) 269 281

Veterinary Microbiology 94 (2003) 269 281 Veterinary Microbiology 94 (2003) 269 281 Genetic analysis of Newcastle disease virus strains isolated in Bosnia-Herzegovina, Croatia, Slovenia and Yugoslavia, reveals the presence of only a single genotype,

More information

Vaccination as a control tool against HPAI Recommendation of OIE/FAO Network of Expertise on Animal Influenza

Vaccination as a control tool against HPAI Recommendation of OIE/FAO Network of Expertise on Animal Influenza Inception Meeting of the OIE/JTF Project for Controlling Zoonoses in Asia under One Health Concept Tokyo, 19-20 December 2013 Vaccination as a control tool against HPAI Recommendation of OIE/FAO Network

More information

INTRODUCTION: Topic I: RIBOSOMAL RNA

INTRODUCTION: Topic I: RIBOSOMAL RNA INTRODUCTION: The rrna gene is the most conserved (least variable) DNA in all cells. Portions of the rdna sequence from distantly related organisms are remarkably similar. This means that sequences from

More information

restriction enzymes 350 Home R. Ward: Spring 2001

restriction enzymes 350 Home R. Ward: Spring 2001 restriction enzymes 350 Home Restriction Enzymes (endonucleases): molecular scissors that cut DNA Properties of widely used Type II restriction enzymes: recognize a single sequence of bases in dsdna, usually

More information

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology Lecture 13: DNA Technology DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology DNA Sequencing determine order of nucleotides in a strand of DNA > bases = A,

More information

Principles of Disease and Epidemiology. Copyright 2010 Pearson Education, Inc.

Principles of Disease and Epidemiology. Copyright 2010 Pearson Education, Inc. Principles of Disease and Epidemiology Pathology, Infection, and Disease Disease: An abnormal state in which the body is not functioning normally Pathology: The study of disease Etiology: The study of

More information

Mitochondrial DNA Analysis

Mitochondrial DNA Analysis Mitochondrial DNA Analysis Lineage Markers Lineage markers are passed down from generation to generation without changing Except for rare mutation events They can help determine the lineage (family tree)

More information

http://www.who.int/csr/disease/avian_influenza/phase/en 4 http://new.paho.org/hq/index.php?option=com_content&task=view&id=1283&itemid=569

http://www.who.int/csr/disease/avian_influenza/phase/en 4 http://new.paho.org/hq/index.php?option=com_content&task=view&id=1283&itemid=569 Food and Agriculture Organization of the United Nations International Food Safety Authorities Network (INFOSAN) (Update) 30 April 2009 INFOSAN Information Note No. 2/2009 Human-animal interface aspects

More information

Herd immunity tio Newcastle disease virus in poultry by vaccination

Herd immunity tio Newcastle disease virus in poultry by vaccination Herd immunity tio Newcastle disease virus in poultry by vaccination Michiel Van Boven, Annemarie Bouma, Teun Fabri, Elly Katsma, Leo Hartog, Guus Koch To cite this version: Michiel Van Boven, Annemarie

More information

Scientific Process Skills: Scientific Process Skills:

Scientific Process Skills: Scientific Process Skills: Texas University Interscholastic League Contest Event: Science The contest challenges students to read widely in biology, to understand the significance of experiments rather than to recall obscure details,

More information

VACCINE DEVELOPMENT USING RECOMBINANT DNA TECHNOLOGY

VACCINE DEVELOPMENT USING RECOMBINANT DNA TECHNOLOGY VACCINE DEVELOPMENT USING RECOMBINANT DNA TECHNOLOGY Animal Agriculture's Future through Biotechnology Mark W. Jackwood, Leslie Hickle, Sanjay Kapil and Robert F. Silva Vaccines Represent one of the Greatest

More information

Biological Sciences Initiative. Human Genome

Biological Sciences Initiative. Human Genome Biological Sciences Initiative HHMI Human Genome Introduction In 2000, researchers from around the world published a draft sequence of the entire genome. 20 labs from 6 countries worked on the sequence.

More information

Common Course Topics Biology 1414: Introduction to Biotechnology I

Common Course Topics Biology 1414: Introduction to Biotechnology I Common Course Topics Biology 1414: Introduction to Biotechnology I Assumptions Students may be enrolled in this course for several reasons; they are enrolled in the Biotechnology Program, they need a science

More information

2 Short biographies and contact information of the workshop organizers

2 Short biographies and contact information of the workshop organizers 1 Title of the workshop from sequence to surveillance 2 Short biographies and contact information of the workshop organizers Dr Peter Durr - peter.durr@csiro.au Veterinary epidemiologist, Australian Animal

More information

Microbiology / Active Lecture Questions Chapter 9 Biotechnology & Recombinant DNA 1 Chapter 9 Biotechnology & Recombinant DNA

Microbiology / Active Lecture Questions Chapter 9 Biotechnology & Recombinant DNA 1 Chapter 9 Biotechnology & Recombinant DNA 1 2 Restriction enzymes were first discovered with the observation that a. DNA is restricted to the nucleus. b. phage DNA is destroyed in a host cell. c. foreign DNA is kept out of a cell. d. foreign DNA

More information

Genetic Engineering and Biotechnology

Genetic Engineering and Biotechnology 1 So, what is biotechnology?? The use of living organisms to carry out defined chemical processes for industrial or commercial application. The office of Technology Assessment of the U.S. Congress defines

More information

Evolution of Retroviruses: Fossils in our DNA 1

Evolution of Retroviruses: Fossils in our DNA 1 Evolution of Retroviruses: Fossils in our DNA 1 JOHN M. COFFIN Professor of Molecular Biology and Microbiology Tufts University UNIQUE AMONG INFECTIOUS AGENTS, retroviruses provide the opportunity for

More information

Equine Influenza Programme Animal Health Trust

Equine Influenza Programme Animal Health Trust Horserace Betting Levy Board www.hblb.org.uk equine.grants@hblb.org.uk Equine Influenza Programme Animal Health Trust Neil Bryant, Adam Rash, Alana Woodward, Donna Blinman, Richard Newton, Debra Elton

More information

Worksheet - COMPARATIVE MAPPING 1

Worksheet - COMPARATIVE MAPPING 1 Worksheet - COMPARATIVE MAPPING 1 The arrangement of genes and other DNA markers is compared between species in Comparative genome mapping. As early as 1915, the geneticist J.B.S Haldane reported that

More information

Tools and Techniques. Chapter 10. Genetic Engineering. Restriction endonuclease. 1. Enzymes

Tools and Techniques. Chapter 10. Genetic Engineering. Restriction endonuclease. 1. Enzymes Chapter 10. Genetic Engineering Tools and Techniques 1. Enzymes 2. 3. Nucleic acid hybridization 4. Synthesizing DNA 5. Polymerase Chain Reaction 1 2 1. Enzymes Restriction endonuclease Ligase Reverse

More information

MOLECULAR GENETICS GENETIC ENGINEERING RECOMBINANT DNA. Molecular Genetics Activity #6 page 1

MOLECULAR GENETICS GENETIC ENGINEERING RECOMBINANT DNA. Molecular Genetics Activity #6 page 1 AP BIOLOGY MOLECULAR GENETICS ACTIVITY #6 NAME DATE HOUR RECOMBINANT DNA GENETIC ENGINEERING Molecular Genetics Activity #6 page 1 GENETIC ENGINEERING Molecular Genetics Activity #6 page 2 PART I: PRODUCING

More information

Visualization of Phylogenetic Trees and Metadata

Visualization of Phylogenetic Trees and Metadata Visualization of Phylogenetic Trees and Metadata November 27, 2015 Sample to Insight CLC bio, a QIAGEN Company Silkeborgvej 2 Prismet 8000 Aarhus C Denmark Telephone: +45 70 22 32 44 www.clcbio.com support-clcbio@qiagen.com

More information

HPAI H5N8 outbreak in layers in the Netherlands. 20 November 2014, Ruth Bouwstra

HPAI H5N8 outbreak in layers in the Netherlands. 20 November 2014, Ruth Bouwstra HPAI H5N8 outbreak in layers in the Netherlands 20 November 2014, Ruth Bouwstra Avian Influenza Surveillance in the Netherlands Passive surveillance (notification of suspect situation) Acute infections

More information

Human Genome Complexity, Viruses & Genetic Variability

Human Genome Complexity, Viruses & Genetic Variability Human Genome Complexity, Viruses & Genetic Variability (Learning Objectives) Learn the types of DNA sequences present in the Human Genome other than genes coding for functional proteins. Review what you

More information

Viruses. Viral components: Capsid. Chapter 10: Viruses. Viral components: Nucleic Acid. Viral components: Envelope

Viruses. Viral components: Capsid. Chapter 10: Viruses. Viral components: Nucleic Acid. Viral components: Envelope Viruses Chapter 10: Viruses Lecture Exam #3 Wednesday, November 22 nd (This lecture WILL be on Exam #3) Dr. Amy Rogers Office Hours: MW 9-10 AM Too small to see with a light microscope Visible with electron

More information

STANDARD 2 Students will demonstrate appropriate safety procedures and equipment use in the laboratory.

STANDARD 2 Students will demonstrate appropriate safety procedures and equipment use in the laboratory. BIOTECHNOLOGY Levels: 11-12 Units of Credit: 1.0 CIP Code: 51.1201 Prerequisite: Biology or Chemistry Skill Certificates: #708 COURSE DESCRIPTION is an exploratory course designed to create an awareness

More information

Recombinant DNA and Biotechnology

Recombinant DNA and Biotechnology Recombinant DNA and Biotechnology Chapter 18 Lecture Objectives What Is Recombinant DNA? How Are New Genes Inserted into Cells? What Sources of DNA Are Used in Cloning? What Other Tools Are Used to Study

More information

11/19/2008. Gene analysis. Sequencing PCR. Northern-blot RT PCR. Western-blot Sequencing. in situ hybridization. Southern-blot

11/19/2008. Gene analysis. Sequencing PCR. Northern-blot RT PCR. Western-blot Sequencing. in situ hybridization. Southern-blot Recombinant technology Gene analysis Sequencing PCR RNA Northern-blot RT PCR Protein Western-blot Sequencing Southern-blot in situ hybridization in situ hybridization Function analysis Histochemical analysis

More information

GENETICS OF BACTERIA AND VIRUSES

GENETICS OF BACTERIA AND VIRUSES GENETICS OF BACTERIA AND VIRUSES 1 Genes of bacteria are found in bacterial chromosomes Usually a single type of chromosome May have more than one copy of that chromosome Number of copies depends on the

More information

Algorithms in Computational Biology (236522) spring 2007 Lecture #1

Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: Tuesday 11:00-12:00/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office

More information

The origins of crop disease: the curious case of kiwifruit canker

The origins of crop disease: the curious case of kiwifruit canker The origins of crop disease: the curious case of kiwifruit canker Paul B Rainey New Zealand Institute for Advanced Study & Allan Wilson Centre, Massey University (Auckland, NZ) Max Planck Institute for

More information

Catching the Flu: A Photo Essay

Catching the Flu: A Photo Essay May 2006 Catching the Flu: A Photo Essay As it tests a new way of making vaccines, TechnoVax is targeting the deadly 1918 flu virus. By Stephan Herrera (MIT Technology Review) Jose Galarza is the CEO of

More information

NS5B Sequencing and Phenotypic Resistance Assays for HCV Subtypes 1a and 1b

NS5B Sequencing and Phenotypic Resistance Assays for HCV Subtypes 1a and 1b NS5B Sequencing and Phenotypic Resistance Assays for HCV Subtypes 1a and 1b 5th Intl. Workshop on Hepatitis C Resistance & New Compounds Jacqueline Reeves NS5B Resistance Assays for HCV Subtypes 1a and

More information

Chapter 20: Biotechnology: DNA Technology & Genomics

Chapter 20: Biotechnology: DNA Technology & Genomics Biotechnology Chapter 20: Biotechnology: DNA Technology & Genomics The BIG Questions How can we use our knowledge of DNA to: o Diagnose disease or defect? o Cure disease or defect? o Change/improve organisms?

More information

Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company

Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Genetic engineering: humans Gene replacement therapy or gene therapy Many technical and ethical issues implications for gene pool for germ-line gene therapy what traits constitute disease rather than just

More information

Cells. DNA and Heredity

Cells. DNA and Heredity Cells DNA and Heredity ! Nucleic acids DNA (deoxyribonucleic acid) and RNA (ribonucleic acid) Determines how cell function " change the DNA and you change the nature of the organism Changes of DNA allows

More information

In search of the first Antarctic Avian Influenza Virus

In search of the first Antarctic Avian Influenza Virus In search of the first Antarctic Avian Influenza Virus A/Prof. Aeron Hurt WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute, Melbourne Avian influenza viruses

More information

Single Nucleotide Polymorphism (SNP) Calling from Next-Gen Sequencing (NGS) data for Bacterial Phylogenetics

Single Nucleotide Polymorphism (SNP) Calling from Next-Gen Sequencing (NGS) data for Bacterial Phylogenetics Single Nucleotide Polymorphism (SNP) Calling from Next-Gen Sequencing (NGS) data for Bacterial Phylogenetics Taj Azarian, MPH Doctoral Student Department of Epidemiology College of Medicine and College

More information

Biotechnology. Selective breeding Use of microbes (bacteria & yeast)

Biotechnology. Selective breeding Use of microbes (bacteria & yeast) Biotechnology bio and technology The use of living organisms to solve problems or make useful products. Biotechnology has been practiced for the last 10,000 years. Selective breeding Use of microbes (bacteria

More information

Name: Period: Date: Biotechnology refers to technology used to DNA. The procedures are often referred to as. DNA is cut into small pieces using (RE).

Name: Period: Date: Biotechnology refers to technology used to DNA. The procedures are often referred to as. DNA is cut into small pieces using (RE). Name: Period: Date: I. OVERVIEW OF GENETIC ENGINEERING: Biotechnology refers to technology used to DNA. The procedures are often referred to as. is the genetic material of all living organisms. o All organisms

More information

Chapter 7: Conclusion and future directions

Chapter 7: Conclusion and future directions Chapter 7: Conclusion and future directions 7.1 Biological summary 7.1.1 Views from Maela data 7.1.1.1 Recombination allows rapid adaptation in response to environmental changes 7.1.1.2 Behaviour of nontypable

More information

HUMAN GENETIC TESTING PATENTS : ELIGIBILITY AND ENFORCEMENT

HUMAN GENETIC TESTING PATENTS : ELIGIBILITY AND ENFORCEMENT HUMAN GENETIC TESTING PATENTS : ELIGIBILITY AND ENFORCEMENT FRENCH APPROACH DENISE HIRSCH HEAD OF IP THE ENVIRONNENT Patentability of living organism was a public debate in France focusing on ethical issues

More information

The Central Dogma of Molecular Biology

The Central Dogma of Molecular Biology Vierstraete Andy (version 1.01) 1/02/2000 -Page 1 - The Central Dogma of Molecular Biology Figure 1 : The Central Dogma of molecular biology. DNA contains the complete genetic information that defines

More information