EXISTENCE RESULT FOR STRONGLY NONLINEAR ELLIPTIC EQUATIONS IN ORLICZ SOBOLEV SPACES

Size: px
Start display at page:

Download "EXISTENCE RESULT FOR STRONGLY NONLINEAR ELLIPTIC EQUATIONS IN ORLICZ SOBOLEV SPACES"

Transcription

1 Proyecciones Vol. 26, N o 2, pp , August Universidad Católica del Norte Antofagasta - Chile EXISTENCE RESULT FOR STRONGLY NONLINEAR ELLIPTIC EQUATIONS IN ORLIC SOBOLEV SPACES A. YOUSSFI UNIVERSITÉ SIDI MOHAMMED BEN ABDALLAH, MAROC Received : July Accepted : May 2007 Abstract In this paper, we prove the existence of solutions for some strongly nonlinear Dirichlet problems whose model is the following div(m 1 M( u ) u u )+um( u ) =f divf in D0 (), where is an open bounded subset of IR N,N 2. We emphasize that no 2 -condition is required for the N-function M. Mathematics Subject Classification : (2000): 46E30, 35J60, 35J65. Key words: Orlicz-Sobolev spaces, strongly nonlinear problems.

2 158 A. Youssfi 1. Introduction Let be a bounded open set of IR N, N 2, and let M be an N-function. Consider the following Dirichlet problem (1.1) A(u)+H(x, u, u) =f, where A(u) := div a(x, u, u) is a Leray-Lions type operator definedonitsdomaind(a) W 1 0 L M() and H is a nonlinearity assumed to satisfy the natural growth condition (1.2) H(x, s, ξ) b( s )(h(x)+m( ξ )) Recently, a large number of papers was devoted to the existence of solutions of (1.1). In the variational framework, that is f W 1 E M (), an existence result was proved in [8] when H depends only on x and u and satisfy the following sign condition H(x, s)s 0, andin[2]whenm satisfies the 2 -condition and H depends also on u and satisfies (1.3) H(x, s, ξ)s 0. The result in [2] was generalized in [7] to N-functions without 2 - condition. In the case where f L 1 (), problem (1.1) was solved in [3] under the so-called coercivity condition (1.4) H(x, s, ξ) βm( ξ ) for s some τ and in [5] assuming the sign condition (1.3) but the result was restricted to N-functions satisfying the 2 -condition (see bellow). The result contained in [5] was then extended in [6] to N-functions without assuming the 2 - condition. The solution u given in this case is such that its truncated

3 Existence result for strongly nonlinear elliptic equations in function T k (u) belongs to the energy space W 1 0 L M() for all k>0, but not the function u it self. Our main goal in this paper, is to prove the existence of a solution in W 1 0 L M() for problems of the kind of (1.1) when the source term has the form f divf with f L 1 () and F E M (), without any restriction on the N-function M. The paper is organized as follows, after giving a background in section 2, in section 3 we list the basic assumptions and our main result which will be proved in six steeps in section Prerequisites 2.1 Let M : IR + IR + be an N-function, ie. M is continuous, convex, with M(t) > 0fort>0, M(t) t 0ast 0and M(t) t as t.the N-function conjugate to M is defined as M(t) = sup{st M(t),s 0}. We recall the Young s inequality: for all s, t 0, If for some k>0, st M(s)+M(t). (2.1) M(2t) km(t) for all t 0, we said that M satisfies the 2 -condition, and if (2.1) holds only for t some t 0, then M is said to satisfy the 2 -condition near infinity. We will extend these N-functions into even functions on all IR. Let P and Q be two N-functions. the notation P Q means that P grows essentially less rapidly than Q, i.e. for all >0, that is the case if and only if P (t) Q( t) 0 as t, Q 1 (t) P 1 (t) 0 as t. 2.2 Let be an open subset of IR N. The Orlicz class K M () (resp. the Orlicz space L M ()) is defined as the set of (equivalence class of) realvalued measurable functions u on such that:

4 160 A. Youssfi µ u(x) M(u(x))dx < (resp. M dx < for some λ>0). λ Endowed with the Luxemburg norm kuk M =inf{λ >0: µ u(x) M dx < }, λ L M () is a Banach space and K M () is a convex subset of L M (). The Orlicz norm is defined on L M () by kuk (M) =sup u(x)v(x)dx, where the supremum is taken over all functions v L M () such that kvk M 1. The two norms k.k M and k.k (M) are equivalent (see [13]). The closure in L M () of the set of bounded measurable functions with compact support in is denoted by E M (). 2.3 The Orlicz-Sobolev space W 1 L M () (resp.w 1 E M ()) is the space of functions u such that u and its distributional derivatives up to order 1 lie in L M () (resp.e M ()). It is a Banach space under the norm kuk 1,M = X kd α uk M. α 1 Thus, W 1 L M () andw 1 E M () canbeidentified with subspaces of the product of (N +1) copiesof L M (). Denoting this product by ΠL M,we will use the weak topologies σ(πl M, ΠE M )andσ(πl M, ΠL M ). The space W 1 0 E M() isdefined as the norm closure of the Schwartz space D() inw 1 E M () and the space W 1 0 L M() astheσ(πl M, ΠE M )closure of D() inw 1 L M (). We say that a sequence {u n } converges to u for the modular convergence in W 1 L M () if,forsomeλ>0, µ D α u n D α u M dx 0 for all α 1, λ this implies convergence for σ(πl M, ΠL M )(see[9,lemma6]). If M satisfies the 2 -condition on IR + (near infinity only if has finite measure), then the modular convergence coincides with norm convergence (see [13, Theorem 9.4]).

5 Existence result for strongly nonlinear elliptic equations in Recall that the norm kduk M defined on W 1 0 L M() isequivalenttokuk 1,M (see [10]). Let W 1 L M () (resp. W 1 E M ()) denotes the space of distributions on which can be written as sums of derivatives of order 1 of functions in L M ()(resp. E M ()). It is a Banach space under the usual quotient norm. If the open has the segment property then the space D() isdense in W 1 0 L M() for the topology σ(πl M, ΠL M ) (see [10]). Consequently, the action of a distribution in W 1 L M () onanelementofw 1 0 L M() iswell defined. For an exhaustive treatments one can see for example [1, 13]. 2.4 We will use the following lemma, (see [6]), which concerns operators of Nemytskii Type in Orlicz spaces. It is slightly different from the analogous one given in [13]. Lemma 2.1. Let be an open subset of IR N with finite measure. let M, P and Q be N-functions such that Q P,andletf : IR IR be a Carathéodory function such that, for a.e.x and for all s IR, f(x, s) c(x)+k 1 P 1 M(k 2 s ), where k 1,k 2 are real constants and c(x) E Q (). Then the Nemytskii operator N f,defined by N f (u)(x) =f(x, u(x)), is strongly continuous from P(E M, k 1 2 )={u L M () :d(u, E M ()) < k 1 2 } into E Q (). We will use the following lemma which can be found in [12], Lemma 2.2. If {f n } L 1 () with f n f L 1 () a.e. in, f n,f 0 a.e. in and f n (x)dx f(x)dx, then f n f strongly in L 1 (). We also use the technical lemma: Lemma 2.3. Let x and y be two nonnegative real numbers and let with θ = y2 4x 2.Then φ(s) =se θs2, xφ 0 (s) y φ(s) x 2, s IR.

6 162 A. Youssfi 3. Assumptions and main result Let be an open bounded subset of IR N, N 2, with the segment property and let M and P be two N-functions such that P M. Let A : D(A) W0 1L M() W 1 L M () be a mapping (non everywhere defined) given by A(u) := div a(x, u, u) where a : IR IR N IR N is a Carathéodory function (i.e., a(x,, ) is continuous on IR IR N for almost every x in and a(,s,ξ)ismeasurable on for every (s, ξ) inir IR N ) satisfying for a.e. x, andforalls IR and all ξ, η IR N, ξ 6= η, (3.1) a(x, s, ξ) a 0 (x)+k 1 P 1 M(k 2 s )+k 1 M 1 M(k 2 ξ ) where a 0 (x) belongs to E M () andk 1,k 2 to IR +, (3.2) (a(x, s, ξ) a(x, s, η)) (ξ η) > 0 (3.3) a(x, s, ξ) ξ M( ξ ) Furthermore, let H : IR IR N IR be a Carathéodory function such that (3.4) H(x, s, ξ) b( s )(M( ξ )+h(x)) for almost x and for all s IR, ξ IR N,withb a real valued positive increasing continuous function and h a nonnegative function in L 1 (), and (3.5) H(x, s, ξ)sgn(s) M( ξ ) for a.e. x, foreveryξ IR N and for every s IR such that s σ, where σ is a positive real number. Consider the following Dirichlet problem: (3.6) A(u)+H(x, u, u) =f div(f ) in, u =0 on, We shall prove the following existence result:

7 Existence result for strongly nonlinear elliptic equations in Theorem 3.1. Assume that f L 1 (), F E M () and (3.1)-(3.5) hold true, then there exists at least a function u solution of (3.6) in the sense that u W0 1L M(), H(x, u, u) L 1 () and a(x, u, u) T k (u v)dx + H(x, u, u)t k (u v)dx = ft k (u v)dx + F T k (u v)dx for every v W 1 0 L M() L () and every k σ. Remark We can replace assumptions (3.3), (3.4) and (3.5) by the following ones: (3.3) 0 a(x, s, ξ) ξ αm with α, λ > 0 and µ (3.4) 0 H(x, s, ξ) b( s ) M with 0 <λ μ and (3.5) 0 H(x, s, ξ)sgn(s) βm with 0 <τ λ and β>0. µ ξ λ µ ξ + h(x) μ µ ξ τ 2. A consequence of (3.3) and the continuity of a with respect to ξ, isthat, for almost every x in and s in IR, a(x, s, 0) = Note that assumption (3.5) gives a sign condition on H only near infinity. 4. In (3.4) we can assume only that b is positive and continuous. Remark 3.2. The solution of (3.6) given by theorem 3.1 belongs to W 1 0 L M() even if F =0, this regularity is due to assumption (3.5).

8 164 A. Youssfi 4. Proofoftheorem3.1 Let {f n } be a sequence of L () functions that converges strongly to f in L 1 (). Let n in IN and let H n (x, s, ξ) = H(x, s, ξ) 1+ 1 n H(x, s, ξ). It s easy to see that H n (x, s, ξ) n, H n (x, s, ξ) H(x, s, ξ) and H n (x, s, ξ)sgn(s) 0for s σ. Since H n is bounded for fixed n, there exists, (see [11, Propositions 1 and 5]), a function u n in W0 1L M() solution of A(u n )+H n (x, u n, u n )=f n divf in, u n =0 on, in the sense (3.7) a(x, u n, u n ) vdx + H n (x, u n, u n )vdx = f n vdx + F vdx for every v W 1 0 L M(). Step1: Estimation in W0 1L M(). For k>0, we denote by T k the usual truncation at level k defined by T k (s) =max( k, min(k, s)) for all s IR. Let us choose v = φ(t σ (u n )) as test function in (3.7), where σ is given by (3.5), φ is the function in lemma 2.3 and b is the function in (3.4). Using (3.3) and the Young s inequality, we obtain

9 Existence result for strongly nonlinear elliptic equations in M( T σ (u n ) )φ 0 (T σ (u n ))dx + H n (x, u n, u n )φ(t σ (u n ))dx φ(σ)kf n k L 1 () + φ 0 (σ) M(2 F )dx + 1 M( T σ (u n ) )φ 0 (T σ (u n ))dx. 2 Since {f n } is bounded in L 1 (), there exists a constant c not depending on n such that 1 M( T σ (u n ) )φ 0 (T σ (u n ))dx + H n (x, u n, u n )φ(t σ (u n ))dx 2 c(φ(σ)+φ 0 (σ)), which we can write, since H n enjoys the same properties of H, 1 M( T σ (u n ) )φ 0 (T σ (u n ))dx + H n (x, u n, u n )φ(t σ (u n ))dx 2 { u n <σ} + H n (x, u n, u n )φ(t σ (u n ))dx { u n σ} c(φ(σ)+φ 0 (σ)). By (3.4) we have H n (x, u n, u n )φ(t σ (u n ))dx { u n <σ} µ b(σ) M( T σ (u n ) )φ(t σ (u n ))dx + φ(σ)khk L 1 (), while using(3.5), we get { u n σ} H n (x, u n, u n )φ(t σ (u n ))dx φ(σ) M( u n )dx. { u n σ} Hence, we obtain R ³ M( T σ(u n ) ) 1 2 φ0 (T σ (u n )) b(σ) φ(t σ (u n )) dx +,φ(σ) M( u n )dx c(φ(σ)+φ 0 (σ)) + b(σ)φ(σ)khk L 1 (). { u n σ}

10 166 A. Youssfi Then, lemma 2.3 with the choice x = 1 2 and y = b(σ), yields 1 M( T σ (u n ) )dx + φ(σ) M( u n )dx 4 { u n σ} c(φ(σ)+φ 0 (σ)) + b(σ)φ(σ)khk L 1 (), which implies that (3.8) M( u n )dx c 0, where c 0 is a constant not depending on n. Thus {u n } is bounded in W0 1L M(), and consequently there exist a function u in W0 1L M() anda subsequence still denoted by {u n } such that (3.9) u n u in W 1 0 L M () for σ(πl M, ΠE M ) and (3.10) u n u in E M () strongly and a.e. in. Step2: {a(x, T k (u n ), T k (u n ))} is bounded in (L M ()) N for all k σ. We will use the Orlicz norm. For that, let ψ (L M ()) N with kψk M 1. For all k σ, we write using (3.2) so that µ a(x, T k (u n ), T k (u n )) a(x, T k (u n ), ψ ) µ T k (u n ) ψ dx 0, k 2 k2 (3.11) 1 a(x, T k (u n ), T k (u n )) ψdx k 2 a(x, T k (u n ), T k (u n )) T k (u n )dx + 1 k 2 a(x, T k (u n ), ψ k 2 ) T k (u n )dx a(x, T k (u n ), ψ k 2 ) ψdx.

11 Existence result for strongly nonlinear elliptic equations in To estimate the first term in the right, we take v = T k (u n )astest function in (3.7) and then use the Young s inequality, the fact that H n (x, u n, u n )T k (u n ) 0ontheset{ u n k} and (3.3), to obtain 1 a(x, T k (u n ), T k (u n )) T k (u n )dx + H n (x, u n, u n )T k (u n )dx 2 { u n k} kkf n k L 1 () + M(2 F )dx. Assumption (3.4) yields H n (x, u n, u n )T k (u n )dx { u n k} µ kb(k) M( u n )dx + khk L 1 () kb(k)(c 0 + khk L 1 ()), where c 0 is the constant in (3.8). Hence, since {f n } is bounded in L 1 (), we deduce that a(x, T k (u n ), T k (u n )) T k (u n )dx λ k, with λ k a constant depending on k. By the Young s inequality, (3.11) becomes 1 k 2 a(x, T k (u n ), T k (u n )) ψdx λ k +(1+2k 1 ) M( T k (u n ) )dx +(1+ 1 )(1 + 2k 1 ) M k k 1 k 2 M( ψ )dx. a(x, T k (u n ), ψ ) k 2 1+2k dx 1

12 168 A. Youssfi By virtue of (3.1) and the convexity of M, weget a(x, T k (u n ), ψ ) M k 2 1+2k dx 1 µ 1 ( a 0 (x) )dx + k 1 M 1 M(kk 2 ) 1+2k 1 We conclude that + k 1 M( ψ )dx. 1+2k 1 a(x, T k (u n ), T k (u n )) ψdx c k for all ψ (L M ()) N with kψk M 1, this means that (3.12) ka(x, T k (u n ), T k (u n ))k (M) c k, for every k σ. Step3: Almost everywhere convergence of the gradients. Since the function u belongs to W0 1L M(), there exists a sequence {v j } D(), (see [9]), which converges to u for the modular convergence in W0 1L M() anda.e.in. For m k σ, wedefine the function ρ m by 1 if s m ρ m (s) = m +1 s if m s m +1 0 if s m +1. Let θ j n = T k (u n ) T k (vj), θ j = T k (u) T k (v j )andz j n,m = φ(θ j n)ρ m (u n ) where φ is the function in lemma 2.3. In what follows, we denote by i (n, j), (i IN), various sequences of real numbers which tend to 0 when n and j respectively, i.e. lim j lim n i(n, j) =0.

13 Existence result for strongly nonlinear elliptic equations in We use z j n,m W 1 0 L M() as test function in (3.7) to get (3.13) <A(u n ),zn,m j > + H n (x, u n, u n )zn,mdx j = f n zn,mdx+ j F zn,mdx. j In view of (3.10), we have zn,m j φ(θ j )ρ m (u) weaklyinl () for σ (L,L 1 )asn,then lim f n z j n n,mdx = fφ(θ j )ρ m (u)dx, and since φ(θ j ) 0weaklyinL () forσ(l,l 1 )asj, we have lim fφ(θ j )ρ m (u)dx =0, j hence, we obtain f n zn,mdx j = 0 (n, j). Thanks to (3.8) and (3.10), we have as n z j n,m φ(θ j )ρ m (u) in W 1 0 L M () for σ(πl M, ΠE M ), which implies that lim F z j n n,mdx = F θ j φ 0 (θ j )ρ m (u)dx + F uφ(θ j )ρ 0 m(u)dx. On the one hand, by Lebesgue s theorem we get lim F uφ(θ j )ρ 0 m(u)dx =0, j on the other hand, we write F θ j φ 0 (θ j )ρ m (u)dx = F T k (u)φ 0 (θ j )ρ m (u)dx F T k (v j )φ 0 (θ j )ρ m (u)dx,

14 170 A. Youssfi so that, by Lebesgue s theorem one has lim F T k (u)φ 0 (θ j )ρ m (u)dx = F T k (u)ρ m (u)dx, j M ³ vj u Let λ>0 such that M λ 0 strongly in L 1 () asj and L 1 (), the convexity of the N-function M allows us to have ³ u λ M Ã Tk (v j )φ 0 (θ j! )ρ m (u) T k (u)ρ m (u) 4λφ 0 (2k) 1 µ 4 M vj u + 1 µ 1+ 1 λ 4 φ 0 M (2k) µ u λ. Then, by using the modular convergence of { v j } in (L M ()) N and Vitali s theorem, we obtain T k (v j )φ 0 (θ j )ρ m (u) T k (u)ρ m (u) in (L M ()) N for the modular convergence, and then lim F T k (v j )φ 0 (θ j )ρ m (u)dx = F T k (u)ρ m (u)dx. j We have proved that F z j n,mdx = 1 (n, j). Since H n (x, u n, u n )z j n,m 0ontheset{ u n >k} and ρ m (u n )=1on the set { u n k}, we have (3.14) <A(u n ),zn,m j > + H n (x, u n, u n )φ(θn)dx j 2 (n, j) { u n k} Now, we will evaluate the first term of the left-hand side of (3.14) by writing

15 Existence result for strongly nonlinear elliptic equations in <A(u n ),zn,m j > = a(x, u n, u n ) ( T k (u n ) T k (v j ))φ 0 (θn)ρ j m (u n )dx + = + and then a(x, u n, u n ) u n φ(θ j n)ρ 0 m(u n )dx a(x, T k (u n ), T k (u n )) ( T k (u n ) T k (v j ))φ 0 (θ j n)dx { u n >k} a(x, u n, u n ) T k (v j )φ 0 (θ j n)ρ m (u n )dx a(x, u n, u n ) u n φ(θ j n)ρ 0 m(u n )dx, (3.15) <A(u n ),zn,m j > = (a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (v j )χ s j)) ( T k (u n ) T k (v j )χ s j )φ0 (θn)dx j + a(x, T k (u n ), T k (v j )χ s j)) ( T k (u n ) T k (v j )χ s j)φ 0 (θn)dx j a(x, T k (u n ), T k (u n )) T k (v j )φ 0 (θn)dx j \ s j a(x, u n, u n ) T k (v j )φ 0 (θn)ρ j m (u n )dx { u n >k} + a(x, u n, u n ) u n φ(θn)ρ j 0 m(u n )dx, where by χ s j, s>0, we denote the characteristic function of the subset s j = {x : T k (v j ) s}. For fixed m and s, we will pass to the limit in n andtheninj in the second, third, fourth and five terms in the right side of (3.15). Starting with the second term, we have

16 172 A. Youssfi a(x, T k (u n ), T k (v j )χ s j)) ( T k (u n ) T k (v j )χ s j)φ 0 (θ j n)dx a(x, T k (u), T k (v j )χ s j)) ( T k (u) T k (v j )χ s j)φ 0 (θ j )dx as n, since by lemma 2.1 one has a(x, T k (u n ), T k (v j )χ s j))φ 0 (θ j n) a(x, T k (u), T k (v j )χ s j))φ 0 (θ j ) strongly in (E M ()) N as n,while T k (u n ) T k (u) weakly in (L M ()) N by (3.8). Let χ s denote the characteristic function of the subset s = {x : T k (u) s}. As T k (v j )χ s j T k(u)χ s strongly in (E M ()) N as j, one has as j. Then a(x, T k (u), T k (v j )χ s j)) ( T k (u) T k (v j )χ s j)φ 0 (θ j )dx 0 (3.16) a(x, T k (u n ), T k (v j )χ s j)) ( T k (u n ) T k (v j )χ s j)φ 0 (θn)dx j = 3 (n, j). For the third term of (3.15), by virtue of (3.12) there exist a subsequence still indexed again by n and a function l k in (L M ()) N with k σ such that a(x, T k (u n ), T k (u n )) l k weakly in (L M ()) N for σ(πl M, ΠE M ). Then, since T k (v j )χ \ s j (E M ()) N,weobtain a(x, T k (u n ), T k (u n )) T k (v j )φ 0 (θn)dx j l k T k (v j )φ 0 (θ j )dx \ s j \ s j

17 Existence result for strongly nonlinear elliptic equations in as n. The modular convergence of {v j } allows us to have l k T k (v j )φ 0 (θ j )dx l k T k (u)dx \ s \ s j as j. This, proves that a(x, T k (u n ), T k (u n )) T k (v j )φ 0 (θn)dx j = l k T k (u)dx+ 4 (n, j). \ s j \ s (3.17) As regards the fourth term, observe that ρ m (u n ) = 0 on the subset { u n m +1}, sowehave a(x, u n, u n ) T k (v j )φ 0 (θn)ρ j m (u n )dx = { u n >k} { u n >k} a(x, T m+1 (u n ), T m+1 (u n )) T k (v j )φ 0 (θ j n)ρ m (u n )dx. As above, we obtain a(x, T m+1 (u n ), T m+1 (u n )) T k (v j )φ 0 (θn)ρ j m (u n )dx = { u n >k} { u >k} l m+1 T k (u)ρ m (u)dx + 5 (n, j). Observing that T k (u) = 0 on the subset { u >k}, one has (3.18) a(x, u n, u n ) T k (v j )φ 0 (θn)ρ j m (u n )dx = 5 (n, j) { u n >k} For the last term of (3.15), we have a(x, u n, u n ) u n φ(θn)ρ j 0 m(u n )dx = {m u n m+1} φ(2k) {m u n m+1} a(x, u n, u n ) u n φ(θn)ρ j 0 m(u n )dx a(x, u n, u n ) u n dx.

18 174 A. Youssfi To estimate the last term of the previous inequality, we test by T 1 (u n T m (u n )) W0 1L M() in (3.7), to get a(x, u n, u n ) u n dx {m u n m+1} + H n (x, u n, u n )T 1 (u n T m (u n ))dx { u n m} = f n T 1 (u n T m (u n ))dx + F u n dx. {m u n m+1} Using the fact that H n (x, u n, u n )T 1 (u n T m (u n )) 0 on the subset { u n m} and the Young s inequality, we get 1 a(x, u n, u n ) u n dx 2 {m u n m+1} f n dx + M( F )dx. { u n m} {m u n m+1} It follows that a(x, u n, u n ) u n φ(θn)ρ j 0 m(u n )dx (3.19) Ã! 2φ(2k) f n dx + M( F )dx. { u n m} {m u n m+1} From (3.16), (3.17), (3.18) and (3.19) we obtain (3.20) <A(u n ),zn,m j > (a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (v j )χ s j)) ( T k (u n ) T k (v j )χ s j )φ0 (θ j n)dx Ã! 2φ(2k) f n dx + M( F )dx { u n m} {m u n m+1} \ s l k T k (u)dx + 6 (n, j).

19 Existence result for strongly nonlinear elliptic equations in Now, we turn to second term of the left hand side of (3.14). We have H n (x, u n, u n )φ(θ j n)dx { u n k} = H n (x, T k (u n ), T k (u n ))φ(θ j n)dx { u n k} b(k) M( T k (u n ) ) φ(θn) dx j + b(k) h(x) φ(θn) dx j b(k) a(x, T k (u n ), T k (u n )) T k (u n ) φ(θn) dx j + 7 (n, j). Then, (3.21) { u n k} b(k) H n (x, u n, u n )φ(θn)dx j ³ a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (v j )χ s j) ³ T k (u n ) T k (v j )χ s j φ(θn) dx j + b(k) a(x, T k (u n ), T k (v j )χ s j) ( T k (u n ) T k (v j )χ s j) φ(θn) dx j + b(k) a(x, T k (u n ), T k (u n )) T k (v j )χ s j φ(θn) dx j + 7 (n, j). We proceed as above to get b(k) a(x, T k (u n ), T k (v j )χ s j)) ( T k (u n ) T k (v j )χ s j) φ(θn) dx j = 8 (n, j) and b(k) a(x, T k (u n ), T k (u n )) T k (v j )χ s j φ(θn) dx j = 9 (n, j).

20 176 A. Youssfi Hence, we have (3.22) H n (x, u n, u n )φ(θ j n)dx { u n k} ³ b(k) a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (v j )χ s j) ³ T k (u n ) T k (v j )χ s j φ(θn) dx j + 10 (n, j). Combining (3.14), (3.20) and (3.22), we get ³ a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (v j )χ s j) ³ φ T k (u n ) T k (v j )χj s 0 (θn) j b(k) φ(θn) j dx l k T k (u)dx \ s Ã! +2φ(2k) f n dx + M( F )dx + 11 (n, j). { u n m} {m u n m+1} (3.23) Then, lemma 2.3 with x =1andy = b(k), yields ³ a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (v j )χ s j) ³ T k (u n ) T k (v j )χ s j dx 2 l k T k (u)dx \ s Ã! +4φ(2k) f n dx + M( F )dx + 11 (n, j). { u n m} {m u n m+1}

21 Existence result for strongly nonlinear elliptic equations in On the other hand (a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (u)χ s )) ( T k (u n ) T k (u)χ s ) dx = ³ a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (v j )χ s j) ³ T k (u n ) T k (v j )χ s j dx + a(x, T k (u n ), T k (u n )) ( T k (v j )χ s j T k (u)χ s )dx a(x, T k (u n ), T k (u)χ s ) ( T k (u n ) T k (u)χ s )dx + a(x, T k (u n ), T k (v j )χ s j) ( T k (u n ) T k (v j )χ s j)dx. We shall pass to the limit in n andtheninj in the last three terms of the right hand side of the above equality. By similar arguments as in (3.15) and (3.21), we obtain a(x, T k (u n ), T k (u n )) ( T k (v j )χ s j T k (u)χ s )dx = 12 (n, j) and and a(x, T k (u n ), T k (u)χ s ) ( T k (u n ) T k (u)χ s )dx = 13 (n, j) (3.24) so that a(x, T k (u n ), T k (v j )χ s j) ( T k (u n ) T k (v j )χ s j)dx = 14 (n, j),

22 178 A. Youssfi (a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (u)χ s )) ( T k (u n ) T k (u)χ s )dx (3.25) = (a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (v j )χ s j)) ( T k (u n ) T k (v j )χ s j )dx + 15 (n, j). Let r s, we use (3.2), (3.25) and (3.23) to get 0 (a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (u))) r ( T k (u n ) T k (u))dx (a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (u))) s ( T k (u n ) T k (u))dx = (a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (u)χ s )) s ( T k (u n ) T k (u)χ s )dx (a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (u)χ s )) ( T k (u n ) T k (u)χ s )dx

23 Existence result for strongly nonlinear elliptic equations in = (a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (v j )χ s j)) ( T k (u n ) T k (v j )χ s j)dx + 15 (n, j) 2 l k T k (u)dx \ s Ã! +4φ(2k) f n dx + M( F )dx { u n m} {m u n m+1} + 16 (n, j), Which gives by passing to the limit sup over n and then over j 0 lim sup (a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (u))) n r ( T k (u n ) T k (u))dx Ã! 2 l k T k (u)dx +4φ(2k) f dx + M( F )dx. \ s { u m} {m u m+1} Letting s and then m, taking into account that l k T k (u) L 1 (), f L 1 (), M( F ) L 1 (), \ s 0, { u m} 0, and {m u m +1} 0, one has (a(x, T k (u n ), T k (u n )) a(x, T k (u n ), T k (u))) ( T k (u n ) T k (u))dx 0 r as n. As in [4], we deduce that there exists a subsequence of {u n } still indexed again by n such that (3.26) u n u a.e. in. Thus, by (3.12) and (3.26) we have (3.27) a(x, T k (u n ), T k (u n )) a(x, T k (u), T k (u)) weakly in (L M ()) N for σ(πl M, ΠE M )andforallk σ.

24 180 A. Youssfi Step4: Modular convergence of the truncations. Going back to (3.23), we write a(x, T k (u n ), T k (u n )) T k (u n )dx a(x, T k (u n ), T k (u n )) T k (v j )χ s jdx + a(x, T k (u n ), T k (v j )χ s j) ( T k (u n ) T k (v j )χ s j)dx Ã! +4φ(2k) f n dx + M( F )dx { u n m} {m u n m+1} +2 a(x, T k (u), T k (u)) T k (u)dx + 11 (n, j). \ s and by (3.24) we get a(x, T k (u n ), T k (u n )) T k (u n )dx a(x, T k (u n ), T k (u n )) T k (v j )χ s jdx Ã! +4φ(2k) f n dx + M( F )dx { u n m} {m u n m+1} +2 a(x, T k (u), T k (u)) T k (u)dx + 17 (n, j). \ s We pass now to the limit sup over n in both sides of this inequality, to obtain lim sup a(x, T k (u n ), T k (u n )) T k (u n )dx n a(x, T k (u), T k (u)) T k (v j )χ s jdx Ã! +4φ(2k) f dx + M( F )dx { u m} {m u m+1} +2 a(x, T k (u), T k (u)) T k (u)dx + lim 17(n, j), \ s n

25 Existence result for strongly nonlinear elliptic equations in in which, we pass to the limit in j to get lim sup a(x, T k (u n ), T k (u n )) T k (u n )dx n a(x, T k (u), T k (u)) T k (u)χ s dx Ã! +4φ(2k) f dx + M( F )dx { u m} {m u m+1} +2 a(x, T k (u), T k (u)) T k (u)dx, \ s letting s and then m, one has lim sup a(x, T k (u n ), T k (u n )) T k (u n )dx a(x, T k (u), T k (u)) T k (u)dx n On the other hand, by Fatou s lemma, we have a(x, T k (u), T k (u)) T k (u)dx lim inf a(x, T k (u n ), T k (u n )) T k (u n )dx. n It follows that a(x, T k (u n ), T k (u n )) T k (u n )dx = lim n By lemma 2.2 we conclude that a(x, T k (u), T k (u)) T k (u)dx. (3.28) a(x, T k (u n ), T k (u n )) T k (u n ) a(x, T k (u), T k (u)) T k (u) strongly in L 1 (), k σ. The convexity of the N-function M and (3.3) allow us to have µ Tk (u n ) T k (u) M a(x, T k(u n ), T k (u n )) T k (u n )+ 1 2 a(x, T k(u), T k (u)) T k (u). Then, by (3.28) we get µ lim sup Tk (u n ) T k (u) M dx =0. E 0 n E 2

26 182 A. Youssfi So that, by Vitali s theorem one has T k (u n ) T k (u) in W 1 0 L M () for the modular convergence, for all k σ. Step5: Equi-integrability of the nonlinearities. As a consequence of (3.10) and (3.26), one has H n (x, u n, u n ) H(x, u, u) a.e. in. We shall prove that the sequence {H n (x, u n, u n )} is uniformly equiintegrable in. Let E be a measurable subset of, for all m σ, wehave H n (x, u n, u n ) dx = H n (x, u n, u n ) dx E + H n (x, u n, u n ) dx. E { u n >m} E { u n m} On the one hand, the use of T 1 (u n T m 1 (u n )) as test function in (3.7), the Young s inequality and (3.3) led to H n (x, u n, u n )T 1 (u n T m 1 (u n ))dx f n dx + M(2 F )dx. {m 1 u n m} { u n m 1} { u n m} Then, assumption (3.5) gives H n (x, u n, u n ) dx { u n m 1} f n dx+ M(2 F )dx. {m 1 u n m} For all >0, one can find an m = m( ) > 1 such that sup H n (x, u n, u n ) dx n { u n m} 2.

27 Existence result for strongly nonlinear elliptic equations in E { u n m} On the other hand, we use (3.3) and (3.4) to get H n (x, u n, u n ) dx H n (x, T m (u n ), T m (u n )) dx E µ b(m) E M( T m (u n ) )dx + h(x)dx E b(m) a(x, T m (u n ), T m (u n )) T m (u n )dx E +b(m) h(x)dx. We use the fact that from (3.28) the sequence {a(x, T m (u n ), T m (u n )) T m (u n )} is equi-integrable and that h L 1 () toobtain lim sup H n (x, u n, u n ) dx =0, E 0 n E { u n m} where E denotes the Lebesgue measure of the subset E. Consequently lim sup H n (x, u n, u n ) dx =0. E 0 n E This proves that the sequence {H n (x, u n, u n )} is uniformly equi-integrable in. By Vitali s theorem, we conclude that H(x, u, u) L 1 () and (3.29) H n (x, u n, u n ) H(x, u, u) strongly in L 1 (). E Step6: Passage to the limit. Let v W 1 0 L M() L (). By [9, Lemma 4], there exists a sequence {v j } D() such that kv j k (N +1)kvk and v j v in W 1 0 L M () for the modular convergence and a.e. in. Let k σ. We go back to approximate equations (3.7) and use T k (u n v j ) as test function to obtain (3.30) a(x, T t (u n ), T t (u n )) T k (u n v j )dx + H n (x, u n, u n )T k (u n v j )dx = f n T k (u n v j )dx + F T k (u n v j )dx,

28 184 A. Youssfi where t = k +(N +1)kvk. The first term in the left-hand side of (7.3.23) is written as a(x, T t (u n ), T t (u n )) T k (u n v j )dx = { u n v j <k} { u n v j <k} Thus, by (3.27) and (3.28) we obtain a(x, T t (u n ), T t (u n )) T k (u n v j )dx as n. Since a(x, T t (u n ), T t (u n )) T t (u n )dx a(x, T t (u n ), T t (u n )) v j dx a(x, T t (u), T t (u)) T k (u v j )dx T k (u n v j ) T k (u v j ) in L () forσ (L,L 1 ), we use (3.29) and the fact that f n f strongly in L 1 () asn, to obtain H n (x, u n, u n )T k (u n v j )dx H(x, u, u)t k (u v j )dx, f n T k (u n v j )dx ft k (u v j )dx, as n. For the last term in the right-hand side of (3.30) we write F T k (u n v j )dx = F u n dx F v j dx. { u n v j <k} { u n v j <k} Hence, by (3.9) we obtain F T k (u n v j )dx F T k (u v j )dx. Therefore, passing to the limit as n in (3.30), we get a(x, u, u) T k (u v j )dx + H(x, u, u)t k (u v j )dx = ft k (u v j )dx + F T k (u v j )dx,

29 Existence result for strongly nonlinear elliptic equations in in which we pass to the limit as j to obtain a(x, u, u) T k (u v)dx + H(x, u, u)t k (u v)dx = ft k (u v)dx + F T k (u v)dx. Which completes the proof of theorem 3.1. Remark 4.1. If the N-function M satisfies the 2 condition, the sequence {a(x, u n, u n )} will be bounded in (L M ()) N. Then, the function u solution of the problem (3.6) is such that: u W0 1L M(), H(x, u, u) L 1 () and a(x, u, u) vdx + H(x, u, u)vdx = fvdx + F vdx, for every v W 1 0 L M() L (). Remark 4.2. We can interpret theorem 3.1 in the following sense: the problem ( u W 1 0 L M (), H(x, u, u) L 1 () div a(x, u, u)+h(x, u, u) =μ admits a solution if and only if μ belongs to L 1 ()+W 1 L M (). Remark 4.3. If we replace (3.1) by the more general growth condition a(x, s, ξ) b 0 ( s )(a 0 (x)+m 1 M(τ ξ )) where a 0 (x) belongs to E M (), τ > 0 and b 0 is a positive continuous increasing function, we can adapt the same ideas to prove the existence of solutions for the problem u W0 1L M(), H(x, u, u) L 1 () and a(x, u, u) T k (u v)dx + H(x, u, u)t k (u v)dx = ft k (u v)dx + F T k (u v)dx for v W0 1L M() L (), by considering the following approximation problems ( un W0 1L M() div a(x, T n (u n ), u n )+H n (x, u n, u n )=f n divf in.

30 186 A. Youssfi As an application of this result, we give div((1 + u ) q exp( u p ) 1 u 2 u)+u(exp( u p ) 1) = f divf in. with p>1 and q>0. References [1] Adams, R.: Sobolev spaces, Academic Press Inc, New York, (1975) [2] Benkirane, A., Elmahi, A.: An existence theorem for a strongly nonlinear problems in Orlicz spaces, Nonlinear Anal. T.M.A. 36, pp (1999). [3] Benkirane, A., Elmahi, A.: strongly nonlinear elliptic equations having natural growth terms and L 1 data, Nonlinear Anal. T.M.A. 39, pp (2000). [4] Benkirane, A., Elmahi, A.: Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Anal. T.M.A. 28, pp (1997). [5] Benkirane, A., Elmahi, A., Meskine, D.: An existence theorem for a class of elliptic problems in L 1, Applicationes Mathematicae 29, 4, pp (2002). [6] Elmahi, A., Meskine, D.: Nonlinear elliptic problems having natural growth and L 1 data in Orlicz spaces, Ann. Mat. Pura Appl. 184, 2, pp (2004). [7] Elmahi, A., Meskine, D.: Existence of solutions for elliptic equations having natural growth terms in Orlicz spaces, Abst. Appl. Anal. 2004, 12, pp (2004). [8] Gossez, J.-P.: A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces, Proc. Sympos. Pure Math., 45, Part 1, (1986). [9] Gossez, J.-P.: Some approximation properties in Orlicz-Sobolev spaces, Stud. Math. 74, pp (1982).

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that

More information

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable

More information

Extremal equilibria for reaction diffusion equations in bounded domains and applications.

Extremal equilibria for reaction diffusion equations in bounded domains and applications. Extremal equilibria for reaction diffusion equations in bounded domains and applications. Aníbal Rodríguez-Bernal Alejandro Vidal-López Departamento de Matemática Aplicada Universidad Complutense de Madrid,

More information

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí Opuscula Math. 34 no. 4 2014 683 690 http://dx.doi.org/10.7494/opmath.2014.34.4.683 Opuscula Mathematica CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian Pasquale

More information

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

Existence and multiplicity of solutions for a Neumann-type p(x)-laplacian equation with nonsmooth potential. 1 Introduction

Existence and multiplicity of solutions for a Neumann-type p(x)-laplacian equation with nonsmooth potential. 1 Introduction Electronic Journal of Qualitative Theory of Differential Equations 20, No. 7, -0; http://www.math.u-szeged.hu/ejqtde/ Existence and multiplicity of solutions for a Neumann-type p(x)-laplacian equation

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

A new continuous dependence result for impulsive retarded functional differential equations

A new continuous dependence result for impulsive retarded functional differential equations CADERNOS DE MATEMÁTICA 11, 37 47 May (2010) ARTIGO NÚMERO SMA#324 A new continuous dependence result for impulsive retarded functional differential equations M. Federson * Instituto de Ciências Matemáticas

More information

Existence de solutions à support compact pour un problème elliptique quasilinéaire

Existence de solutions à support compact pour un problème elliptique quasilinéaire Existence de solutions à support compact pour un problème elliptique quasilinéaire Jacques Giacomoni, Habib Mâagli, Paul Sauvy Université de Pau et des Pays de l Adour, L.M.A.P. Faculté de sciences de

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

An optimal transportation problem with import/export taxes on the boundary

An optimal transportation problem with import/export taxes on the boundary An optimal transportation problem with import/export taxes on the boundary Julián Toledo Workshop International sur les Mathématiques et l Environnement Essaouira, November 2012..................... Joint

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein) Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

More information

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for Higher-Order Adjacent Derivative

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

An example of a computable

An example of a computable An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept

More information

Notes on metric spaces

Notes on metric spaces Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

More information

Geometrical Characterization of RN-operators between Locally Convex Vector Spaces

Geometrical Characterization of RN-operators between Locally Convex Vector Spaces Geometrical Characterization of RN-operators between Locally Convex Vector Spaces OLEG REINOV St. Petersburg State University Dept. of Mathematics and Mechanics Universitetskii pr. 28, 198504 St, Petersburg

More information

Metric Spaces. Chapter 1

Metric Spaces. Chapter 1 Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

More information

0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup

0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup 456 BRUCE K. DRIVER 24. Hölder Spaces Notation 24.1. Let Ω be an open subset of R d,bc(ω) and BC( Ω) be the bounded continuous functions on Ω and Ω respectively. By identifying f BC( Ω) with f Ω BC(Ω),

More information

Shape Optimization Problems over Classes of Convex Domains

Shape Optimization Problems over Classes of Convex Domains Shape Optimization Problems over Classes of Convex Domains Giuseppe BUTTAZZO Dipartimento di Matematica Via Buonarroti, 2 56127 PISA ITALY e-mail: buttazzo@sab.sns.it Paolo GUASONI Scuola Normale Superiore

More information

The idea to study a boundary value problem associated to the scalar equation

The idea to study a boundary value problem associated to the scalar equation Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 23, 2004, 73 88 DEGREE COMPUTATIONS FOR POSITIVELY HOMOGENEOUS DIFFERENTIAL EQUATIONS Christian Fabry Patrick Habets

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska

ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska Pliska Stud. Math. Bulgar. 22 (2015), STUDIA MATHEMATICA BULGARICA ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION E. I. Pancheva, A. Gacovska-Barandovska Smirnov (1949) derived four

More information

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu

More information

Chapter 5. Banach Spaces

Chapter 5. Banach Spaces 9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on

More information

Separation Properties for Locally Convex Cones

Separation Properties for Locally Convex Cones Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

More information

Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator

Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator Wan Boundary Value Problems (2015) 2015:239 DOI 10.1186/s13661-015-0508-0 R E S E A R C H Open Access Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator

More information

Lipschitz classes of A-harmonic functions in Carnot groups

Lipschitz classes of A-harmonic functions in Carnot groups Lipschitz classes of A-harmonic functions in Carnot groups Craig A. Nolder Department of Mathematics Florida State University Tallahassee, FL 32306-4510, USA nolder@math.fsu.edu 30 October 2005 Abstract

More information

Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results

Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results Proceedings of Symposia in Applied Mathematics Volume 00, 1997 Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results Freddy Delbaen and Walter Schachermayer Abstract. The

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

More information

Systems with Persistent Memory: the Observation Inequality Problems and Solutions

Systems with Persistent Memory: the Observation Inequality Problems and Solutions Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w +

More information

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

Date: April 12, 2001. Contents

Date: April 12, 2001. Contents 2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........

More information

Mathematics for Econometrics, Fourth Edition

Mathematics for Econometrics, Fourth Edition Mathematics for Econometrics, Fourth Edition Phoebus J. Dhrymes 1 July 2012 1 c Phoebus J. Dhrymes, 2012. Preliminary material; not to be cited or disseminated without the author s permission. 2 Contents

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Fuzzy Differential Systems and the New Concept of Stability

Fuzzy Differential Systems and the New Concept of Stability Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

Random graphs with a given degree sequence

Random graphs with a given degree sequence Sourav Chatterjee (NYU) Persi Diaconis (Stanford) Allan Sly (Microsoft) Let G be an undirected simple graph on n vertices. Let d 1,..., d n be the degrees of the vertices of G arranged in descending order.

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

Differentiating under an integral sign

Differentiating under an integral sign CALIFORNIA INSTITUTE OF TECHNOLOGY Ma 2b KC Border Introduction to Probability and Statistics February 213 Differentiating under an integral sign In the derivation of Maximum Likelihood Estimators, or

More information

One side James Compactness Theorem

One side James Compactness Theorem One side James Compactness Theorem 1 1 Department of Mathematics University of Murcia Topological Methods in Analysis and Optimization. On the occasion of the 70th birthday of Prof. Petar Kenderov A birthday

More information

Optimal boundary control of quasilinear elliptic partial differential equations: theory and numerical analysis

Optimal boundary control of quasilinear elliptic partial differential equations: theory and numerical analysis Optimal boundary control of quasilinear elliptic partial differential equations: theory and numerical analysis vorgelegt von Dipl.-Math. Vili Dhamo von der Fakultät II - Mathematik und Naturwissenschaften

More information

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO NIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Examination in: Trial exam Partial differential equations and Sobolev spaces I. Day of examination: November 18. 2009. Examination hours:

More information

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper. FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

How To Find Out How To Build An Elliptic Curve Over A Number Field

How To Find Out How To Build An Elliptic Curve Over A Number Field Numbers Volume 2015, Article ID 501629, 4 pages http://dx.doi.org/10.1155/2015/501629 Research Article On the Rank of Elliptic Curves in Elementary Cubic Extensions Rintaro Kozuma College of International

More information

9 More on differentiation

9 More on differentiation Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......

More information

Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

More information

ON FIBER DIAMETERS OF CONTINUOUS MAPS

ON FIBER DIAMETERS OF CONTINUOUS MAPS ON FIBER DIAMETERS OF CONTINUOUS MAPS PETER S. LANDWEBER, EMANUEL A. LAZAR, AND NEEL PATEL Abstract. We present a surprisingly short proof that for any continuous map f : R n R m, if n > m, then there

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics Ordinal preference theory Harald Wiese University of Leipzig Harald Wiese (University of Leipzig) Advanced Microeconomics 1 / 68 Part A. Basic decision and preference theory 1 Decisions

More information

Sensitivity analysis of utility based prices and risk-tolerance wealth processes

Sensitivity analysis of utility based prices and risk-tolerance wealth processes Sensitivity analysis of utility based prices and risk-tolerance wealth processes Dmitry Kramkov, Carnegie Mellon University Based on a paper with Mihai Sirbu from Columbia University Math Finance Seminar,

More information

Class Meeting # 1: Introduction to PDEs

Class Meeting # 1: Introduction to PDEs MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

More information

16.3 Fredholm Operators

16.3 Fredholm Operators Lectures 16 and 17 16.3 Fredholm Operators A nice way to think about compact operators is to show that set of compact operators is the closure of the set of finite rank operator in operator norm. In this

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

Max-Min Representation of Piecewise Linear Functions

Max-Min Representation of Piecewise Linear Functions Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 43 (2002), No. 1, 297-302. Max-Min Representation of Piecewise Linear Functions Sergei Ovchinnikov Mathematics Department,

More information

Lecture 10. Finite difference and finite element methods. Option pricing Sensitivity analysis Numerical examples

Lecture 10. Finite difference and finite element methods. Option pricing Sensitivity analysis Numerical examples Finite difference and finite element methods Lecture 10 Sensitivities and Greeks Key task in financial engineering: fast and accurate calculation of sensitivities of market models with respect to model

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

EXISTENCE OF SOLUTIONS TO NONLINEAR, SUBCRITICAL HIGHER-ORDER ELLIPTIC DIRICHLET PROBLEMS WOLFGANG REICHEL AND TOBIAS WETH

EXISTENCE OF SOLUTIONS TO NONLINEAR, SUBCRITICAL HIGHER-ORDER ELLIPTIC DIRICHLET PROBLEMS WOLFGANG REICHEL AND TOBIAS WETH EXISTENCE OF SOLUTIONS TO NONLINEAR, SUBCRITICAL HIGHER-ORDER ELLIPTIC DIRICHLET PROBLEMS WOLFGANG REICHEL AND TOBIAS WETH Abstract. We consider the -th order elliptic boundary value problem Lu = f(x,

More information

b i (x) u x i + F (x, u),

b i (x) u x i + F (x, u), Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 14, 1999, 275 293 TOPOLOGICAL DEGREE FOR A CLASS OF ELLIPTIC OPERATORS IN R n Cristelle Barillon Vitaly A. Volpert

More information

Sumit Chandok and T. D. Narang INVARIANT POINTS OF BEST APPROXIMATION AND BEST SIMULTANEOUS APPROXIMATION

Sumit Chandok and T. D. Narang INVARIANT POINTS OF BEST APPROXIMATION AND BEST SIMULTANEOUS APPROXIMATION F A S C I C U L I M A T H E M A T I C I Nr 51 2013 Sumit Chandok and T. D. Narang INVARIANT POINTS OF BEST APPROXIMATION AND BEST SIMULTANEOUS APPROXIMATION Abstract. In this paper we generalize and extend

More information

Fixed Point Theorems

Fixed Point Theorems Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

More information

Gambling Systems and Multiplication-Invariant Measures

Gambling Systems and Multiplication-Invariant Measures Gambling Systems and Multiplication-Invariant Measures by Jeffrey S. Rosenthal* and Peter O. Schwartz** (May 28, 997.. Introduction. This short paper describes a surprising connection between two previously

More information

1. Let X and Y be normed spaces and let T B(X, Y ).

1. Let X and Y be normed spaces and let T B(X, Y ). Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: NVP, Frist. 2005-03-14 Skrivtid: 9 11.30 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

More information

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,

More information

Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.

Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3. 5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2

More information

A survey on multivalued integration 1

A survey on multivalued integration 1 Atti Sem. Mat. Fis. Univ. Modena Vol. L (2002) 53-63 A survey on multivalued integration 1 Anna Rita SAMBUCINI Dipartimento di Matematica e Informatica 1, Via Vanvitelli - 06123 Perugia (ITALY) Abstract

More information

Numerical Verification of Optimality Conditions in Optimal Control Problems

Numerical Verification of Optimality Conditions in Optimal Control Problems Numerical Verification of Optimality Conditions in Optimal Control Problems Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Existence for some vectorial elliptic problems with measure data **)

Existence for some vectorial elliptic problems with measure data **) Riv. Mat. Univ. Parma 7) 5 006), -46 F RANCESCO L EONETTI and P IER INCENZO P ETRICCA *) Existence for some vectorial elliptic problems with measure data **) - Introduction The study of elliptic boundary

More information

LINEAR DIFFERENTIAL EQUATIONS IN DISTRIBUTIONS

LINEAR DIFFERENTIAL EQUATIONS IN DISTRIBUTIONS LINEAR DIFFERENTIAL EQUATIONS IN DISTRIBUTIONS LESLIE D. GATES, JR.1 1. Introduction. The main result of this paper is an extension of the analysis of Laurent Schwartz [l ] concerning the primitive of

More information

THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE. Contents THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

Hedging bounded claims with bounded outcomes

Hedging bounded claims with bounded outcomes Hedging bounded claims with bounded outcomes Freddy Delbaen ETH Zürich, Department of Mathematics, CH-892 Zurich, Switzerland Abstract. We consider a financial market with two or more separate components

More information

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 11: Laplacian Eigenvalue Problems for General Domains III. Completeness of a Set of Eigenfunctions and the Justification

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

A CHARACTERIZATION OF C k (X) FOR X NORMAL AND REALCOMPACT

A CHARACTERIZATION OF C k (X) FOR X NORMAL AND REALCOMPACT Bol. Soc. Mat. Mexicana (3) Vol. 12, 2006 A CHARACTERIZATION OF C k (X) FOR X NORMAL AND REALCOMPACT F. MONTALVO, A. A. PULGARÍN AND B. REQUEJO Abstract. We present some internal conditions on a locally

More information

1. INTRODUCTION. u yy. u yx

1. INTRODUCTION. u yy. u yx Rend. Mat. Acc. Lincei s. 9, v. 16:159-169 005) Analisi funzionale. Ð On weak Hessian determinants. Nota di LUIGI D'ONOFRIO, FLAIA GIANNETTI eluigi GRECO, presentata *) dal Socio C. Sbordone. ABSTRACT.

More information

Rev. Mat. Iberoam, 17 (1), 49{419 Dynamical instability of symmetric vortices Lus Almeida and Yan Guo Abstract. Using the Maxwell-Higgs model, we prove that linearly unstable symmetric vortices in the

More information

Nonparametric adaptive age replacement with a one-cycle criterion

Nonparametric adaptive age replacement with a one-cycle criterion Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: Pauline.Schrijner@durham.ac.uk

More information

1. Let P be the space of all polynomials (of one real variable and with real coefficients) with the norm

1. Let P be the space of all polynomials (of one real variable and with real coefficients) with the norm Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 005-06-15 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

More information

On Nicely Smooth Banach Spaces

On Nicely Smooth Banach Spaces E extracta mathematicae Vol. 16, Núm. 1, 27 45 (2001) On Nicely Smooth Banach Spaces Pradipta Bandyopadhyay, Sudeshna Basu Stat-Math Unit, Indian Statistical Institute, 203 B.T. Road, Calcutta 700035,

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

Metric Spaces Joseph Muscat 2003 (Last revised May 2009) 1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of

More information

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Ameya Pitale, Ralf Schmidt 2 Abstract Let µ(n), n > 0, be the sequence of Hecke eigenvalues of a cuspidal Siegel eigenform F of degree

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

Iterative Methods for Solving Linear Systems

Iterative Methods for Solving Linear Systems Chapter 5 Iterative Methods for Solving Linear Systems 5.1 Convergence of Sequences of Vectors and Matrices In Chapter 2 we have discussed some of the main methods for solving systems of linear equations.

More information

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 7: Conditionally Positive Definite Functions Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH 590 Chapter

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

A SURGERY RESULT FOR THE SPECTRUM OF THE DIRICHLET LAPLACIAN. Keywords: shape optimization, eigenvalues, Dirichlet Laplacian

A SURGERY RESULT FOR THE SPECTRUM OF THE DIRICHLET LAPLACIAN. Keywords: shape optimization, eigenvalues, Dirichlet Laplacian A SURGERY RESULT FOR THE SPECTRUM OF THE DIRICHLET LAPLACIA DORI BUCUR AD DARIO MAZZOLEI Abstract. In this paper we give a method to geometrically modify an open set such that the first k eigenvalues of

More information

ALMOST COMMON PRIORS 1. INTRODUCTION

ALMOST COMMON PRIORS 1. INTRODUCTION ALMOST COMMON PRIORS ZIV HELLMAN ABSTRACT. What happens when priors are not common? We introduce a measure for how far a type space is from having a common prior, which we term prior distance. If a type

More information

Mean value theorems for long Dirichlet polynomials and tails of Dirichlet series

Mean value theorems for long Dirichlet polynomials and tails of Dirichlet series ACA ARIHMEICA LXXXIV.2 998 Mean value theorems for long Dirichlet polynomials and tails of Dirichlet series by D. A. Goldston San Jose, Calif. and S. M. Gonek Rochester, N.Y. We obtain formulas for computing

More information

arxiv:1502.06681v2 [q-fin.mf] 26 Feb 2015

arxiv:1502.06681v2 [q-fin.mf] 26 Feb 2015 ARBITRAGE, HEDGING AND UTILITY MAXIMIZATION USING SEMI-STATIC TRADING STRATEGIES WITH AMERICAN OPTIONS ERHAN BAYRAKTAR AND ZHOU ZHOU arxiv:1502.06681v2 [q-fin.mf] 26 Feb 2015 Abstract. We consider a financial

More information