Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell- Free Fetal DNA

Size: px
Start display at page:

Download "Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell- Free Fetal DNA"

Transcription

1 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell- Free Fetal DNA Policy Number: Original Effective Date: MM /01/2013 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 11/01/2015 Section: OB/GYN & Reproduction Place(s) of Service: Office; Outpatient I. Description National guidelines recommend that all pregnant women be offered screening for fetal chromosomal abnormalities, the majority of which are aneuploidies (an abnormal number of chromosomes). The trisomy syndromes are aneuploidies involving 3 copies of 1 chromosome. Trisomies 21, 18, and 13 are the most common forms of fetal aneuploidy that survive to birth. There are numerous limitations to standard screening for these disorders using maternal serum and fetal ultrasound. Commercial noninvasive, sequencing-based testing of maternal serum for fetal trisomy 21, 18, and 13 has recently become available and is an alternative to the current approach to screening. Published studies on all three commercially available tests, and meta-analyses of these studies, have consistently demonstrated very high sensitivity and specificity for detecting Down syndrome (trisomy 21) in singleton pregnancies. Most of the studies included only women at high-risk of trisomy 21. For average-risk women, available studies suggest test performance similar to that reported in high-risk women, but there is less evidence in this population. Direct evidence of clinical utility is not available. A 2013 TEC Assessment modeled comparative outcomes based on the published data on test performance, published estimates of standard screening performance, patient uptake of confirmatory testing, and miscarriage rates associated with invasive procedures. For each comparison and in each risk population, sequencing-based testing improved outcomes, ie, increased the rate of Down syndrome detection and reduced the number of invasive procedures and procedure-related miscarriages. In the modeling, the negative predictive value of testing approached % across the range of aneuploidy risk, while the positive predictive value varied widely according to baseline risk. The variable positive predictive value highlights the possibility of a false- positive finding and thus testing using karyotyping is necessary to confirm a positive result. Based on the available evidence, including modeling in the TEC Assessment, as well as input from clinical vetting and recommendations from national organizations, nucleic acid sequencing-based

2 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA testing for T21 may be considered medically necessary in women with high-risk singleton pregnancies who meet criteria and not medically necessary in women with average-risk singleton pregnancies. Testing is not covered in women with twin or multiple pregnancies. There is less published evidence on the diagnostic performance of sequencing-based tests for detecting T18, T13, and sex chromosome anomalies and most of the available studies were conducted in high-risk pregnancies. Meta-analyses of available data suggest high sensitivities and specificities, but the small number of cases, especially for T13, makes definitive conclusions difficult. The findings of a decision analysis study included in the 2014 TEC Assessment suggest similar rates of T13 and T18 detection to standard noninvasive screening; the analysis assumed that T13 and T18 screening would be done in conjunction with T21 screening. Due to the low survival rate, the clinical benefit of identifying trisomy 18 and 13 are unclear. The clinical utility of early sex chromosome aneuploidy detection is also unclear. Thus, sequencing-based tests for 18 and 13 are considered medically necessary in women who are eligible for and are undergoing sequencing-based testing of maternal plasma for T21 and sequencing-based testing for fetal sex chromosome aneuploidies is not covered. II. Criteria/Guidelines A. Nucleic acid sequencing-based testing of maternal plasma for trisomy 21 is covered (subject to Limitations and Administrative Guidelines) in women with high risk singleton pregnancies undergoing screening for trisomy 21. High risk singleton pregnancies as defined by the American College of Obstetricians and Gynecologists (ACOG) Committee Opinion, include women who meet at least one of the following criteria: 1. Maternal age 35 years or older at delivery; 2. Fetal ultrasonographic findings indicating increased risk of aneuploidy; 3. History of previous pregnancy with a trisomy; 4. Standard serum screening test positive for aneuploidy; or 5. Parental balanced Robertsonian translocation with increased risk of fetal trisomy 13 or trisomy 21. B. Concurrent nucleic acid sequencing-based testing of maternal plasma for trisomy 13 and/or 18 is covered (Subject to Limitations and Administrative Guidelines) in women who are eligible for and are undergoing nucleic acid sequencing-based testing of maternal plasma for trisomy 21 III. Limitations A. Nucleic acid sequencing-based testing of maternal plasma for trisomy 21 is not covered in women with average-risk singleton pregnancies because it is not known to be effective in improving health outcomes. B. Nucleic acid sequencing-based testing of maternal plasma for trisomy 21 is not covered in women with twin or multiple pregnancies because it is not known to be effective in improving health outcomes. C. Nucleic acid sequencing-based testing of maternal plasma for trisomy 13 and/or 18 is not covered, other than in the situations specified above.

3 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA D. Nucleic acid sequencing-based testing of maternal plasma if not covered for fetal sex chromosome aneuploidies. IV. Administrative Guidelines A. Precertification is not required. Documentation supporting the medical necessity should be legible and maintained in the patient's medical record and made available to HMSA upon request. HMSA reserves the right to perform retrospective reviews using the above criteria to validate if services rendered met payment determination criteria. B. Applicable codes CPT Codes Description Fetal chromosomal aneuploidy (eg, trisomy 21, monosomy x) genomic sequence analysis panel, circulating cell-free fetal DNA in maternal blood, must include analysis of chromosomes 13, 18, and Unlisted Molecular Pathology Procedure Fetal aneuploidy (trisomy 21, 18, and 13) DNA sequence analysis of selected regions using maternal plasma, algorithm reported as a risk score for each trisomy Unlisted multianalyte assay with algorithmic analysis ICD-9-CM Codes Description Chromosomal abnormality in fetus, affecting management of mother, antepartum condition or complication Hereditary disease in family possibly affecting fetus, affecting management of mother, antepartum condition or complication Other known or suspected fetal abnormality, not elsewhere classified, affecting management of mother, antepartum condition or complication Elderly primigravida, antepartum condition or complication Elderly multigravida, antepartum condition or complication Abnormal finding on antenatal screening ICD-10 codes are provided for your information. These will not become effective until 10/01/2015. ICD-10-CM Codes Description Supervision of elderly primigravida, first trimester Supervision of elderly primigravida, second trimester Supervision of elderly primigravida, third trimester Supervision of elderly multigravida, first trimester Supervision of elderly multigravida, second trimester Supervision of elderly multigravida, third trimester Unspecified abnormal findings on antenatal screening of mother 035.1XX0 Maternal care for (suspected) chromosomal abnormality in fetus, not applicable or unspecified

4 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA 035.2XX XX0 Maternal care for (suspected) hereditary disease in fetus, not applicable or unspecified Maternal care for other (suspected) fetal abnormality and damage, not applicable or unspecified V. Background Fetal chromosomal abnormalities occur in approximately 1 in 160 live births. The majority of fetal chromosomal abnormalities are aneuploidies, defined as an abnormal number of chromosomes. The trisomy syndromes are aneuploidies involving 3 copies of 1 chromosome. Trisomy 21 (Down syndrome, T21), trisomy 18 (Edwards syndrome, T18), and trisomy 13 (Patau syndrome, T13) are the most common forms of fetal aneuploidy that survive to birth. The most important risk factor for Down syndrome is maternal age, with an approximate risk of 1/1,500 in young women that increases to nearly 1/10 by age 48. T21 (Down syndrome) is the most common cause of human birth defects and provides the impetus for current maternal serum screening programs. Other trisomy syndromes include T18 (Edwards syndrome), and T13 (Patau syndrome), which are the next most common forms of fetal aneuploidy, although the percentage of cases surviving to birth is low and survival beyond birth is limited. The prevalence of these other aneuploidies is much lower than the prevalence of T21, and identifying them is not currently the main intent of prenatal screening programs. Also, the clinical implications of identifying trisomy 18 and 13 are unclear, as survival beyond birth is limited for both conditions. Sex chromosome aneuploidies (eg, 45,X [Turner syndrome]; 47,XXY, 47,XYY) occur in approximately 1 in 400 live births. These aneuploidies are typically diagnosed postnatally, sometimes not until adulthood, such as during an evaluation of diminished fertility. Alternatively, sex chromosome aneuploidies may be diagnosed incidentally during invasive karyotype testing of pregnant women at high risk for Down syndrome. The net clinical value of prenatal diagnosis of sex chromosome aneuploidies is unclear. Potential benefits of early identification such as the opportunity for early management of the manifestations of the condition, must be balanced against potential harms that can include stigmatization and distortion of a family s view of the child. Current national guidelines recommend that all pregnant women be offered screening for fetal aneuploidy (referring specifically to trisomy 21, 18, and 13) before 20 weeks of gestation, regardless of age. Combinations of maternal serum markers and fetal ultrasound done at various stages of pregnancy are used, but there is not a standardized approach. The detection rate for various combinations of non-invasive testing ranges from 60 to 96% when the falsepositive rate is set at 5%. When tests indicate a high risk of a trisomy syndrome, direct karyotyping of fetal tissue obtained by amniocentesis or chorionic villous sampling (CVS) is required to confirm that trisomy 21 or another trisomy is present. Both amniocentesis and CVS are invasive procedures and have an associated risk of miscarriage. A new screening strategy that reduces unnecessary amniocentesis and CVS procedures and increases detection of trisomy 21, 18, and 13 has the potential to improve outcomes.

5 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA Commercial, non-invasive, sequencing-based testing of maternal serum for fetal trisomy syndromes has recently become available and has the potential to substantially alter the current approach to screening. The test technology involves detection of fetal cell-free DNA fragments present in the plasma of pregnant women. As early as 8 to 10 weeks of gestation, these fetal DNA fragments comprise 6% to 10% or more of the total cell-free DNA in a maternal plasma sample. The tests are unable to provide a result if fetal fraction is too low, that is, below about 4%. Fetal fraction can be affected by maternal and fetal characteristics. For example, fetal fraction was found to be lower at higher maternal weights and higher with increasing fetal crown-rump length. Sequencing-based tests use 1 of 2 general approaches to analyzing cell-free DNA. The first category of tests uses quantitative or counting methods. The most widely used technique to date uses massively parallel shotgun sequencing (MPS; also known as next generation or next-gen sequencing). DNA fragments are amplified by polymerase chain reaction; during the sequencing process, the amplified fragments are spatially segregated and sequenced simultaneously in a massively parallel fashion. Sequenced fragments can be mapped to the reference human genome in order to obtain numbers of fragment counts per chromosome. The sequencingderived percent of fragments from the chromosome of interest reflects the chromosomal representation of the maternal and fetal DNA fragments in the original maternal plasma sample. Another technique is direct DNA analysis, which analyzes specific cell-free DNA fragments across samples and requires approximately a tenth the number of cell-free DNA fragments as MPS. The digital analysis of selected regions (DANSR ) is an assay that uses direct DNA analysis. The second general approach is single-nucleotide polymorphism (SNP)-based methods. These use targeted amplification and analysis of approximately 20,000 SNPs on selected chromosomes (eg, 21, 18 and 13) in a single reaction. A statistical algorithm is used to determine the number of each type of chromosome. In order to be clinically useful, the technology must be sensitive enough to detect a slight shift in DNA fragment counts among the small fetal fragment representation of a genome with a trisomic chromosome against a large euploid maternal background. Whether sequencing-based assays require confirmation by invasive procedures and karyotyping depends on assay performance. However, discrepancies between sequencing and invasive test results that may occur for biological reasons could make confirmation by invasive testing necessary at least in some cases, regardless of sequencing test performance characteristics. Regulatory Status None of the commercially available sequencing assays for detection of trisomy 21, 18 and 13 or other chromosomal abnormalities has been submitted to or reviewed by the U.S. Food and Drug Administration (FDA). Clinical laboratories may develop and validate tests in-house (laboratorydeveloped tests or LDTs; previously called home-brew ) and market them as a laboratory service; LDTs must meet the general regulatory standards of the Clinical Laboratory Improvement Act (CLIA). Laboratories offering LDTs must be licensed by CLIA for high-complexity testing. Information on commercially available tests is as follows:

6 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA VI. Rationale In October 2011, Sequenom (San Diego, CA) introduced its MaterniT21 test to test for trisomy 21, 18 and 13. The test is offered through the company s CLIA laboratory, the Sequenom Center for Molecular Medicine. (Uses MPS; reports results as positive or negative.) In March 2012, Verinata Health (Redwood, CA) launched its verifi prenatal test for trisomy 21, 18, and 13. (Uses MPS and calculates a normalized chromosomal value [NPS]; reports results as 1 of 3 categories: No Aneuploidy Detected, Aneuploidy Detected, or Aneuploidy Suspected.) In May 2012, Ariosa Diagnostics (San Jose, CA) (formerly Aria) launched its Harmony test for trisomy 21 and 18, which is available from Integrated Genetics, a division of LabCorp. (Uses directed DNA analysis, results reported as risk score.) In March 2013, Natera (San Carlos, CA) introduced its Panorama prenatal test for detecting trisomy 21, 18 and 13, as well as for detecting select sex chromosome abnormalities. The test is available at ARUP Laboratories. (Uses SNP technology; results reported as risk score.) The policy is based on literature reviews, most recently through October 1, Moreover, the policy is informed by 2 TEC Assessments. A 2013 TEC Assessment focused on detection of trisomy 21 (T21) and a 2014 TEC Assessment addressed detection of fetal aneuploidies other than T21 (specifically trisomies 13 and 18, and fetal sex chromosome aneuploidies) Additionally, the policy limits its scope to the evaluation of tests that are available in the United States. Assessment of a diagnostic technology such as maternal plasma DNA sequencing tests typically focuses on 3 parameters: (1) analytic validity; (2) clinical validity (i.e., sensitivity and specificity) in appropriate populations of patients; and (3) demonstration that the diagnostic information can be used to improve patient health outcomes (clinical utility). The evidence on these 3 questions is described below. What is the analytic validity of the available maternal plasma DNA sequencing-based tests? No studies were identified that provided direct evidence on analytic validity. Each of the commercially available tests uses massively parallel sequencing (MPS; also called next generation sequencing), a relatively new technology but not an entirely new concept for the clinical laboratory. Currently, there are no recognized standards for conducting clinical sequencing by MPS. On June 23, 2011, the U.S. Food and Drug Administration (FDA) held an exploratory, public meeting on the topic of MPS, in preparation for an eventual goal of developing a transparent evidence-based regulatory pathway for evaluating medical devices/products based on next generation sequencing, NGS that would assure safety and effectiveness of devices marketed for clinical diagnostics. (3) The discussion pointed out the differences among manufacturers sequencing platforms and the diversity of applications, making it difficult to generate specific regulatory phases and metrics. It was suggested that the process may need to be judged by the accuracy and fidelity of the final result. A consistent discussion trend was that validation be application-specific. Thus, technical performance may need to be more closed linked to intended use and population and may not be generalizable across all sequencing applications. Each of the companies currently offering a maternal plasma DNA sequencing test for fetal trisomy 21 has

7 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA developed a specific procedure for its private, CLIA-licensed laboratory where all testing takes place. Section Summary Although all currently available commercially available tests use MPS, actual performance and interpretive procedures vary considerably. Clinical sequencing in general is not standardized or regulated by the FDA or other regulatory agencies, and neither the routine quality control procedures used for each of these tests, nor the analytic performance metrics have been published. What is the clinical validity of the available maternal plasma DNA sequencing-based tests for trisomy 21 compared to the gold standard of karyotype analysis? High Risk Pregnancies A 2014 meta-analysis by Gil et al searched for studies published through December 2013 on the diagnostic performance of sequencing-based tests in identifying T21, T18, and T13. A total of 18 studies on T21 were identified; the studies included a combined total of 809 T21 and 12,272 non-t21 pregnancies. Sixteen of the 18 studies were conducted in high-risk singleton pregnancies, so these data are considered in the section on high-risk pregnancies. The pooled weighted detection rate for T21 was 99.0% (95% confidence interval [CI], 98.2 to 99.6) and the pooled weighted false-positive rate was 0.08% (95% CI, 0.03 to 0.14). Fifteen studies reported on T18; a total of 301 T18 and 11,646 non-t18 singleton pregnancies were included. The pooled weighted detection rate for T18 was 96.8% (95% CI, 94.5 to 98.4) and the pooled false-positive rate was 0.15% (95% CI, 0.08 to 0.25). Finally, 11 studies reported on the performance of the tests in identifying T13. The studies included a total of 85 T13 and 8339 non-t13 singleton pregnancies. The pooled weighted detection rate and false-positive rate were 92.1% (95% CI, 85.9% to 96.7%) and 0.2% (95% CI, 0.04 to 0.46). This systematic review was not limited to tests available in the United States. The 2014 TEC Assessment included a meta-analysis of sequencing-based studies published through April 15, 2014 that reported on T18, T13 and/or sex chromosome anomalies. Analyses were conducted on the overall population, and, for T18 and T13, separately for the studies on high-risk and low-risk pregnancies. Findings in the high-risk pregnancy population are presented in Table 1. Table 1: Findings from 2014 TEC Assessment Meta-Analysis Overall and in High-Risk Pregnancies (T13 and T18) Aneuploidy No. of Studies Pooled Sensitivity Pooled Specificity T13 Overall 18 84% (95% CI, 71% to 92%) 99% (95% CI, 99% to %) (115 cases, 8 false-negatives) (22 false-positives) High risk 15 84% (95% CI, 71% to 92%) 99% (95% CI, 99% to 99%) (110 cases, 8 false-negatives) (21 false-positives) T18 Overall 15 sensitivity 95% (95% CI, 90% to 97%) % (95% CI, 99% to %) 22 specificity (392 cases, 21 false-positives) High risk 17 95% (95% CI, 90% to 97%) (344 cases, 10 false-negatives) (22 false-positives) % (95% CI, 99% to %) (17 false-positives)

8 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA 8 For sex chromosome anomalies, the largest number of studies (14 studies, total of 152 cases) addressed detection of monosomy X. Pooled sensitivity for detecting monosomy X was 83% (95% CI, 74% to 90%) and pooled specificity was % (95% CI, % to %). In addition, 11 studies with a total of 51 cases were identified on the performance of sequencing-based tests in identifying other sex chromosome anomalies. Pooled sensitivity was 89% (95% CI, 50% to 98%) and pooled specificity was % (% to %). The meta-analysis of studies on sex chromosome aneuploidies did not differentiate between high- and low-risk populations. Key studies evaluating sequencing-based tests for detecting T21 (and, when available T18 and T13) in high-risk singleton pregnancies are summarized in Appendix Table 1. Sensitivity and specificity of the tests, as shown in Table 1, were uniformly high. Sensitivity ranged from 99.1% to %, and specificity from 99.7% to %. Studies are available from all 4 companies currently marketing tests in the United States. Most were prospective, and most were industry-funded. Studies generally included women at a wide range of gestational ages (eg, 8-36 weeks or weeks) spanning first and second trimesters. The approach to analysis varied. Some studies analyzed samples from all enrolled women and others analyzed samples from all women with pregnancies known to have a trisomy syndrome and selected controls (ie, nested case-control analysis within a cohort). The studies evaluated the results of maternal fetal DNA testing in comparison with the criterion standards of karyotyping or, in individual cases when a sample did not allow karyotyping, fluorescence in situ hybridization for specific trisomies. Section Summary Data from the available published studies consistently reported a very high sensitivity and specificity of maternal plasma DNA sequencing-based tests for detecting trisomy 21 in high-risk women with singleton pregnancies. There are fewer data on the diagnostic performance of sequencing-based tests for detecting T13, T18 and sex chromosome aneuploidies. The available data suggest that diagnostic performance for detecting these other fetal aneuploidies is not as high as it is for detection of T21. Average-risk pregnancies Fewer studies have been published on maternal plasma DNA sequencing-based tests for detection of T21 in average-risk women. The available studies are described next. One study, published in 2014 by Bianchi et al, evaluated the Illumina test (Verifi) in a general population sample. The study enrolled 2052 women with singleton pregnancies at least 8 weeks of gestation. Another eligibility criterion was a completed or planned standard prenatal serum screening during the first and/or second trimester. The blood sample for sequencing-based testing was not required to be taken at the same time as standard screening, so women beyond the second trimester remained eligible for study participation. A total of 40% of the sample were in their first trimester, 32% in the second trimester and 28% in the third trimester. The reference standard was newborn physical examination in 97% of cases and karyotype analysis in the remaining 3% of cases. Screening was incomplete for 39 patients, and 10 others did not have an

9 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA 9 adequate blood sample. A total of 1914 patients remained, although numbers varied somewhat in the different analyses. The primary study outcome was the false-positive rate of sequencing-based testing compared with standard prenatal screening; this analysis excluded all cases of true aneuploidy. For the detection of T21, there were 6 of 1909 (0.3%) false positives with sequencing-based testing and 69 of 1909 (3.6%) false positive with standard testing. The difference between groups was statistically significant, favoring sequencing-based testing. The relative sensitivity of the tests was a secondary outcome. There were 5 cases of T21; both techniques correctly identified all of these cases. A limitation of the study was the small number of T21 cases included in the analysis. Moreover, most patients were in the second or third trimester of pregnancy when blood was drawn and had a higher fetal fraction of DNA than samples drawn earlier in pregnancy at the time that the test would most likely be used in practice. Two studies have evaluated sequencing-based tests available in the U.S. for detecting trisomy 21 in average-risk singleton pregnancies. The studies were conducted by the same research group in the U.K. and both used the Ariosa (Harmony) test, which provides risk scores rather than a positive versus negative result. The first study, by Nicolaides et al did a preliminary analysis of the accuracy of cell-free DNA testing in a general population sample. The authors evaluated archived samples from 2,049 women attending their routine first pregnancy visit at 11 to 14 weeks gestation. Karyotyping results were available for only a small percentage of women in the study; for the rest of the enrollees, ploidy was imputed by phenotype at birth obtained from medical records. This study was judged to have a high risk of bias due to a high number of exclusions from analysis. Twenty-eight pregnancies ending in stillbirth or miscarriage were excluded for lack of karyotype; while unavoidable, these exclusions likely affect the case detection rate. Cases were primarily verified by phenotype at birth from medical records. Results were available for 1949 of 2049 cases (95%). In the remaining 5%, either the fetal fraction was too low or the assay failed. Overall, using the risk cutoff for the Harmony test, the trisomy detection rate was % (ie, 10 of 10 cases identified), and there was a false-positive rate of 0.1%. The risk score was over 99% in all of the 8 cases of trisomy and both cases of trisomy 18. In the 1939 known or presumed euploid cases, risk scores for trisomy 21 and trisomy 18 were less than 0.01% in 1939 (99.9%). Gill et al prospectively studied 5 pregnant women. They evaluated a testing strategy that included analysis of serum markers (ie, pregnancy-associated plasma protein-a [PAPP-A] and free beta-human chorionic gonadotropin) and cell-free DNA at 10 weeks and ultrasound markers (ie, nuchal translucency and presence or absence of fetal nasal bone) at 12 weeks. Parents were counseled primarily on the finding of the Harmony test if it indicated either a high or low risk of trisomy. If no results were available on the Harmony tests, parents were counseled based on combined first-trimester serum marker and ultrasound findings. Risk scores from cell-free DNA testing were available for 984 cases (98%); 27 of these required a second round of sampling. Risk scores were greater than 99% for trisomy 21 in 11 cases and for trisomy 18 in 5 cases. In 1 case, the risk score for trisomy 13 was 34%. Sixteen of the 17 women with a high risk score for aneuploidy underwent CVS and the suspected abnormality was confirmed in 15 of the 16 cases. There was 1 case with a high risk score for trisomy 21 and a negative CVS; at the time the article was written, the woman was still pregnant so the presence or absence of trisomy 21 could not be confirmed.

10 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA 10 In part 2 of the study, published in 2014 by Quezada et al, results of the combined test were used to estimate risk of each trisomy for all patients. A total of 2905 women were included in this second analysis (it is not clear whether there is overlap between patients included here and in the 2013 study by Gil et al). According to the reference standard (ie, fetal karyotyping or clinical examination of neonates, there were 34 cases of T21, 10 of T18, and 5 of T13. Cell-free DNA identified 32 of 34 (94%) cases of T21, and all cases of T18 and T13 as high-risk. Combined testing with maternal serum markers and fetal ultrasound markers identified all cases of T21, T18 and T13. Of 2787 nontrisomic cases, cell-free DNA correctly identified 2730 (97.95%) as low risk and combined testing identified 2663 (95.55%) as low risk. With cell-free DNA, 8 nontrisomic cases were considered high risk, and there was no result for 49. Combined testing incorrectly identified 124 nontrisomic cases as high risk. The 2014 TEC Assessment, discussed previously, included a meta-analysis of studies on the diagnostic performance of sequencing-based tests for detecting T13 and T18 in average-risk women. Findings in the high-risk pregnancy population are presented in Table 2. Table 2 Aneuploidy No. of Studies Pooled Sensitivity T13 Average Risk 2 % (95% CI, 0% to %) (2 cases, 0 false negatives) T18 Average Risk 5 % (95% CI, 99% to %) (68 cases, 0 false negatives) Pooled Specificity 99% (95% CI, 99% to %) (2 false positives) % (95% CI, % to %) (5 false positives) The number of studies and number of cases of T18 and T13 in the average-risk population were low. Findings of the meta-analysis on sensitivity of the assays for detecting T13 was very imprecise, as evidenced by the wide confidence interval (0% to %). Section Summary There are fewer data on the diagnostic accuracy of cell-free DNA testing of women with averagerisk singleton pregnancies. Two studies have been published both are from the same research group in the U.K. and use the same sequencing-based test. The studies identified a small number of trisomies and did not confirm negative or positive findings in all cases. Thus, the evidence on accuracy of sequencing-based tests is less definitive for women with average-risk pregnancies as it is for women with high-risk pregnancies. Twin and multiple pregnancies Detection of trisomy 21 in twin pregnancies was systematically evaluated in only 1 study, published in 2012 by Canick et al; the study used the Sequenom test. All 7 cases of twin pregnancies with Down syndrome were correctly classified. Five of these were discordant, where 1 twin had T21 aneuploidy and the other did not; 2 were concordant where both twins had T21 aneuploidy. There

11 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA 11 is a lack of data on detection of T18, T13, and sex chromosome aneuploidies in twin and multiple pregnancies. Section Summary For women with multiple pregnancies, there is insufficient evidence to draw conclusions about the diagnostic accuracy of these tests for detecting trisomy 21. What is the clinical utility of the available maternal plasma DNA sequencing-based tests for aneuploidy? No comparative studies were evaluated that compared health outcomes in patients managed using the maternal plasma DNA tests compared to standard screening tests. The 2013 and 2014 TEC Assessments, each constructed decision model to predict health outcomes of sequencing-based testing for trisomy 21 compared to standard testing. The primary health outcomes of interest included the number of cases of aneuploidy correctly identified, the number of cases missed, the number of invasive procedures potentially avoided (ie, with a more sensitive test), and the number of miscarriages potentially avoided as a result of fewer invasive procedures. The results were calculated for a high-risk population of women age 35 years or older (estimated antenatal prevalence of T21, 0.95%), and an average risk population including women of all ages electing an initial screen (estimated antenatal prevalence of T21, 0.25%). For women testing positive on initial screen and offered an invasive, confirmatory procedure, it was assumed that 60% would accept amniocentesis or CVS. Sensitivities and specificities for both standard and sequencing-based screening tests were varied to represent the range of possible values; estimates were taken from published studies whenever possible. According to the model results, sequencing-based testing improved outcomes for both high-risk and average risk women. As an example, assuming there are 4.25 million births in the U.S. per year (16) and two-thirds of the population of average risk pregnant women (2.8 million) accepted screening, the following outcomes would occur for the 3 screening strategies under consideration: Standard screening. Of the 2.8 million screened with the stepwise sequential screen, 87,780 would have an invasive procedure (assuming 60% uptake after a positive screening test and a recommendation for confirmation), 448 would have a miscarriage, and 3976 of 4200 (94.7%) trisomy 21/Down syndrome cases would be detected. Sequencing as an alternative to standard screening. If sequencing-based testing were used instead of standard screening, the number of invasive procedures would be reduced to 7504 and the number of miscarriages reduced to 28, while the cases of Down syndrome detected would increase to 4144 of 4200 (97.6 %of total), using conservative estimates. Sequencing following standard screening. Another testing strategy would be to add sequencingbased testing only after a positive standard screen. In this scenario, invasive procedures would be further decreased to 4116, miscarriages would remain at 28, but fewer Down syndrome cases would be detected (3948 of 4200, 94.0 % of total).. Thus, while this strategy has the lowest rate of miscarriages and invasive procedures, it detects fewer cases than sequencingbased testing alone.

12 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA 12 The model in the 2014 TEC Assessment included T13 and T18 (but not sex chromosome aneuploidies, due to the difficulty of defining relevant health outcomes). The model was similar but not identical to the one previously used to evaluate T21. As in earlier model, outcomes of interest included the number of cases of aneuploidy correctly detected and the number of cases missed, and findings were calculated separately for a high-risk population of women aged 35 or older and a low-risk population. The model assumed that 75% of high-risk and 50% of low-risk women who tested positive on the initial screen would proceed to an invasive test. (The T21 model assumed a 60% uptake rate of invasive confirmatory testing). A distinctive feature of the 2014 modelling study was that it assumed that screening for T21 was done concurrently to screening for T13 and T18 and that women who choose invasive testing do so because of a desire to detect T21. Consequently, miscarriages associated with invasive testing were not considered an adverse effect of T13 or T18 screening. The model compared 2 approaches to screening: (1) a positive sequencing-based screen followed by diagnostic invasive testing; and (2) a positive standard noninvasive screen followed by diagnostic invasive testing. As in the T21 modelling study, sensitivities and specificities for both standard and sequencing-based screening tests were varied to represent the range of possible values; estimates were taken from published studies whenever possible. Assuming that a hypothetical population of,000 pregnant women was screened, the model had the following findings: High-risk women: Assuming 75% uptake after a positive screen, the maximum cases detectable in the hypothetical population of,000 pregnancies is 127 T18 cases and 45 T13 cases. Standard noninvasive screening would identify 123 of the 127 T18 cases and sequencing-based screening would identify 121 of 127 cases. In addition, standard noninvasive screening would identify 37 of 45 T13 cases and sequencing-based screening would identify 39 of 45 T13 cases. Low-risk women: Assuming 50% uptake after a positive screen, the maximum cases detectable in the hypothetical population of,000 pregnancies is 20 T18 cases and 6 T13 cases. Each initial screening test would identify 19 of the 20 T18 cases and 5 of the 6 T13 cases. Results of the modeling suggest that sequencing-based tests detect a similar number of T13 and T18 cases and miss fewer cases compared with standard noninvasive screening. Even in a hypothetical population of,000 women, however, the potential number of detectable cases is low, especially for T13 and for low-risk women. In addition to the TEC Assessments, several other published articles presented decision models in published articles and these are described next. Garfield and Armstrong published a study modeling use of the Verinata test. In the model, women were eligible for screening following a positive first-trimester or second-trimester screening test or following a second-trimester ultrasound. The model assumed that 71% of women at average risk and 80% of women at high risk would choose the test. In a theoretical population of,000 pregnancies, the detection rate of T21 increased from 148 with standard testing to 170 with Verifi

13 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA 13 testing. In addition, the number of miscarriages associated with invasive testing (assumed to be 0.5% for amniocentesis and 1% with CVS) was reduced from 60 to 20. Palomaki et al modeled use of the Sequenom sequencing-based test offered to women after a positive screening test, with invasive testing offered only in the case of a positive sequencing-based test. (4) As in the TEC Assessment, they assumed 4.25 million births in the U.S. per year, with twothirds of these receiving standard screening. The model assumed a 99% detection rate, 0.5% falsepositive rate, and 0.9% failure rate for sequencing-based testing. Compared to the highest performing standard screening test, the addition of sequencing-based screening would increase the Down syndrome detection rate from 4450 to 4702 and decrease the number of miscarriages associated with invasive testing from 350 to 34. It is important to note that all of the above models include confirmatory invasive testing for positive screening tests. Sequencing-based testing without confirmatory testing carries the risk of misidentifying normal pregnancies as positive for trisomy. Due to the small but finite false-positive rate, together with the low baseline prevalence of trisomy in all populations, a substantial percent of positive results on sequencing tests could be false-positive results. In 2013, Ohno and Caughey published a decision model comparing use of sequencing-based tests in high-risk women with confirmatory testing (ie, as a screening test) and without confirmatory testing (ie, as a diagnostic test).(18) Results of the model concluded that using sequencing-based tests with a confirmatory test results in fewer losses of normal pregnancies compared to sequencing-based tests used without a confirmatory test. The model made their estimates using the total population of 520,000 high-risk women presenting for first-trimester care each year in the U.S. Sequencing-based tests used with confirmatory testing resulted in 1441 elective terminations (all with Down syndrome). Without confirmatory testing, sequencing-based tests resulted in 3873 elective terminations, 1449 with Down syndrome and 2424 without Down syndrome. There were 29 procedure-related pregnancies losses when confirmatory tests were used. Section Summary There is no published direct evidence that managing patients using sequencing-based testing improves health outcomes compared to standard screening. Modeling studies using published estimates of diagnostic accuracy and other parameters predict that sequencing-based testing as an alternative to standard screening will lead to an increase in the number of Down syndrome cases detected and a large decrease in the number of invasive tests and associated miscarriages. The number of T18 and T13 cases detected is similar or higher with sequencing-based testing, although this is more difficult to estimate because of the lower prevalence of these aneuploidies, especially with T13. The impact of screening for sex chromosome aneuploidies has not been modeled in published studies. Ongoing Clinical Trials Prenatal Non-invasive Aneuploidy Test Utilizing SNPs [single nucleotide polymorphism] Trial (PreNATUS) (NCT ) : This is a prospective, blinded study evaluating the diagnostic accuracy of the Natera test for diagnosing aneuploidies (chromosomes 13, 18, 21) and sex aneuploidy (X and Y). It includes women with singleton pregnancies at high or moderate risk for trisomy who were planning on undergoing invasive testing. Gestational age of the fetus is between 8 weeks 0 days

14 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA 14 and 23 weeks 6 days. The estimated enrollment is 1,000 participants. As of October 2014, the study continues to recruit participants. Study of the Efficacy of New Non-invasive Prenatal Tests for Screening for Fetal Trisomies Using Maternal Blood (PEGASUS) (NCT : This study is comparing noninvasive assays and strategies in a real-life setting in order to develop an evidence-based and cost-effective screening program in Canada. The following interventions will be compared: integrated prenatal screening for Down syndrome; serum QUAD assay for aneuploidy screening; targeted noninvasive assay using cell-free DNA in maternal blood; untargeted noninvasive assay using cell-free DNA in maternal blood; Harmony Test (Ariosa Diagnostics). The primary outcome measure is the number of cases of trisomy 21, 18 or 13, confirmed by fetal karyotype or at or after delivery. Both a high-risk and lowrisk arm will be included. The study aims to recruit 5600 women and the expected date of completion is January Non-invasive Chromosomal Examination of Trisomy study (NEXT) (NCT ) : This is a prospective blinded case-control study comparing the Aria test for trisomy 21 with standard firsttrimester prenatal screening (maternal serum testing and nuchal translucency). Cases will consist of patients with trisomy 21 pregnancies confirmed by genetic testing, and controls will consist of patients without trisomy 21 pregnancies, as confirmed by genetic testing or live birth. The study is sponsored by Aria Diagnostics. The estimated enrollment is 25,000 individuals. As of October 2014, the study continues to recruit participants. Clinical Evaluation of the SEQureDx T21 Test in Low Risk Pregnancies (NCT ) : This is a prospective study and includes pregnant women between 10 to 22 weeks gestation who are at low risk for trisomy 21 aneuploidy (ie, no positive prenatal screening tests, and no personal or family history of Down syndrome). Blood samples will be collected at a scheduled prenatal care visit and analyzed with the SEQureDX T21 test; pregnancies will be followed until the birth outcome is recorded. The study is sponsored by Sequenom; estimated enrollment is As of October 2014, the study is ongoing, but not recruiting participants. Clinical Input Received through Physician Specialty Societies and Academic Medical Centers In response to requests, input was received through 3 physician specialty societies and 4 academic medical centers while this policy was under review in While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted. There was consensus that sequencing-based tests to determine trisomy 21 from maternal plasma DNA may be considered medically necessary in women with high-risk singleton pregnancies undergoing screening for trisomy 21. Input was mixed on whether sequencing-based tests to determine trisomy 21 from maternal plasma DNA may be considered medically necessary in women with average-risk singleton pregnancies. An American College of Obstetricians and Gynecologists (ACOG) Genetics Committee Opinion, included as part of the specialty society s input, does not recommend the new tests at this time for women with singleton pregnancies who are not at high risk of aneuploidy. There was consensus that sequencing-based tests to determine

15 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA 15 trisomy 21 from maternal plasma DNA are investigational for women with multiple pregnancies. In terms of an appropriate protocol for using sequencing-based testing, there was consensus that testing should not be used as a single-screening test without confirmation of results by karyotyping. There was mixed input on use of the test as a replacement for standard screening tests with karyotyping confirmation and use as a secondary screen in women with screen positive on standard screening tests with karyotyping confirmation. Among the 5 reviewers who responded to the following questions (which did not include ACOG), there was consensus that the modeling approach is sufficient to determine the clinical utility of the new tests and near-consensus there is a not a need for clinical trials comparing a screening protocol using the new tests to a screening protocol using standard serum screening prior to initiation of clinical use of the tests. Summary Published studies from all commercially available tests have consistently demonstrated very high sensitivity and specificity for detecting Down syndrome (trisomy 21) in singleton pregnancies. Nearly all of the studies included only women at high-risk of trisomy 21. For average- risk women, available studies suggest test performance similar to that reported in high-risk women, but there is less evidence in this population. Direct evidence of clinical utility is not available. A 2013 TEC Assessment modeled comparative outcomes based on the published data on test performance, published estimates of standard screening performance, patient uptake of confirmatory testing, and miscarriage rates associated with invasive procedures. For each comparison and in each risk population, sequencing-based testing improved outcomes, ie, increased the rate of Down syndrome detection and reduced the number of invasive procedures and procedure-related miscarriages. In the modeling, the negative predictive value of testing approached % across the range of aneuploidy risk, while the positive predictive value varied widely according to baseline risk. The variable positive predictive value highlights the possibility of a false-positive finding and thus testing using karyotyping is necessary to confirm a positive result. Based on the available evidence, including modeling in the TEC Assessment, as well as input from clinical vetting and recommendations from national organizations, nucleic acid sequencing-based testing for trisomy 21 may be considered medically necessary in women with high-risk singleton pregnancies who meet criteria and not medically necessary in women with average-risk singleton pregnancies. Testing is considered investigational in women with twin or multiple pregnancies. There is less published evidence on the diagnostic performance of sequencing-based tests for detecting T18, T13 and sex chromosome anomalies, and most of the available studies were conducted in high-risk pregnancies. Meta-analyses of available data suggest high sensitivities and specificities, but the small number of cases, especially for T13, makes definitive conclusions difficult. The findings of a decision analysis study included in the 2014 TEC Assessment suggest similar rates of T13 and T18 detection to standard noninvasive screening; the analysis assumed that T13 and T18 screening would be done in conjunction with T21 screening. Due to the low survival rate, the clinical benefit of identifying trisomy 18 and 13 are unclear. The clinical utility of early sex chromosome aneuploidy detection is also unclear. Thus, sequencing-based tests for T18 and T13 are considered medically necessary in women who are eligible for and are undergoing sequencing-

16 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA 16 based testing of maternal plasma for T21 and investigational otherwise, and sequencing-based testing for fetal sex chromosome aneuploidies is not covered. Practice Guidelines and Position Statements National Society of Genetic Counselors (NSGC): In 2013, the NSGC published a position statement regarding noninvasive prenatal testing of cell-free DNA in maternal plasma. The NSGC supports noninvasive cell-free DNA testing as option in women who want testing for aneuploidy. The document states that the test has been primarily validated in pregnancies considered to be at increased risk of aneuploidy, and the organization does not support routine first-tier screening in low-risk populations. In addition, the document states that test results should not be considered diagnostic, and abnormal findings should be confirmed through conventional diagnostic procedures, such as CVS and amniocentesis. American College of Medical Genetics and Genomics (ACMG): In 2013, the ACMG published a statement on noninvasive prenatal screening for fetal aneuploidy that addresses challenges in incorporating noninvasive testing into clinical practice. Limitations identified by the organization include that chromosomal abnormalities such as unbalanced translocations, deletions and duplications, single-gene mutations and neural tube defects cannot be detected by the new tests. Moreover, it currently takes longer to obtain test results than with maternal serum analytes. The ACMG also stated that pretest and posttest counseling should be performed by trained individuals. International Society for Prenatal Diagnosis (ISPD): In 2013, the ISPD published a position statement regarding prenatal diagnosis of chromosomal abnormalities. The statement included the following discussion of maternal cell-free DNA screening: Although rapid progress has been made in the development and validation of this technology, demonstration that in actual clinical practice, the testing is sufficiently accurate, has low failure rates, and can be provided in a timely fashion, has not been provided. Therefore, at the present time, the following caveats need to be considered: Reliable noninvasive maternal cfdna (cell-free) aneuploidy screening methods have only been reported for trisomies 21 and 18. There are insufficient data available to judge whether any specific cfdna screening method is most effective. The tests should not be considered to be fully diagnostic and therefore are not a replacement for amniocentesis and CVS. Analytic validity trials have been mostly focused on patients who are at high risk on the basis of maternal age or other screening tests. Efficacy in low-risk populations has not yet been fully demonstrated. American College of Obstetricians and Gynecologists (ACOG) and Society for Maternal-Fetal Medicine: In November 2012, ACOG released a committee opinion on noninvasive testing for fetal aneuploidy The Committee Opinion was issued jointly with the Society for Maternal-Fetal Medicine Publications Committee. ACOG recommended that maternal plasma DNA testing be offered to

17 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA 17 patients at increased risk of fetal aneuploidy. They did not recommend that the test be offered to women who are not at high risk or women with multiple gestations. ACOG further recommended that women be counseled prior to testing about the limitations of the test and recommended confirmation of positive findings with CVS or amniocentesis. The document noted that the content reflected emerging clinical and scientific advances and is subject to change as additional information becomes available. The Committee Opinion did not include an explicit review of the literature. U.S. Preventive Services Task Force Recommendations The U.S. Preventive Services Task Force (USPSTF) does not currently address screening for Down syndrome. This topic had been addressed in the 1990s, but the topic is no longer listed on the USPSTF website. Medicare National Coverage There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers. VII. Important Reminder The purpose of this Medical Policy is to provide a guide to coverage. This Medical Policy is not intended to dictate to providers how to practice medicine. Nothing in this Medical Policy is intended to discourage or prohibit providing other medical advice or treatment deemed appropriate by the treating physician. Benefit determinations are subject to applicable member contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. This Medical Policy has been developed through consideration of the medical necessity criteria under Hawaii s Patients Bill of Rights and Responsibilities Act (Hawaii Revised Statutes 432E-1.4), generally accepted standards of medical practice and review of medical literature and government approval status. HMSA has determined that services not covered under this Medical Policy will not be medically necessary under Hawaii law in most cases. If a treating physician disagrees with HMSA s determination as to medical necessity in a given case, the physician may request that HMSA reconsider the application of the medical necessity criteria to the case at issue in light of any supporting documentation. VIII. References 1. American College of Obstetricians and Gynecologists (ACOG). Practice Bulletin No. 77: screening for fetal chromosomal abnormalities. Obstet Gynecol 2007; 109(1): Ashoor G, Syngelaki A, Poon LC et al. Fetal fraction in maternal plasma cell-free DNA at weeks' gestation: relation to maternal and fetal characteristics. Ultrasound Obstet Gynecol 2013; 41(1):26-32.

18 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA Blue Cross Blue Shield Association Technology Evaluation Center (TEC). Sequencing-based tests to determine fetal down syndrome (trisomy 21) from maternal plasma DNA. TEC Assessments 2013; Volume 27, Tab 10. PMID 4. Blue Cross Blue Shield Association Technology Evaluation Center (TEC). Noninvasive maternal plasma sequencing-based screening for fetal aneuploidies other than trisomy 21. TEC Assessments 2014; Volume Food and Drug Adminstration (FDA). Ultra High Throughput Sequencing for Clinical Diagnostic Applications - Approaches to Assess Analytical Validity, June 23, Gil MM, Akolekar R, Quezada MS, et al. Analysis of Cell-Free DNA in Maternal Blood in Screening for Aneuploidies: Meta-Analysis. Fetal Diagn Ther. Feb Palomaki GE, Deciu C, Kloza EM et al. DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study. Genet Med 2012; 14(3): Palomaki GE, Kloza EM, Lambert-Messerlian GM et al. DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet Med 2011; 13(11): Ehrich M, Deciu C, Zwiefelhofer T et al. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am J Obstet Gynecol 2011; 204(3):205 e Bianchi DW, Platt LD, Goldberg JD et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. Obstet Gynecol 2012; 119(5): Sehnert AJ, Rhees B, Comstock D et al. Optimal detection of fetal chromosomal abnormalities by massively parallel DNA sequencing of cell-free fetal DNA from maternal blood. Clin Chem 2011; 57(7): Norton ME, Brar H, Weiss J et al. Non-Invasive Chromosomal Evaluation (NICE) Study: Results of a Multicenter, Prospective, Cohort Study for Detection of Fetal Trisomy 21 and Trisomy 18. Am J Obstet Gynecol Ashoor G, Syngelaki A, Wagner M et al. Chromosome-selective sequencing of maternal plasma cell-free DNA for first-trimester detection of trisomy 21 and trisomy 18. Am J Obstet Gynecol 2012; 206(4):322 e Sparks AB, Struble CA, Wang ET et al. Noninvasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: evaluation for trisomy 21 and trisomy 18. Am J Obstet Gynecol 2012; 206(4):319 e Nicolaides KH, Syngelaki A, Gil M et al. Validation of targeted sequencing of single-nucleotide polymorphisms for non-invasive prenatal detection of aneuploidy of chromosomes 13, 18, 21, X, and Y. Prenat Diagn 2013; 33(6): Porreco RP, Garite TJ, Maurel K, et al. Noninvasive prenatal screening for fetal trisomies 21, 18, 13 and the common sex chromosome aneuploidies from maternal blood using massively parallel genomic sequencing of DNA. Am J Obstet Gynecol. Mar PMID Bianchi DW, Parker RL, Wentworth J, et al. DNA sequencing versus standard prenatal aneuploidy screening. NEngl J Med. Feb ;370(9): Nicolaides KH, Syngelaki A, Ashoor G et al. Noninvasive prenatal testing for fetal trisomies in a routinely screened first-trimester population. Am J Obstet Gynecol 2012; 207.

19 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA Gil MM, Quezada MS, Bregant B et al. Implementation of maternal blood cell-free DNA testing in early screening for aneuploidies. Ultrasound Obstet Gynecol 2013; 42(1): Quezada MS, Del Mar Gil M, Francisco C, et al. Screening for trisomies 21, 18 and 13 cell-free DNA analysis of maternal blood at weeks' gestation and the combined test at weeks. Ultrasound Obstet Gynecol. Sep Canick JA, Kloza EM, Lambert-Messerlian GM et al. DNA sequencing of maternal plasma to identify Down syndrome and other trisomies in multiple gestations. Prenat Diagn 2012: Centers for Disease Control (CDC). Vital Statistics Online: Birth Data. Available online at: Last accessed November, Garfield SS, Armstrong SO. Clinical and cost consequences of incorporating a novel non-invasive prenatal test into the diagnostic pathway for fetal trisomies. Journal of Managed Care Medicine 2012; 15(2): Ohno M, Caughey A. The role of noninvasive prenatal testing as a diagnostic versus a screening tool--a cost-effectiveness analysis. Prenat Diagn 2013; 33(7): Sponsored by Natera Inc. Prenatal Non-invasive Aneuploidy Test Utilizing SNPs Trial (PreNATUS) (NCT ). Available online at: Last accessed November, Sponsored by Aria Diagnostics Inc. Non-invasive Chromosomal Examination of Trisomy Study (NEXT) (NCT ). Available online at: Last accessed November, Sponsored by Sequenom Inc. Clinical Evaluation of the SEQureDx T21 Test in Low Risk Pregnancies (NCT ). Available online at: Last accessed November, Devers PL, Cronister A, Ormond KE et al. Noninvasive prenatal testing/noninvasive prenatal diagnosis: the position of the National Society of Genetic Counselors. J Genet Couns 2013; 22(3): Gregg AR, Gross SJ, Best RG et al. ACMG statement on noninvasive prenatal screening for fetal aneuploidy. Genet Med 2013; 15(5): Benn P, Borell A, Chiu R et al. Position statement from the Aneuploidy Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. Prenat Diagn 2013; 33(7): American College of Obstetricians and Gynecologists (ACOG). Commitee Opinion: Noninvasive Prenatal Testing for Fetal Aneuploidy Blue Cross Blue Shield Association. Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA.November 2014 IX. Appendix Table 1: Aneuploidy detection by sequencing in singleton pregnancies: test performance Study a N in final analysis (after indeterminate Indeterminate samples Sensitivity b (%) (95% CI) Specificity b (%) (95% CI)

20 Noninvasive Prenatal Testing for Fetal Aneuploidies Using Cell-Free Fetal DNA 20 samples removed) Sequenom (MaterniT21 ) T21 T13 T18 T21 T13 T18 Porteco 2014 Palomaki 2012 b 3rd-party c Ehrich 2011 In-house Verinata (verifi ) Bianchi rd-party c Sehnert 2011 In-house Total N=3480 T21 n=137 T18=39 T13=13 Total N=1971 Trisomy 21: N=212 Trisomy 18: N=59 Trisomy 13: N=12 Total N=449 Trisomy 21: N=39 Total N=516 d Trisomy 21: N=89 Trisomy 18: N=36 Trisomy 13: N=14 Total test set=46 Trisomy 21: N=13 Trisomy 18: N=8 Trisomy 13: N=1 Ariosa (Harmony ) Nicolaides rd-party c Total N=2049 Trisomy 21: N=8 54/34/30 Insufficient quality criteria 17/1988 (0.9%) Test failure including fetal fraction QC 18/467 (3.8%) Failed test QC, including fetal fraction 16/532 (3%) Low fetal DNA 1/47 (2%) T13 classified as no call 54/2049 (2.6%) Trisomy 18: N=3 (2) (1 T18 sample was a test failure) N=46/2049 (2.2%) Low fetal DNA Test failure Total (4.9%) (97.3 to ) 99.1 (96.6 (91.0- ) (95.9- ) (75.3- ) (63.1- ) 87.5 (61.6 to 98.5) 91.7 ( ) 78.6 ( ) 92.3 (79.1 to 98.4) (93.9- ) 97.2 (85.5- (63.1- ) (15.8- ) 99.9 (99.7 to 99.98) 99.9 ( (98.6- (99.1- ) (89.7- ) 99.9 (99.6- (98.89 to ) 99.1 ( ) (99.2- ) (99.89 to 98.4) 99.7 (99.3- (99.2- ) (91.0- ) 99.9 (99.6-

Sequencing-based Tests to Determine Trisomy 21 from Maternal Plasma DNA

Sequencing-based Tests to Determine Trisomy 21 from Maternal Plasma DNA Sequencing-based Tests to Determine Trisomy 21 from Maternal Plasma DNA Policy Number: Original Effective Date: MM.03.006 09/01/2013 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST 09/01/2013

More information

Noninvasive Prenatal Screening for Fetal Aneuploidies and Microdeletions Using Cell-Free Fetal DNA

Noninvasive Prenatal Screening for Fetal Aneuploidies and Microdeletions Using Cell-Free Fetal DNA MEDICAL POLICY POLICY RELATED POLICIES POLICY GUIDELINES DESCRIPTION SCOPE BENEFIT APPLICATION RATIONALE REFERENCES CODING APPENDIX HISTORY Noninvasive Prenatal Screening for Fetal Aneuploidies and Microdeletions

More information

Non-Invasive Prenatal Testing (NIPT) Factsheet

Non-Invasive Prenatal Testing (NIPT) Factsheet Introduction NIPT, which analyzes cell-free fetal DNA circulating in maternal blood, is a new option in the prenatal screening and testing paradigm for trisomy 21 and a few other fetal chromosomal aneuploidies.

More information

your questions answered the reassurance of knowing A guide for parents-to-be on noninvasive prenatal testing.

your questions answered the reassurance of knowing A guide for parents-to-be on noninvasive prenatal testing. your questions answered the reassurance of knowing A guide for parents-to-be on noninvasive prenatal testing. Accurate answers about your baby s health simply, safely, sooner. What is the verifi Prenatal

More information

Clinical Studies Abstract Booklet

Clinical Studies Abstract Booklet Clinical Studies Abstract Booklet The Harmony Prenatal Test is a non-invasive prenatal test (NIPT) that assesses the risk of trisomies by analyzing cell-free DNA (cfdna) in maternal blood. Since January

More information

A test your patients can trust. A company you know and trust.

A test your patients can trust. A company you know and trust. A test your patients can trust. A company you know and trust. informaseq Prenatal Test an advanced, non-invasive, prenatal screening for T21, T18, and T13 chromosomal aneuploidies using next generation

More information

A test your patients can trust.

A test your patients can trust. A test your patients can trust. A simple, safe, and accurate non-invasive prenatal test for early risk assessment of Down syndrome and other conditions. informaseq Prenatal Test Simple, safe, and accurate

More information

Executive summary. Current prenatal screening

Executive summary. Current prenatal screening Executive summary Health Council of the Netherlands. NIPT: dynamics and ethics of prenatal screening. The Hague: Health Council of the Netherlands, 2013; publication no. 2013/34. In recent years, new tests

More information

Consent to Perform Preimplantation Genetic Screening (PGS) using. Comparative Genomic Hybridization (acgh) or Next Generation Sequencing (NGS)

Consent to Perform Preimplantation Genetic Screening (PGS) using. Comparative Genomic Hybridization (acgh) or Next Generation Sequencing (NGS) Consent to Perform Preimplantation Genetic Screening (PGS) using Array Comparative Genomic Hybridization (acgh ) or Next Generation Sequencing (NGS) Purpose The purpose of Preimplantation Genetic Screening

More information

First Trimester Screening for Down Syndrome

First Trimester Screening for Down Syndrome First Trimester Screening for Down Syndrome What is first trimester risk assessment for Down syndrome? First trimester screening for Down syndrome, also known as nuchal translucency screening, is a test

More information

Non-invasive prenatal detection of chromosome aneuploidies using next generation sequencing: First steps towards clinical application

Non-invasive prenatal detection of chromosome aneuploidies using next generation sequencing: First steps towards clinical application Non-invasive prenatal detection of chromosome aneuploidies using next generation sequencing: First steps towards clinical application PD Dr. rer. nat. Markus Stumm Zentrum für Pränataldiagnostik Kudamm-199

More information

Prenatal screening and diagnostic tests

Prenatal screening and diagnostic tests Prenatal screening and diagnostic tests Contents Introduction 3 First trimester routine tests in the mother 3 Testing for health conditions in the baby 4 Why would you have a prenatal test? 6 What are

More information

The following chapter is called "Preimplantation Genetic Diagnosis (PGD)".

The following chapter is called Preimplantation Genetic Diagnosis (PGD). Slide 1 Welcome to chapter 9. The following chapter is called "Preimplantation Genetic Diagnosis (PGD)". The author is Dr. Maria Lalioti. Slide 2 The learning objectives of this chapter are: To learn the

More information

New Prenatal Tests for Down Syndrome: Brian G. Skotko, MD, MPP Co-Director, Down Syndrome Program Massachusetts General Hospital

New Prenatal Tests for Down Syndrome: Brian G. Skotko, MD, MPP Co-Director, Down Syndrome Program Massachusetts General Hospital New Prenatal Tests for Down Syndrome: International Updates and What This All Means for Your Family Brian G. Skotko, MD, MPP Co-Director, Down Syndrome Program Massachusetts General Hospital Band of Angels

More information

LEUKODYSTROPHY GENETICS AND REPRODUCTIVE OPTIONS FOR AFFECTED FAMILIES. Leila Jamal, ScM Kennedy Krieger Institute, Baltimore MD

LEUKODYSTROPHY GENETICS AND REPRODUCTIVE OPTIONS FOR AFFECTED FAMILIES. Leila Jamal, ScM Kennedy Krieger Institute, Baltimore MD LEUKODYSTROPHY GENETICS AND REPRODUCTIVE OPTIONS FOR AFFECTED FAMILIES Leila Jamal, ScM Kennedy Krieger Institute, Baltimore MD 2 Outline Genetics 101: Basic Concepts and Myth Busting Inheritance Patterns

More information

MASSIVELY PARALLEL SEQUENCING OF MATE RNAL PLASMA DNA IN 113 CASES OF FETAL NUCHAL CYSTIC HYGROMA

MASSIVELY PARALLEL SEQUENCING OF MATE RNAL PLASMA DNA IN 113 CASES OF FETAL NUCHAL CYSTIC HYGROMA Scuola di specializzazione in Genetica Medica Journal Club 14 gennaio 2014 MASSIVELY PARALLEL SEQUENCING OF MATE RNAL PLASMA DNA IN 113 CASES OF FETAL NUCHAL CYSTIC HYGROMA Bianchi, Diana W. MD; Prosen,

More information

CHROMOSOMES Dr. Fern Tsien, Dept. of Genetics, LSUHSC, NO, LA

CHROMOSOMES Dr. Fern Tsien, Dept. of Genetics, LSUHSC, NO, LA CHROMOSOMES Dr. Fern Tsien, Dept. of Genetics, LSUHSC, NO, LA Cytogenetics is the study of chromosomes and their structure, inheritance, and abnormalities. Chromosome abnormalities occur in approximately:

More information

The first 3,000 Non-Invasive Prenatal Tests (NIPT) with the Harmony test in Belgium and the Netherlands

The first 3,000 Non-Invasive Prenatal Tests (NIPT) with the Harmony test in Belgium and the Netherlands FVV in ObGyn, 2014, 6 (1): 7-12 Preliminary report The first 3,000 Non-Invasive Prenatal Tests (NIPT) with the Harmony test in Belgium and the Netherlands P.J. Willems 1, H. Dierickx 1, ES. Vandenakker

More information

REI Pearls: Pitfalls of Genetic Testing in Miscarriage

REI Pearls: Pitfalls of Genetic Testing in Miscarriage The Skinny: Genetic testing of miscarriage tissue is controversial and some people question if testing is helpful or not. This summary will: 1) outline the arguments for and against genetic testing; 2)

More information

In most developed countries, prenatal screening

In most developed countries, prenatal screening Genome-Wide Fetal Aneuploidy Detection by Maternal Plasma DNA Sequencing Diana W. Bianchi, MD, Lawrence D. Platt, MD, James D. Goldberg, MD, Alfred Z. Abuhamad, MD, Amy J. Sehnert, MD, and Richard P. Rava,

More information

cfdna in maternal plasma obtained from a population undergoing routine screening at 11-13 weeks gestation.

cfdna in maternal plasma obtained from a population undergoing routine screening at 11-13 weeks gestation. Reports of Major Impact www.ajog.org Noninvasive prenatal testing for fetal trisomies in a routinely screened first-trimester population Kypros H. Nicolaides, MD; Argyro Syngelaki, RM; Ghalia Ashoor, MD;

More information

Each person normally has 23 pairs of chromosomes, or 46 in all. We inherit one chromosome per pair from our mother and one from our father.

Each person normally has 23 pairs of chromosomes, or 46 in all. We inherit one chromosome per pair from our mother and one from our father. AP Psychology 2.2 Behavioral Genetics Article Chromosomal Abnormalities About 1 in 150 babies is born with a chromosomal abnormality (1, 2). These are caused by errors in the number or structure of chromosomes.

More information

Fact Sheet for Health Care Providers: Interpreting Results from the Aptima Zika Virus Assay. June 17, 2016

Fact Sheet for Health Care Providers: Interpreting Results from the Aptima Zika Virus Assay. June 17, 2016 Dear Health Care Provider: Fact Sheet for Health Care Providers: Interpreting Results from the Aptima Zika Virus Assay June 17, 2016 The U.S. Food and Drug Administration (FDA) has issued an Emergency

More information

Maternal serum free b-hcg and PAPP-A in fetal sex chromosome defects in the rst trimester

Maternal serum free b-hcg and PAPP-A in fetal sex chromosome defects in the rst trimester PRENATAL DIAGNOSIS Prenat Diagn 2000; 20: 390±394. Maternal serum free b-hcg and PAPP-A in fetal sex chromosome defects in the rst trimester Kevin Spencer 1 *, Natasha Tul 2 and Kypros H. Nicolaides 2

More information

Obstetrical Ultrasound and Prenatal Diagnostic Center

Obstetrical Ultrasound and Prenatal Diagnostic Center Obstetrical Ultrasound and Prenatal Diagnostic Center Prenatal Diagnosis: Options and Opportunities Learn about various screening options including Early Risk Assessment (ERA), now available to women of

More information

Prenatal Testing Special tests for your baby during pregnancy

Prenatal Testing Special tests for your baby during pregnancy English April 2006 [OTH-7750] There are a number of different prenatal (before birth) tests to check the development of your baby. Each test has advantages and disadvantages. This information is for people

More information

Trisomy 13 (also called Patau s syndrome or T13)

Trisomy 13 (also called Patau s syndrome or T13) Screening Programmes Fetal Anomaly Trisomy 13 (also called Patau s syndrome or T13) Information for parents Publication date: April 2012 Review date: April 2013 Version 2 117 Information sheet to help

More information

National Down Syndrome Society

National Down Syndrome Society National Down Syndrome Society The national advocate for the value, acceptance and inclusion of people with Down syndrome What is Down Syndrome? Down syndrome is the most commonly occurring chromosomal

More information

The California Prenatal Screening Program

The California Prenatal Screening Program The California Prenatal Screening Program Provider ook netic Disease Screening Program Quad Marker Screening Serum Integrated Screening Full Integrated Screening TABLE OF CONTENTS WELCOME to the California

More information

Complimentary and personal copy for

Complimentary and personal copy for Complimentary and personal copy for www.thieme.com Publishing House and Copyright: 2015 by Georg Thieme Verlag KG Rüdigerstraße 14 70469 Stuttgart ISSN Any further use only by permission of the Publishing

More information

The California Prenatal Screening Program

The California Prenatal Screening Program The California Prenatal Screening Program Quad Marker Screening One blood specimen drawn at 15 weeks - 20 weeks of pregnancy (second trimester) Serum Integrated Screening Prenatal Patient Booklet - English

More information

Chromosomes, Karyotyping, and Abnormalities (Learning Objectives) Learn the components and parts of a metaphase chromosome.

Chromosomes, Karyotyping, and Abnormalities (Learning Objectives) Learn the components and parts of a metaphase chromosome. Chromosomes, Karyotyping, and Abnormalities (Learning Objectives) Learn the components and parts of a metaphase chromosome. Define the terms karyotype, autosomal and sex chromosomes. Explain how many of

More information

Implementation of maternal blood cell-free DNA testing in early screening for aneuploidies

Implementation of maternal blood cell-free DNA testing in early screening for aneuploidies Ultrasound Obstet Gynecol 2013; 42: 34 40 Published online 7 June 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/uog.12504 Implementation of maternal blood cell-free DNA testing in

More information

Genetic testing. The difference diagnostics can make. The British In Vitro Diagnostics Association

Genetic testing. The difference diagnostics can make. The British In Vitro Diagnostics Association 6 Genetic testing The difference diagnostics can make The British In Vitro Diagnostics Association Genetic INTRODUCTION testing The Department of Health published Our Inheritance, Our Future - Realising

More information

COMMITTEE OPINION. Cell-free DNA Screening for Fetal Aneuploidy

COMMITTEE OPINION. Cell-free DNA Screening for Fetal Aneuploidy The American College of Obstetricians and Gynecologists WOMEN S HEALTH CARE PHYSICIANS (Published Electronically Ahead of Print on June 26, 2015) COMMITTEE OPINION Number 640 September 2015 (This Committee

More information

Clinical Policy Title: Array comparative genomic hybridization testing

Clinical Policy Title: Array comparative genomic hybridization testing Clinical Policy Title: Array comparative genomic hybridization testing Clinical Policy Number: 02.01.03 Effective Date: Sept 1, 2015 Initial Review Date: May 13, 2013 Most Recent Review Date: August 19,

More information

OBSTETRICAL POLICY. Page

OBSTETRICAL POLICY. Page OBSTETRICAL POLICY REIMBURSEMENT POLICY Policy Number: ADMINISTRATIVE 200.14 T0 Effective Date: April 1, 2016 Table of Contents APPLICABLE LINES OF BUSINESS/PRODUCTS... APPLICATION... OVERVIEW... REIMBURSEMENT

More information

Preimplantation Genetic Diagnosis (PGD) in Western Australia

Preimplantation Genetic Diagnosis (PGD) in Western Australia Preimplantation Genetic Diagnosis (PGD) in Western Australia Human somatic cells have 46 chromosomes each, made up of the 23 chromosomes provided by the egg and the sperm cell from each parent. Each chromosome

More information

The 11 13 +6 weeks scan

The 11 13 +6 weeks scan The 11 13 +6 weeks scan Kypros H. Nicolaides The 11 13 +6 weeks scan Fetal Medicine Foundation, London 2004 Dedication to Herodotos & Despina Contents Introduction 1. First trimester diagnosis of chromosomal

More information

Prenatal screening and diagnosis of chromosomal and genetic abnormalities in the fetus in pregnancy

Prenatal screening and diagnosis of chromosomal and genetic abnormalities in the fetus in pregnancy The Royal Australian and New Zealand College of Obstetricians and Gynaecologists Prenatal screening and diagnosis of chromosomal and genetic abnormalities in the fetus in pregnancy This statement has been

More information

Provider Notification Obstetrical Billing

Provider Notification Obstetrical Billing Provider Notification Obstetrical Billing Date of Notification September 1, 20 Revision Date September 17, 2015 Plans Affected Mercy Care Plan and Mercy Care Long Term Care Plan Referrals As outlined in

More information

Overview of Genetic Testing and Screening

Overview of Genetic Testing and Screening Integrating Genetics into Your Practice Webinar Series Overview of Genetic Testing and Screening Genetic testing is an important tool in the screening and diagnosis of many conditions. New technology is

More information

The National Down Syndrome Cytogenetic Register for England and Wales: 2008/9 Annual Report

The National Down Syndrome Cytogenetic Register for England and Wales: 2008/9 Annual Report 0 The National Down Syndrome Cytogenetic Register for England and Wales: 2008/9 Annual Report Joan K Morris, Elizabeth De Souza December 2009 National Down Syndrome Cytogenetic Register Queen Mary University

More information

Birth defects. Report by the Secretariat

Birth defects. Report by the Secretariat EXECUTIVE BOARD EB126/10 126th Session 3 December 2009 Provisional agenda item 4.7 Birth defects Report by the Secretariat 1. In May 2009 the Executive Board at its 125th session considered an agenda item

More information

Genetics and Pregnancy Loss

Genetics and Pregnancy Loss Genetics and Pregnancy Loss Dorothy Warburton Genetics and Development (in Pediatrics) Columbia University, New York Estimates of Pregnancy Loss from Conception 1000 fertilized eggs (27% are lost) 728

More information

Epi procolon The Blood Test for Colorectal Cancer Screening

Epi procolon The Blood Test for Colorectal Cancer Screening Epi procolon The Blood Test for Colorectal Cancer Screening Epi procolon is an approved blood test for colorectal cancer screening. The US Preventive Services Task Force, the American Cancer Society and

More information

Information leaflet. Centrum voor Medische Genetica. Version 1/20150504 Design by Ben Caljon, UZ Brussel. Universitair Ziekenhuis Brussel

Information leaflet. Centrum voor Medische Genetica. Version 1/20150504 Design by Ben Caljon, UZ Brussel. Universitair Ziekenhuis Brussel Information on genome-wide genetic testing Array Comparative Genomic Hybridization (array CGH) Single Nucleotide Polymorphism array (SNP array) Massive Parallel Sequencing (MPS) Version 120150504 Design

More information

Carrier detection tests and prenatal diagnosis

Carrier detection tests and prenatal diagnosis Carrier detection tests and prenatal diagnosis There are several types of muscular dystrophy and about 50 neuromuscular conditions, all of which fall under the umbrella of the Muscular Dystrophy Campaign.

More information

Maternity Care Primary C-Section Rate Specifications 2014 (07/01/2013 to 06/30/2014 Dates of Service)

Maternity Care Primary C-Section Rate Specifications 2014 (07/01/2013 to 06/30/2014 Dates of Service) Summary of Changes Denominator Changes: Two additions were made to the denominator criteria. The denominator was changed to include patients who had: a vertex position delivery AND a term pregnancy of

More information

Corporate Medical Policy Fetal RHD Genotyping Using Maternal Plasma

Corporate Medical Policy Fetal RHD Genotyping Using Maternal Plasma Corporate Medical Policy Fetal RHD Genotyping Using Maternal Plasma File Name: Origination: Last CAP Review: Next CAP Review: Last Review: fetal_rhd_genotyping_using_maternal_plasma 1/2014 9/2015 9/2016

More information

DETECTION AND NONOPERATIVE MANAGEMENT OF PEDIATRIC DEVELOPMENTAL DYSPLASIA OF THE HIP IN INFANTS UP TO SIX MONTHS OF AGE SUMMARY

DETECTION AND NONOPERATIVE MANAGEMENT OF PEDIATRIC DEVELOPMENTAL DYSPLASIA OF THE HIP IN INFANTS UP TO SIX MONTHS OF AGE SUMMARY DETECTION AND NONOPERATIVE MANAGEMENT OF PEDIATRIC DEVELOPMENTAL DYSPLASIA OF THE HIP IN INFANTS UP TO SIX MONTHS OF AGE SUMMARY Disclaimer This Clinical Practice Guideline was developed by an AAOS clinician

More information

A Guide to Prenatal Genetic Testing

A Guide to Prenatal Genetic Testing Patient Education Page 29 A Guide to Prenatal Genetic Testing This section describes prenatal tests that give information about your baby s health. It is your choice whether or not to have these tests

More information

Neural tube defects: open spina bifida (also called spina bifida cystica)

Neural tube defects: open spina bifida (also called spina bifida cystica) Screening Programmes Fetal Anomaly Neural tube defects: open spina bifida (also called spina bifida cystica) Information for health professionals Publication date: April 2012 Review date: April 2013 Version

More information

RECURRENT PREGNANCY LOSS DR.RAJALAKSHMI SRINIVASAN SPECIALIST GYNECOLOGIST ZULEKHA HOSPITAL DUBAI

RECURRENT PREGNANCY LOSS DR.RAJALAKSHMI SRINIVASAN SPECIALIST GYNECOLOGIST ZULEKHA HOSPITAL DUBAI RECURRENT PREGNANCY LOSS DR.RAJALAKSHMI SRINIVASAN SPECIALIST GYNECOLOGIST ZULEKHA HOSPITAL DUBAI RECURRENT PREGNANCY LOSS -RM Clinically recognized consecutive or non consecutive pregnancy losses before

More information

Clinical Policy Title: Home uterine activity monitoring

Clinical Policy Title: Home uterine activity monitoring Clinical Policy Title: Home uterine activity monitoring Clinical Policy Number: 12.01.01 Effective Date: August 19, 2015 Initial Review Date: July 17, 2013 Most Recent Review Date: July 15, 2015 Next Review

More information

Patient information on soft markers

Patient information on soft markers Patient information on soft markers Before you read this section remember the following important points. The vast majority of babies with soft markers are normal. Soft markers are frequently seen in healthy

More information

Prenatal Care Screening and Testing Guideline

Prenatal Care Screening and Testing Guideline Prenatal Care Screening and Testing Guideline Major Changes as of October 2013 2 Visit Schedule 2 Initial Visit 3 Second Trimester Visits (14 28 Weeks) 11 Third Trimester Visits (28 41 Weeks) 12 Postpartum

More information

Genetics in Family Medicine: The Australian Handbook for General Practitioners Testing and pregnancy

Genetics in Family Medicine: The Australian Handbook for General Practitioners Testing and pregnancy Genetics in Family Medicine: The Australian Handbook for General Practitioners Testing and pregnancy Testing and pregnancy GP s role 3 Counselling before and during pregnancy 3 Collecting the family history

More information

Preimplantation Genetic Diagnosis. Evaluation for single gene disorders

Preimplantation Genetic Diagnosis. Evaluation for single gene disorders Preimplantation Genetic Diagnosis Evaluation for single gene disorders What is Preimplantation Genetic Diagnosis? Preimplantation genetic diagnosis or PGD is a technology that allows genetic testing of

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Proteomics-based Testing Related to Ovarian Cancer File Name: Origination: Last CAP Review: Next CAP Review: Last Review: proteomics_based_testing_related_to_ovarian_cancer 7/2010

More information

Basic Human Genetics: Reproductive Health and Chromosome Abnormalities

Basic Human Genetics: Reproductive Health and Chromosome Abnormalities Basic Human Genetics: Reproductive Health and Chromosome Abnormalities Professor Hanan Hamamy Department of Genetic Medicine and Development Geneva University Switzerland Training Course in Sexual and

More information

What Is Genetic Counseling? Helping individuals and families understand how genetics affects their health and lives

What Is Genetic Counseling? Helping individuals and families understand how genetics affects their health and lives What Is Genetic Counseling? Helping individuals and families understand how genetics affects their health and lives What does the career involve? Explore family histories to identify risks Reducing risks

More information

Analytical goal setting in aneuploidy screening: within person biological variability of first trimester biochemical markers

Analytical goal setting in aneuploidy screening: within person biological variability of first trimester biochemical markers DOI: 10.1002/pd.4019 ORIGINAL ARTICLE Analytical goal setting in aneuploidy screening: within person biological variability of first trimester biochemical markers Kevin Spencer* and Nicholas J. Cowans

More information

Expert Intelligence for Better Decisions. Molecular Diagnostics: An Insight to Rising Markets and Trends in Cancer and Prenatal Technologies

Expert Intelligence for Better Decisions. Molecular Diagnostics: An Insight to Rising Markets and Trends in Cancer and Prenatal Technologies Expert Intelligence for Better Decisions Molecular Diagnostics: An Insight to Rising Markets and Trends in Cancer and Prenatal Technologies Using This Document Insight Pharma Reports are interactive electronic

More information

Chapter 9 Diagnostic testing for trisomy 18

Chapter 9 Diagnostic testing for trisomy 18 Chapter 9 Diagnostic testing for trisomy 18 9.1 Diagnostic procedures: amniocentesis Introduction: An amniocentesis procedure involves the use of a small gauge needle inserted through the woman s abdomen

More information

Screening for trisomy 21 by fetal tricuspid regurgitation, nuchal translucency and maternal serum free β-hcg and PAPP-A at 11 + 0to13+ 6 weeks

Screening for trisomy 21 by fetal tricuspid regurgitation, nuchal translucency and maternal serum free β-hcg and PAPP-A at 11 + 0to13+ 6 weeks Ultrasound Obstet Gynecol 2006; 27: 151 155 Published online 30 December 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/uog.2699 Screening for trisomy 21 by fetal tricuspid regurgitation,

More information

Glossary of Methodologic Terms

Glossary of Methodologic Terms Glossary of Methodologic Terms Before-After Trial: Investigation of therapeutic alternatives in which individuals of 1 period and under a single treatment are compared with individuals at a subsequent

More information

UNIT 13 (OPTION) Genetic Abnormalities

UNIT 13 (OPTION) Genetic Abnormalities Unit 13 Genetic Abnormailities 1 UNIT 13 (OPTION) Genetic Abnormalities Originally developed by: Hildur Helgedottir RN, MN Revised (2000) by: Marlene Reimer RN, PhD, CCN (C) Associate Professor Faculty

More information

Gutenberg Center in MALAGA

Gutenberg Center in MALAGA Introduction Gutenberg Center in MALAGA Gutenberg Center in Málaga opened in 1987 as a clinic to provide integral assisstance for women, divided into 6 Units, specialized in the different aspects of Obs

More information

Chromosomes, Mapping, and the Meiosis Inheritance Connection

Chromosomes, Mapping, and the Meiosis Inheritance Connection Chromosomes, Mapping, and the Meiosis Inheritance Connection Carl Correns 1900 Chapter 13 First suggests central role for chromosomes Rediscovery of Mendel s work Walter Sutton 1902 Chromosomal theory

More information

Le dépistage prénatal First-trimester syndrome de Down. grossesse aneuploidies SUMMARY AGENCE D ÉVALUATION DES TECHNOLOGIES

Le dépistage prénatal First-trimester syndrome de Down. grossesse aneuploidies SUMMARY AGENCE D ÉVALUATION DES TECHNOLOGIES Le dépistage prénatal du First-trimester syndrome de Down et prenatal d autres screening aneuploïdies au for premier Down trimestre syndrome de la and grossesse other aneuploidies SUMMARY AGENCE D ÉVALUATION

More information

Position Statement from the Aneuploidy Screening Committee on Behalf of the Board of the International Society for Prenatal Diagnosis, April 2013

Position Statement from the Aneuploidy Screening Committee on Behalf of the Board of the International Society for Prenatal Diagnosis, April 2013 Position Statement from the Aneuploidy Screening Committee on Behalf of the Board of the International Society for Prenatal Diagnosis, April 2013 Peter Benn (Chair), Antoni Borell, Rossa Chiu, Howard Cuckle,

More information

Invasive Prenatal (Fetal) Diagnostic Testing

Invasive Prenatal (Fetal) Diagnostic Testing MEDICAL POLICY POLICY RELATED POLICIES POLICY GUIDELINES DESCRIPTION SCOPE BENEFIT APPLICATION RATIONALE REFERENCES CODING APPENDIX HISTORY Invasive Prenatal (Fetal) Diagnostic Testing Number 12.04.116

More information

CONFIDENT CODING FOR OB/GYN CONFIDENT CODING FOR OB/GYN

CONFIDENT CODING FOR OB/GYN CONFIDENT CODING FOR OB/GYN Arlene J. Smith, CPC AAPC National Advisory Board 2007-2009 1 So when exactly does the global period start? Unraveling the confusion in antepartum care coding Correct coding for multiple gestations! Vaginal

More information

Trisomy 13 detection in the first trimester of pregnancy using a chromosome-selective cell-free DNA analysis method

Trisomy 13 detection in the first trimester of pregnancy using a chromosome-selective cell-free DNA analysis method Trisomy 13 detection in the first trimester of pregnancy using a chromosome-selective cell-free DNA analysis method Ghalia ASHOOR 1, Argyro SYNGELAKI 1, Eric WANG 2, Craig STRUBLE 2, Arnold OLIPHANT 2,

More information

The genetic screening of preimplantation embryos by comparative genomic hybridisation

The genetic screening of preimplantation embryos by comparative genomic hybridisation Vol. 11, Suppl. 3 51 The genetic screening of preimplantation embryos by comparative genomic hybridisation Maria V Traversa 1, James Marshall, Steven McArthur, Don Leigh Genea, Sydney, Australia Received:

More information

REQUEST FOR IMAGe SYNDROME TESTING

REQUEST FOR IMAGe SYNDROME TESTING REQUEST FOR IMAGe SYNDROME TESTING Please provide the following information. We cannot perform your test without ALL of this information. PLEASE PRINT ALL ANSWERS PATIENT INFORMATION* FIRST NAME MI LAST

More information

fi АУ : fi apple Ав Ав АУ . apple, АУ fiав Ав. АК applefi АУ, АУАв Ав fi АУ apple fi Ав. А applefi АУ АУ АУ АсА» Ас Ам, длappleapple Ас...

fi АУ : fi apple Ав Ав АУ . apple, АУ fiав Ав. АК applefi АУ, АУАв Ав fi АУ apple fi Ав. А applefi АУ АУ АУ АсА» Ас Ам, длappleapple Ас... АВАВАКдлАмА дла длама АсАядлАмА АВА АсдлАя & MАядлдлАмАК TА. 4, T. 2, АВ. 113-118, 2005 fi АУ : Аяapplefi. fiapple АсА» Ас Ам, длappleapple Ас..., Ая: Аяapplefi. fiapple, АВАУ Ас, АсА» Ас Ам длappleapple

More information

Rapid Aneuploidy and CNV Detection in Single Cells using the MiSeq System

Rapid Aneuploidy and CNV Detection in Single Cells using the MiSeq System i Technical Note: Reproductive Health Rapid Aneuploidy and CNV Detection in Single Cells using the MiSeq System Comparison between data generated from single cells using 24sure array-based screening and

More information

PROVIDER POLICIES & PROCEDURES

PROVIDER POLICIES & PROCEDURES PROVIDER POLICIES & PROCEDURES BRCA GENETIC TESTING The purpose of this document is to provide guidance to providers enrolled in the Connecticut Medical Assistance Program (CMAP) on the requirements for

More information

Genetic Counseling: A Profession in the Making. Jessica Hooks, MS Genetic Counselor University of South Carolina

Genetic Counseling: A Profession in the Making. Jessica Hooks, MS Genetic Counselor University of South Carolina Genetic Counseling: A Profession in the Making Jessica Hooks, MS Genetic Counselor University of South Carolina Definition the process of helping people understand and adapt to the medical, psychological

More information

User guide for referring samples to the IBGRL Molecular Diagnostics Laboratory

User guide for referring samples to the IBGRL Molecular Diagnostics Laboratory International Blood Group Reference Laboratory (IBGRL) IBGRL provides specialist diagnostic services to NHS Blood and Transplant. The Molecular Diagnostics department is a CPA accredited laboratory and

More information

Guidance on the Genetic Information Nondiscrimination Act: Implications for Investigators and Institutional Review Boards

Guidance on the Genetic Information Nondiscrimination Act: Implications for Investigators and Institutional Review Boards Office for Human Research Protections (OHRP) Department of Health and Human Services (HHS) Guidance on the Genetic Information Nondiscrimination Act: Implications for Investigators and Institutional Review

More information

Current Status in Non-Invasive Prenatal Detection of Down Syndrome, Trisomy 18, and Trisomy 13 Using Cell-Free DNA in Maternal Plasma

Current Status in Non-Invasive Prenatal Detection of Down Syndrome, Trisomy 18, and Trisomy 13 Using Cell-Free DNA in Maternal Plasma No. 287, February 2013 Current Status in Non-Invasive Prenatal Detection of Down Syndrome, Trisomy 18, and Trisomy 13 Using Cell-Free DNA in Maternal Plasma This committee opinion has been prepared by

More information

Guidance For Research Involving Human Embryonic Stem Cells, Germ Cells, And Cells Obtained From Cord Blood

Guidance For Research Involving Human Embryonic Stem Cells, Germ Cells, And Cells Obtained From Cord Blood Guidance For Research Involving Human Embryonic Stem Cells, Germ Cells, And Cells Obtained From Cord Blood Supreme Council of Health Department of Research Guidance Regarding Research Involving Human Embryonic

More information

Corporate Medical Policy Genetic Testing for Fanconi Anemia

Corporate Medical Policy Genetic Testing for Fanconi Anemia Corporate Medical Policy Genetic Testing for Fanconi Anemia File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_fanconi_anemia 03/2015 3/2016 3/2017 3/2016 Description

More information

Billing Guidelines for Obstetrical Services and PCO Responsibilities

Billing Guidelines for Obstetrical Services and PCO Responsibilities Billing Guidelines for Obstetrical Services and PCO Responsibilities Providing obstetrical services to UnitedHealthcare Community Plan members and your patients is a collaborative effort. Complying with

More information

Minimum standards for ICSI use, screening, patient information and follow-up in WA fertility clinics. January 2006

Minimum standards for ICSI use, screening, patient information and follow-up in WA fertility clinics. January 2006 Minimum standards for ICSI use, screening, patient information and follow-up in WA fertility clinics January 2006 1. BACKGROUND ICSI has been shown to be effective for male factor infertility and it also

More information

Cytogenetic and Molecular Diagnosis in Gestational Disorders

Cytogenetic and Molecular Diagnosis in Gestational Disorders Cytogenetic and Molecular Diagnosis in Gestational Disorders Katherine Geiersbach, M.D. Assistant Professor, Department of Pathology University of Utah School of Medicine Medical Director, Cytogenetics

More information

Guidelines for States on Maternity Care In the Essential Health Benefits Package

Guidelines for States on Maternity Care In the Essential Health Benefits Package Guidelines for States on Maternity Care In the Essential Health Benefits Package Section 2707(a) of the Patient Protection and Affordable Care Act (ACA) requires that all new health insurance plans in

More information

Zika Virus. Fred A. Lopez, MD, MACP Richard Vial Professor Department of Medicine Section of Infectious Diseases

Zika Virus. Fred A. Lopez, MD, MACP Richard Vial Professor Department of Medicine Section of Infectious Diseases Zika Virus Fred A. Lopez, MD, MACP Richard Vial Professor Department of Medicine Section of Infectious Diseases What is the incubation period for Zika virus infection? Unknown but likely to be several

More information

Fetal Fraction Estimate in Twin Pregnancies Using Directed Cell-Free DNA Analysis

Fetal Fraction Estimate in Twin Pregnancies Using Directed Cell-Free DNA Analysis Original Paper Received: August 22, 2013 Accepted after revision: September 17, 2013 Published online: December 7, 2013 Pregnancies Using Directed Cell-Free DNA Analysis Craig A. Struble a Argyro Syngelaki

More information

SOGC recommendation on ZIKA virus exposure for clinicians caring for pregnant women and those who intend to get pregnant

SOGC recommendation on ZIKA virus exposure for clinicians caring for pregnant women and those who intend to get pregnant SOGC recommendation on ZIKA virus exposure for clinicians caring for pregnant women and those who intend to get pregnant Foreword The rapid emergence of Zika virus as a potential causative agent for fetal

More information

METHODOLOGICAL ISSUES IN THE MEASURES OF MATERNAL MORBIDITY MORTALITY (MM 1 MM 2 ) Dr. AKO Simon

METHODOLOGICAL ISSUES IN THE MEASURES OF MATERNAL MORBIDITY MORTALITY (MM 1 MM 2 ) Dr. AKO Simon (1) METHODOLOGICAL ISSUES IN THE MEASURES OF MATERNAL MORBIDITY MORTALITY (MM 1 MM 2 ) Dr. AKO Simon Postgraduate Research Training in Reproductive Health 2004 Faculty of Medicine, University of Yaounde

More information

Optimal Detection of Fetal Chromosomal Abnormalities by Massively Parallel DNA Sequencing of Cell-Free Fetal DNA from Maternal Blood

Optimal Detection of Fetal Chromosomal Abnormalities by Massively Parallel DNA Sequencing of Cell-Free Fetal DNA from Maternal Blood Clinical Chemistry 57:7 1042 1049 (2011) Molecular Diagnostics and Genetics Optimal Detection of Fetal Chromosomal Abnormalities by Massively Parallel DNA Sequencing of Cell-Free Fetal DNA from Maternal

More information

Fluorescence in situ hybridisation (FISH)

Fluorescence in situ hybridisation (FISH) Fluorescence in situ hybridisation (FISH) rarechromo.org Fluorescence in situ hybridization (FISH) Chromosomes Chromosomes are structures that contain the genetic information (DNA) that tells the body

More information

The Human Genome Project

The Human Genome Project The Human Genome Project Brief History of the Human Genome Project Physical Chromosome Maps Genetic (or Linkage) Maps DNA Markers Sequencing and Annotating Genomic DNA What Have We learned from the HGP?

More information

A 28 year old woman, gravida 2, para 1, at 16 weeks gestation informs you that her cat, which she has owned for several years, has toxoplasmosis, as

A 28 year old woman, gravida 2, para 1, at 16 weeks gestation informs you that her cat, which she has owned for several years, has toxoplasmosis, as A 28 year old woman, gravida 2, para 1, at 16 weeks gestation informs you that her cat, which she has owned for several years, has toxoplasmosis, as diagnosed from a stool sample. She is concerned about

More information

Artificial insemination

Artificial insemination Artificial insemination What is involved? Artificial insemination is an assisted reproduction technique that consists of inserting laboratory-treated spermatozoa into the woman s uterus or cervical canal.

More information

Assisted reproductive technologies (ART) in Canada: 2011 results from the Canadian ART Register

Assisted reproductive technologies (ART) in Canada: 2011 results from the Canadian ART Register 1 Assisted reproductive technologies (ART) in Canada: 2011 results from the Canadian ART Register Joanne Gunby, M.Sc. CARTR Co-ordinator Email: gunbyj@mcmaster.ca Supported by the IVF Directors Group of

More information