A ROLE OF DIGITAL SIGNATURE TECHNOLOGY USING RSA ALGORITHM

Size: px
Start display at page:

Download "A ROLE OF DIGITAL SIGNATURE TECHNOLOGY USING RSA ALGORITHM"

Transcription

1 Proceeding of NCRIET-2015 & Indian J.Sci.Res. 12(1): , 2015 ISSN: (Print) ISSN: (Online) A ROLE OF DIGITAL SIGNATURE TECHNOLOGY USING RSA ALGORITHM BHAGYASHREE a1, ARPITA b, CHANDANA c AND SOUJANYA d abcd Department of ECE NIT, Raichur, India ABSTRACT A Digital Signature is the electronic or digital equivalent of a physical signature. Just as a physical signature on a paper document establishes the origin of that document, a digital signature affixed to a digital document (computer file) establishes the origin of that digital document. Digital Signatures are much more secure and fool-proof compared to physical signatures. Physical signatures are easily replicated or forged. On the other hand, the technology behind Digital Signatures makes it virtually impossible to forge them. Because of the higher security associated with Digital Signatures and the many advantages associated with storing documents electronically (as opposed to paper), governments in many countries have passed laws and regulations encouraging (and in some cases mandating) the usage of digitally signed electronic documents rather than paper documents. For example, in India, Income Tax returns, corporate returns etc are to be digitally signed and uploaded electronically. A Digital Signature is a sequence of bytes or a code that has some special characteristics. A code generated for a particular document by a particular signer is unique. An identical code cannot be generated by another signer for the same document or by the same signer for another document. This means that only the unique combination of that particular document and that particular signer can generate a particular digital signature. It provides the basic definitions of and recommendations for implementing the RSA algorithm for publickey cryptography. It defines the mathematical properties of public and private keys, primitive operations for encryption and signatures, secure cryptographic schemes. KEYWORDS: Digital Signature, Handwritten Signatures A digital signature is a mathematical scheme for demonstrating the authenticity of a digital message or documents. A valid digital signature gives a recipient reason to believe that the message was created by a known sender, that the sender cannot deny having sent the message ( authentication and non-repudiation), and that the message was not altered in transit ( integrity). Digital signatures are commonly used for software distribution, financial transactions, and in other cases where it is important to detect forgery or tampering. Digital signatures are often used to implement electronic signatures, a broader term that refers to any electronic data that carries the intent of a signature, [ but not all electronic signatures use digital signatures [Ravi Shankar Dhakar, 2012].In some countries, including the United States, India, Brazil, Saudi Arabia and members of the European Union, electronic signatures have legal significance. Digital signatures employ asymmetric cryptography. In many instances they provide a layer of validation and security to messages sent through a nonsecure channel: Properly implemented, a digital signature gives the receiver reason to believe the message was sent by the claimed sender. Digital seals and signatures are equivalent to handwritten signatures and stamped seals. Digital signatures are equivalent to traditional handwritten signatures in many respects, but properly implemented digital signatures are more difficult to forge than the handwritten type [Maryam Savari, 2012]. Digital signature schemes, in the sense used here, are cryptographically based, and must be implemented properly to be effective. Digital signatures can also provide non-repudiation, meaning that the signer cannot successfully claim they did not sign a message, while also claiming their private key remains secret; further, some nonrepudiation schemes offer a time stamp for the digital signature, so that even if the private key is exposed, the signature is valid []. Digitally signed messages may be anything representable as a bitstring: examples include electronic mail, contracts, or a message sent via some other cryptographic protocol. A digital signature is an electronic signature that can be used to authenticate the identity of the sender of a message or the signer of a document, and to ensure that the original content of the message or document that has been sent is unchanged. Digital signatures are easily transportable, cannot be imitated by someone else, and can be automatically time- 1 Corresponding author

2 stamped. A digital signature can be used with any kind of message, whether it is encrypted or plaintext. few bytes. Thus Digital Signatures provide the following three features: Authentication Digital signatures are used to authenticate the source of messages. The ownership of a digital signature key is bound to a specific user and thus a valid signature shows that the message was sent by that user. Integrity In many scenarios, the sender and receiver of a message need assurance that the message has not been altered during transmission. Digital Signatures provide this feature by using cryptographic message digest functions. Non Repudiation Digital signatures ensure that the sender who has signed the information cannot at a later time deny having signed it. DIGITAL SIGNATURE VERSUS HANDWRITTEN SIGNATURES A handwritten signature scanned and digitally attached with a document does not qualify as a Digital Signature. A Digital Signature is a combination of 0 & 1screated using crypto algorithms. An ink signature can be easily replicated from one document to another by copying the image manually or electronically [Suli Wang, 2011]. Digital Signatures cryptographically bind an electronic identity to an electronic document and the digital signature cannot be copied to another document. Further, paper contracts often have the ink signature block on the last page, allowing previous pages to be replaced after the contract has been signed. Digital signatures on the other hand compute the hash or digest of the complete document and a change of even one bit in the previous pages of the document will make the digital signature verification fail. As can be seen in the underlying figure, a Digital Signature is a string of bits appended to a document. The size of a digital signature depends on the Hash function like SHA 1 / SHA2 etc used to create the message digest and the signing key. It is usually a Overview of how Digital Signatures work The Digital Signatures require a key pair (asymmetric key pairs, mathematically related large numbers) called the Public and Private Keys. Just as physical keys are used for locking and unlocking, in cryptography, the equivalent functions are encryption and decryption. The private key is kept confidential with the owner usually on a secure media like crypto smart card or crypto token [Yashpal Kadam, 2011]. The public key is shared with everyone. Information encrypted by a private key can only be decrypted using the corresponding public key. In order to digitally sign an electronic document, the sender uses his/her Private Key. In order to verify the digital signature, the recipient uses the sender s Public Key. Let us understand how the Digital Signatures work based on an example. Assume you are going to send the draft of a contract to your lawyer in another town. You want to give your lawyer the assurance that it was unchanged from what you had sent and that it is really from you. 1. You copy-and-paste the contract into an note. Get electronic form of a document ( eg : - word or pdf file) 2. Using special software, you obtain a message hash (fixed size bit string) of the contract 3. You then use your private key to encrypt the hash. 4. The encrypted hash becomes your digital signature of the contract and is appended to the contract. At the other end, your lawyer receives the message. 1. To make sure the contract is intact and from you, your lawyer generates a hash of the received contract.

3 2. Your lawyer then uses your public key to decrypt the Digital Signature received with the contract. 3. If the hash generated from the Digital Signature matches the one generated in Step 1, the integrity of the received contract is verified. Digital Signature Certificate Verification Digital Signature Certificates are verified using a Chain of trust. The trust anchor for the Digital Certificate is the Root Certifying Authority (CCA in India). A root certificate is the top-most certificate of the hierarchy, the private key of which is used to "sign" other certificates. All certificates immediately below the root certificate inherit the trustworthiness of the root certificate. Certificates further down the tree also depend on the trustworthiness of the intermediates (often known as "subordinate certification authorities"). The Digital Certificate verification process is a recursive process in which the program verifying the end user certificate verifies the validity of the certificate of the issuing authority until it finds a valid certificate of a trusted party. On successful verification of the trusted party Certificate, the Digital Certificate verification stops. In case a trusted party Certificate is not found by the program, the Digital Certificate verification process ends in failure. Implementation of signature using cryptography scheme The Information Technology Act 2000 (IT Act) prescribes digital signatures as a means of authentication of electronic records. In short, a digital signature has the same function as that of a hand written signature. However, understanding how a digital signature is created and how it achieves the same functionality as that of a handwritten signature is by no means an easy task. This is because the technical concepts involved in creating a digital signature seem far removed from the realm of law, although the objective of affixing digital signature to an electronic record is purely legal! Digital signatures are an application of asymmetric key cryptography [Rohit Bhadauria, 2011]. This chapter traces the roots of cryptography, discusses symmetric and asymmetric key cryptography and ends with a detailed discussion on how asymmetric key cryptography can be used to create a digital signature. Cryptography has a long and interesting history 1. Cryptography is primarily used as a tool to protect national secrets and strategies. It is extensively used by the military, the diplomatic services and the banking sector. One of the landmark developments in the history of cryptography was the introduction of the revolutionary concept of public-key cryptography 2. In 1978, Ron Rivest, Adi Shamir and Leonard Adleman discovered the first practical public-key encryption and signature scheme, now referred to as RSA (after the names of its inventors). How cryptography works Cryptography is the science of using mathematics to encrypt and decrypt data. Cryptography enables you to store sensitive information or transmit it across insecure networks (like the Internet) so that it cannot be read by anyone except the intended recipient. While cryptography is the science of securing data, cryptanalysis is the science of analyzing and breaking secure communication (breaching security measures). Classical cryptanalysis involves an interesting combination of analytical reasoning, application of mathematical tools, pattern finding, patience, determination, and luck. Cryptanalysts are also called attackers. Cryptology embraces both cryptography

4 and cryptanalysis. A cryptographic algorithm, or cipher, is a mathematical function used in the encryption and decryption process. This mathematical function works in combination with a key a very large number to encrypt the plaintext (the original message). Data that can be read and understood without any special measures is called plain textor clear text. Data which requires some special function to be performed on it before it can be read and understood, is called cipher text. The same plaintext, encrypted by using different keys, will result in different cipher text. The security of encrypted data is entirely dependent on two things: the strength of the cryptographic algorithm and the secrecy of the key. A cryptographic algorithm, plus all possible keys and all the protocols that make it work comprise a cryptosystem. Encryptions used to ensure that information is hidden from anyone for whom it is not intended, even those who can see the encrypted data. The process of reverting cipher text to its original plaintext is called decryption. Rabin signature algorithm In cryptography the Rabin Signature Scheme is a method of Digital signature originally proposed by Michael O. Rabin in The Rabin Signature Scheme was one of the first digital signature schemes proposed, and it was the first to relate the hardness of forgery directly to the problem of integer factorization. Because of its simplicity and prominent role in early public key cryptography, the Rabin Signature Scheme is covered in most introductory courses on cryptography. The Rabin Signature Scheme is existentially unforgeable in the random oracle model assuming the integer factorization problem is intractable. The Rabin Signature Scheme is also closely related to the Rabin cryptosystem. The RSA algorithm involves three steps: key generation, encryption and decryption. We designed this for an 8-bit input. The Message Digest Function first pads in to 512 bits and then condenses it to 160 bits using the MD5 algorithm. The condensed message is then encrypted using the RSA algorithm and a signature is created. Both the Message and the Signature are transmitted to the receiver. The receiver decrypts the signature (using RSA algorithm) and compares it with the digested message. A digital signature, an asymmetric cryptography is designed using VHDL. The implementation has a Message Digest block and a RSA block. Implemented Digital Signature Algorithm on a Spartan 3 FPGA board. For messages sent through an insecure channel, a properly implemented digital signature gives the receiver reason to believe the message was sent by the claimed sender. Digital signatures are equivalent to traditional handwritten signatures in many respects; properly implemented digital signatures are more difficult to forge than the handwritten type. Digital signature schemes in the sense used here are cryptographically based, and must be implemented properly to be effective. Digital signatures can also provide non-repudiation, meaning that the signer cannot successfully claim they did not sign a message, while also claiming their private key

5 remains secret; further, some non-repudiation schemes offer a time stamp for the digital signature, so that even if the private key is exposed, the signature is valid nonetheless. A digital signature or digital signature scheme is a type of asymmetric cryptography. First described by Whitfield Diffie and Martin Hellman Provide a high level of assurance that the digital signature is genuinely the signer s. HOW IT WORKS One method for creating a digital signature is for the originator of data to create the signature by encrypting all of the data with the originator s private key and enclosing the signature with the original data. Anyone with the originator s public key can decrypt the signature and compare the decrypted message to the original message. Because only someone with the private key can create the signature, the integrity of the message is verified when the decrypted message matches the original. If an intruder alters the original message during transit, the intruder cannot also create a new valid signature. If an intruder alters the signature during transit, the signature does not verify properly and is invalid. Using special software, you obtain a message hash of the message. You then use a private key that you have to encrypt the hash. The encrypted hash becomes your digital signature of the message. At the other end To make sure it s intact and from you, your receiver makes a hash of the received message. Receiver then uses your public key to decrypt the message hash or summary. If the hashes match, the received message is valid. Digital signatures versus ink on paper signatures An ink signature could be replicated from one document to another by copying the image manually or digitally, but to have credible signature copies that can resist some scrutiny is a significant manual or technical skill, and to produce ink signature copies that resist professional scrutiny is very difficult. Digital signatures cryptographically bind an electronic identity to an electronic document and the digital signature cannot be copied to another document. Paper contracts sometimes have the ink signature block on the last page, and the previous pages may be replaced after a signature is applied. Digital signatures can be applied to an entire document, such that the digital signature on the last page will indicate tampering if any data on any of the pages have been altered, but this can also be achieved by signing with ink and numbering all pages of the contract. All digital signature schemes share the following basic prerequisites regardless of cryptographic theory or legal provision: 1. Quality algorithms Some public-key algorithms are known to be insecure, practical attacks against them having been discovered. 2. Quality implementations An implementation of a good algorithm (or protocol) with mistake(s) will not work. 3. The private key must remain private If the private key becomes known to any other party, that party can produce perfect digital signatures of anything whatsoever. 4. The public key owner must be verifiable A public key associated with Bob actually came from Bob. This is commonly done using a public key infrastructure (PKI) and the public key user association is attested by the operator of the PKI (called a certificate authority). For 'open' PKIs in which anyone can request such an attestation (universally embodied in a cryptographically protected identity certificate), the possibility of mistaken attestation is nontrivial. Commercial PKI operators have suffered several publicly known problems. Such mistakes could lead to falsely signed, and thus wrongly attributed, documents. 'Closed' PKI systems are more expensive, but less easily subverted

6 in this way. 5. Users (and their software) must carry out the signature protocol properly. Only if all of these conditions are met will a digital signature actually be any evidence of who sent the message, and therefore of their assent to its contents. Legal enactment cannot change this reality of the existing engineering possibilities, though some such have not reflected this actuality. Using digital signatures only with trusted applications One of the main differences between a digital signature and a written signature is that the user does not "see" what he signs. The user application presents a hash code to be signed by the digital signing algorithm using the private key. An attacker who gains control of the user's PC can possibly replace the user application with a foreign substitute, in effect replacing the user's own communications with those of the attacker. This could allow a malicious application to trick a user into signing any document by displaying the user's original on-screen, but presenting the attacker's own documents to the signing application. ff To protect against this scenario, an authentication system can be set up between the user's application (word processor, client, etc.) and the signing application. The general idea is to provide some means for both the user application and signing application to verify each other's integrity. For example, the signing application may require all requests to come from digitally signed binaries. CONCLUSIONS In this paper a digital signature will work effectively with the help of RSA for both encryption and secure communication purposes, whereas hashing is used for digital signature and hiding key information. This model provides security for the entire cloud computing environment. The specialty of our design approach is that here, each algorithm is executed in different servers which overcomes the problem of slow downing the system. In the proposed system, an intruder cannot easily access or upload the file because the algorithms are executed in different servers at different locations. For implementation purpose we have combined both RSA encryption and Digital Signatures algorithms as a result a powerful security and data integrity service system is obtained. Although RSA encryption algorithm is quite deterministic but algorithm makes the model highly secured. In a nutshell we can say that our proposed model can provide a better approach as compared to other works. REFERENCES Ravi Shankar Dhakar, Amit Kumar Gupta, "Modified RSA Encryption Algorithm (MREA)". Advanced Computing & Communication Technologies (ACCT), Second International Conference, Maryam Savari, Mohammad Montazerolzohour and Yeoh Eng Thiam, "Comparison of ECC and RSA Algorithm in Multipurpose Smart Card Application". Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), International Conference, P.R. Vijayalakshmi, K. Bommanna Raja, "Performance Analysis of RSA and ECC in Identity-Based Authenticated New Multiparty Key Agreement Protocol". Computing, Communication and Applications (ICCCA), International Conference, Suli Wang, Ganlai Liu, "File encryption and decryption system based on RSA algorithm". Computational and Information Sciences (ICCIS), International Conference, Yashpal Kadam, Security Issues in Cloud Computing A Transparent View, International Journal of Computer Science Emerging Technology, Vol-2 No 5 October, 2011, Rohit Bhadauria, Rituparna Chaki, Nabendu Chaki, Sugata Sanyal, A Survey on Security Issues in Cloud Computing, 2011.

An Introduction to digital signatures

An Introduction to digital signatures An Introduction to digital signatures This document is an extract from the book Ecommerce - Legal Issues authored by Rohas Nagpal. This book is available as courseware for the Diploma in Cyber Law and

More information

Network Security. Computer Networking Lecture 08. March 19, 2012. HKU SPACE Community College. HKU SPACE CC CN Lecture 08 1/23

Network Security. Computer Networking Lecture 08. March 19, 2012. HKU SPACE Community College. HKU SPACE CC CN Lecture 08 1/23 Network Security Computer Networking Lecture 08 HKU SPACE Community College March 19, 2012 HKU SPACE CC CN Lecture 08 1/23 Outline Introduction Cryptography Algorithms Secret Key Algorithm Message Digest

More information

Digital Certificates (Public Key Infrastructure) Reshma Afshar Indiana State University

Digital Certificates (Public Key Infrastructure) Reshma Afshar Indiana State University Digital Certificates (Public Key Infrastructure) Reshma Afshar Indiana State University October 2015 1 List of Figures Contents 1 Introduction 1 2 History 2 3 Public Key Infrastructure (PKI) 3 3.1 Certificate

More information

Savitribai Phule Pune University

Savitribai Phule Pune University Savitribai Phule Pune University Centre for Information and Network Security Course: Introduction to Cyber Security / Information Security Module : Pre-requisites in Information and Network Security Chapter

More information

CRYPTOGRAPHY IN NETWORK SECURITY

CRYPTOGRAPHY IN NETWORK SECURITY ELE548 Research Essays CRYPTOGRAPHY IN NETWORK SECURITY AUTHOR: SHENGLI LI INSTRUCTOR: DR. JIEN-CHUNG LO Date: March 5, 1999 Computer network brings lots of great benefits and convenience to us. We can

More information

Secure E-Commerce: Understanding the Public Key Cryptography Jigsaw Puzzle

Secure E-Commerce: Understanding the Public Key Cryptography Jigsaw Puzzle CRYPTOGRAPHY Secure E-Commerce: Understanding the Public Key Cryptography Jigsaw Puzzle Viswanathan Kodaganallur, Ph.D. Today almost all organizations use the Internet extensively for both intra- and inter-organizational

More information

IT Networks & Security CERT Luncheon Series: Cryptography

IT Networks & Security CERT Luncheon Series: Cryptography IT Networks & Security CERT Luncheon Series: Cryptography Presented by Addam Schroll, IT Security & Privacy Analyst 1 Outline History Terms & Definitions Symmetric and Asymmetric Algorithms Hashing PKI

More information

Network Security. Gaurav Naik Gus Anderson. College of Engineering. Drexel University, Philadelphia, PA. Drexel University. College of Engineering

Network Security. Gaurav Naik Gus Anderson. College of Engineering. Drexel University, Philadelphia, PA. Drexel University. College of Engineering Network Security Gaurav Naik Gus Anderson, Philadelphia, PA Lectures on Network Security Feb 12 (Today!): Public Key Crypto, Hash Functions, Digital Signatures, and the Public Key Infrastructure Feb 14:

More information

Digital Signatures. Meka N.L.Sneha. Indiana State University. nmeka@sycamores.indstate.edu. October 2015

Digital Signatures. Meka N.L.Sneha. Indiana State University. nmeka@sycamores.indstate.edu. October 2015 Digital Signatures Meka N.L.Sneha Indiana State University nmeka@sycamores.indstate.edu October 2015 1 Introduction Digital Signatures are the most trusted way to get documents signed online. A digital

More information

Controller of Certification Authorities of Mauritius

Controller of Certification Authorities of Mauritius Contents Pg. Introduction 2 Public key Infrastructure Basics 2 What is Public Key Infrastructure (PKI)? 2 What are Digital Signatures? 3 Salient features of the Electronic Transactions Act 2000 (as amended)

More information

Strong Encryption for Public Key Management through SSL

Strong Encryption for Public Key Management through SSL Strong Encryption for Public Key Management through SSL CH.SUSHMA, D.NAVANEETHA 1,2 Assistant Professor, Information Technology, Bhoj Reddy Engineering College For Women, Hyderabad, India Abstract: Public-key

More information

www.studymafia.org Seminar report Digital Signature Submitted in partial fulfillment of the requirement for the award of degree Of Computer Science

www.studymafia.org Seminar report Digital Signature Submitted in partial fulfillment of the requirement for the award of degree Of Computer Science A Seminar report on Digital Signature Submitted in partial fulfillment of the requirement for the award of degree Of Computer Science SUBMITTED TO: www.studymafia.org SUBMITTED BY: www.studymafia.org Preface

More information

Network Security (2) CPSC 441 Department of Computer Science University of Calgary

Network Security (2) CPSC 441 Department of Computer Science University of Calgary Network Security (2) CPSC 441 Department of Computer Science University of Calgary 1 Friends and enemies: Alice, Bob, Trudy well-known in network security world Bob, Alice (lovers!) want to communicate

More information

An Introduction to Cryptography and Digital Signatures

An Introduction to Cryptography and Digital Signatures An Introduction to Cryptography and Digital Signatures Author: Ian Curry March 2001 Version 2.0 Copyright 2001-2003 Entrust. All rights reserved. Cryptography The concept of securing messages through

More information

An Introduction to Cryptography as Applied to the Smart Grid

An Introduction to Cryptography as Applied to the Smart Grid An Introduction to Cryptography as Applied to the Smart Grid Jacques Benoit, Cooper Power Systems Western Power Delivery Automation Conference Spokane, Washington March 2011 Agenda > Introduction > Symmetric

More information

Chapter 7: Network security

Chapter 7: Network security Chapter 7: Network security Foundations: what is security? cryptography authentication message integrity key distribution and certification Security in practice: application layer: secure e-mail transport

More information

RESEARCH ON DIGITAL SIGNATURE Aanchal Chanana, Akash Sharma, Amit Yadav

RESEARCH ON DIGITAL SIGNATURE Aanchal Chanana, Akash Sharma, Amit Yadav ABSTRACT RESEARCH ON DIGITAL SIGNATURE Aanchal Chanana, Akash Sharma, Amit Yadav 7 th Semester, Computer Science and Engineering. Dronacharya College Of Engineering, Gurgaon This paper introduces a number

More information

CIS 6930 Emerging Topics in Network Security. Topic 2. Network Security Primitives

CIS 6930 Emerging Topics in Network Security. Topic 2. Network Security Primitives CIS 6930 Emerging Topics in Network Security Topic 2. Network Security Primitives 1 Outline Absolute basics Encryption/Decryption; Digital signatures; D-H key exchange; Hash functions; Application of hash

More information

SECURITY IN NETWORKS

SECURITY IN NETWORKS SECURITY IN NETWORKS GOALS Understand principles of network security: Cryptography and its many uses beyond confidentiality Authentication Message integrity Security in practice: Security in application,

More information

Information Security

Information Security Information Security Dr. Vedat Coşkun Malardalen September 15th, 2009 08:00 10:00 vedatcoskun@isikun.edu.tr www.isikun.edu.tr/~vedatcoskun What needs to be secured? With the rapid advances in networked

More information

Entrust Managed Services PKI. Getting started with digital certificates and Entrust Managed Services PKI. Document issue: 1.0

Entrust Managed Services PKI. Getting started with digital certificates and Entrust Managed Services PKI. Document issue: 1.0 Entrust Managed Services PKI Getting started with digital certificates and Entrust Managed Services PKI Document issue: 1.0 Date of issue: May 2009 Copyright 2009 Entrust. All rights reserved. Entrust

More information

What is network security?

What is network security? Network security Network Security Srinidhi Varadarajan Foundations: what is security? cryptography authentication message integrity key distribution and certification Security in practice: application

More information

7! Cryptographic Techniques! A Brief Introduction

7! Cryptographic Techniques! A Brief Introduction 7! Cryptographic Techniques! A Brief Introduction 7.1! Introduction to Cryptography! 7.2! Symmetric Encryption! 7.3! Asymmetric (Public-Key) Encryption! 7.4! Digital Signatures! 7.5! Public Key Infrastructures

More information

CSCE 465 Computer & Network Security

CSCE 465 Computer & Network Security CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Public Key Cryptogrophy 1 Roadmap Introduction RSA Diffie-Hellman Key Exchange Public key and

More information

159.334 Computer Networks. Network Security 1. Professor Richard Harris School of Engineering and Advanced Technology

159.334 Computer Networks. Network Security 1. Professor Richard Harris School of Engineering and Advanced Technology Network Security 1 Professor Richard Harris School of Engineering and Advanced Technology Presentation Outline Overview of Identification and Authentication The importance of identification and Authentication

More information

Business Issues in the implementation of Digital signatures

Business Issues in the implementation of Digital signatures Business Issues in the implementation of Digital signatures Much has been said about e-commerce, the growth of e-business and its advantages. The statistics are overwhelming and the advantages are so enormous

More information

1720 - Forward Secrecy: How to Secure SSL from Attacks by Government Agencies

1720 - Forward Secrecy: How to Secure SSL from Attacks by Government Agencies 1720 - Forward Secrecy: How to Secure SSL from Attacks by Government Agencies Dave Corbett Technical Product Manager Implementing Forward Secrecy 1 Agenda Part 1: Introduction Why is Forward Secrecy important?

More information

Outline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures

Outline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures Outline Computer Science 418 Digital Signatures Mike Jacobson Department of Computer Science University of Calgary Week 12 1 Digital Signatures 2 Signatures via Public Key Cryptosystems 3 Provable 4 Mike

More information

Content Teaching Academy at James Madison University

Content Teaching Academy at James Madison University Content Teaching Academy at James Madison University 1 2 The Battle Field: Computers, LANs & Internetworks 3 Definitions Computer Security - generic name for the collection of tools designed to protect

More information

Monitoring Data Integrity while using TPA in Cloud Environment

Monitoring Data Integrity while using TPA in Cloud Environment Monitoring Data Integrity while using TPA in Cloud Environment Jaspreet Kaur, Jasmeet Singh Abstract Cloud Computing is the arising technology that delivers software, platform and infrastructure as a service

More information

CS 758: Cryptography / Network Security

CS 758: Cryptography / Network Security CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: dstinson@uwaterloo.ca my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html

More information

Network Security. Security Attacks. Normal flow: Interruption: 孫 宏 民 hmsun@cs.nthu.edu.tw Phone: 03-5742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室

Network Security. Security Attacks. Normal flow: Interruption: 孫 宏 民 hmsun@cs.nthu.edu.tw Phone: 03-5742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室 Network Security 孫 宏 民 hmsun@cs.nthu.edu.tw Phone: 03-5742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室 Security Attacks Normal flow: sender receiver Interruption: Information source Information destination

More information

Computer Security: Principles and Practice

Computer Security: Principles and Practice Computer Security: Principles and Practice Chapter 20 Public-Key Cryptography and Message Authentication First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown Public-Key Cryptography

More information

Overview. SSL Cryptography Overview CHAPTER 1

Overview. SSL Cryptography Overview CHAPTER 1 CHAPTER 1 Note The information in this chapter applies to both the ACE module and the ACE appliance unless otherwise noted. The features in this chapter apply to IPv4 and IPv6 unless otherwise noted. Secure

More information

How To Create A Digital Signature Certificate

How To Create A Digital Signature Certificate Tool. For Signing & Verification Submitted To: Submitted By: Shri Patrick Kishore Chief Operating Officer Sujit Kumar Tiwari MCA, I Year University Of Hyderabad Certificate by Guide This is certifying

More information

SSL A discussion of the Secure Socket Layer

SSL A discussion of the Secure Socket Layer www.harmonysecurity.com info@harmonysecurity.com SSL A discussion of the Secure Socket Layer By Stephen Fewer Contents 1 Introduction 2 2 Encryption Techniques 3 3 Protocol Overview 3 3.1 The SSL Record

More information

Network Security. HIT Shimrit Tzur-David

Network Security. HIT Shimrit Tzur-David Network Security HIT Shimrit Tzur-David 1 Goals: 2 Network Security Understand principles of network security: cryptography and its many uses beyond confidentiality authentication message integrity key

More information

Lukasz Pater CMMS Administrator and Developer

Lukasz Pater CMMS Administrator and Developer Lukasz Pater CMMS Administrator and Developer EDMS 1373428 Agenda Introduction Why do we need asymmetric ciphers? One-way functions RSA Cipher Message Integrity Examples Secure Socket Layer Single Sign

More information

AN IMPLEMENTATION OF HYBRID ENCRYPTION-DECRYPTION (RSA WITH AES AND SHA256) FOR USE IN DATA EXCHANGE BETWEEN CLIENT APPLICATIONS AND WEB SERVICES

AN IMPLEMENTATION OF HYBRID ENCRYPTION-DECRYPTION (RSA WITH AES AND SHA256) FOR USE IN DATA EXCHANGE BETWEEN CLIENT APPLICATIONS AND WEB SERVICES HYBRID RSA-AES ENCRYPTION FOR WEB SERVICES AN IMPLEMENTATION OF HYBRID ENCRYPTION-DECRYPTION (RSA WITH AES AND SHA256) FOR USE IN DATA EXCHANGE BETWEEN CLIENT APPLICATIONS AND WEB SERVICES Kalyani Ganesh

More information

Cryptography & Network Security

Cryptography & Network Security Cryptography & Network Security Lecture 1: Introduction & Overview 2002. 3. 27 chlim@sejong.ac.kr Common Terms(1) Cryptography: The study of mathematical techniques related to aspects of information security

More information

Introduction. Digital Signature

Introduction. Digital Signature Introduction Electronic transactions and activities taken place over Internet need to be protected against all kinds of interference, accidental or malicious. The general task of the information technology

More information

Cryptosystems. Bob wants to send a message M to Alice. Symmetric ciphers: Bob and Alice both share a secret key, K.

Cryptosystems. Bob wants to send a message M to Alice. Symmetric ciphers: Bob and Alice both share a secret key, K. Cryptosystems Bob wants to send a message M to Alice. Symmetric ciphers: Bob and Alice both share a secret key, K. C= E(M, K), Bob sends C Alice receives C, M=D(C,K) Use the same key to decrypt. Public

More information

Overview of Cryptographic Tools for Data Security. Murat Kantarcioglu

Overview of Cryptographic Tools for Data Security. Murat Kantarcioglu UT DALLAS Erik Jonsson School of Engineering & Computer Science Overview of Cryptographic Tools for Data Security Murat Kantarcioglu Pag. 1 Purdue University Cryptographic Primitives We will discuss the

More information

How To Use Pretty Good Privacy (Pgp) For A Secure Communication

How To Use Pretty Good Privacy (Pgp) For A Secure Communication Cryptographic process for Cyber Safeguard by using PGP Bharatratna P. Gaikwad 1 Department of Computer Science and IT, Dr. Babasaheb Ambedkar Marathwada University Aurangabad, India 1 ABSTRACT: Data security

More information

Efficient Framework for Deploying Information in Cloud Virtual Datacenters with Cryptography Algorithms

Efficient Framework for Deploying Information in Cloud Virtual Datacenters with Cryptography Algorithms Efficient Framework for Deploying Information in Cloud Virtual Datacenters with Cryptography Algorithms Radhika G #1, K.V.V. Satyanarayana *2, Tejaswi A #3 1,2,3 Dept of CSE, K L University, Vaddeswaram-522502,

More information

Implementation and Comparison of Various Digital Signature Algorithms. -Nazia Sarang Boise State University

Implementation and Comparison of Various Digital Signature Algorithms. -Nazia Sarang Boise State University Implementation and Comparison of Various Digital Signature Algorithms -Nazia Sarang Boise State University What is a Digital Signature? A digital signature is used as a tool to authenticate the information

More information

Chapter 11 Security+ Guide to Network Security Fundamentals, Third Edition Basic Cryptography

Chapter 11 Security+ Guide to Network Security Fundamentals, Third Edition Basic Cryptography Chapter 11 Security+ Guide to Network Security Fundamentals, Third Edition Basic Cryptography What Is Steganography? Steganography Process of hiding the existence of the data within another file Example:

More information

Network Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 8-1

Network Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 8-1 Network Security Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross 8-1 Public Key Cryptography symmetric key crypto v requires sender, receiver know shared secret

More information

A New Efficient Digital Signature Scheme Algorithm based on Block cipher

A New Efficient Digital Signature Scheme Algorithm based on Block cipher IOSR Journal of Computer Engineering (IOSRJCE) ISSN: 2278-0661, ISBN: 2278-8727Volume 7, Issue 1 (Nov. - Dec. 2012), PP 47-52 A New Efficient Digital Signature Scheme Algorithm based on Block cipher 1

More information

Lecture 9: Application of Cryptography

Lecture 9: Application of Cryptography Lecture topics Cryptography basics Using SSL to secure communication links in J2EE programs Programmatic use of cryptography in Java Cryptography basics Encryption Transformation of data into a form that

More information

CERTIFICATE AUTHORITY SCHEMES USING ELLIPTIC CURVE CRYPTOGRAPHY, RSA AND THEIR VARIANTS- SIMULATION USING NS2

CERTIFICATE AUTHORITY SCHEMES USING ELLIPTIC CURVE CRYPTOGRAPHY, RSA AND THEIR VARIANTS- SIMULATION USING NS2 American Journal of Applied Sciences 11 (2): 171-179, 2014 ISSN: 1546-9239 2014 Science Publication doi:10.3844/ajassp.2014.171.179 Published Online 11 (2) 2014 (http://www.thescipub.com/ajas.toc) CERTIFICATE

More information

Review of methods for secret sharing in cloud computing

Review of methods for secret sharing in cloud computing Review of methods for secret sharing in cloud computing Dnyaneshwar Supe Amit Srivastav Dr. Rajesh S. Prasad Abstract:- Cloud computing provides various IT services. Many companies especially those who

More information

Overview of CSS SSL. SSL Cryptography Overview CHAPTER

Overview of CSS SSL. SSL Cryptography Overview CHAPTER CHAPTER 1 Secure Sockets Layer (SSL) is an application-level protocol that provides encryption technology for the Internet, ensuring secure transactions such as the transmission of credit card numbers

More information

Fighting product clones through digital signatures

Fighting product clones through digital signatures Paul Curtis, Katrin Berkenkopf Embedded Experts Team, SEGGER Microcontroller Fighting product clones through digital signatures Product piracy and forgery are growing problems that not only decrease turnover

More information

Secure Network Communication Part II II Public Key Cryptography. Public Key Cryptography

Secure Network Communication Part II II Public Key Cryptography. Public Key Cryptography Kommunikationssysteme (KSy) - Block 8 Secure Network Communication Part II II Public Key Cryptography Dr. Andreas Steffen 2000-2001 A. Steffen, 28.03.2001, KSy_RSA.ppt 1 Secure Key Distribution Problem

More information

Public Key Cryptography in Practice. c Eli Biham - May 3, 2005 372 Public Key Cryptography in Practice (13)

Public Key Cryptography in Practice. c Eli Biham - May 3, 2005 372 Public Key Cryptography in Practice (13) Public Key Cryptography in Practice c Eli Biham - May 3, 2005 372 Public Key Cryptography in Practice (13) How Cryptography is Used in Applications The main drawback of public key cryptography is the inherent

More information

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Introduction to Cryptography What is cryptography?

More information

Client Server Registration Protocol

Client Server Registration Protocol Client Server Registration Protocol The Client-Server protocol involves these following steps: 1. Login 2. Discovery phase User (Alice or Bob) has K s Server (S) has hash[pw A ].The passwords hashes are

More information

Modeling and verification of security protocols

Modeling and verification of security protocols Modeling and verification of security protocols Part I: Basics of cryptography and introduction to security protocols Dresden University of Technology Martin Pitt martin@piware.de Paper and slides available

More information

Security. Contents. S-72.3240 Wireless Personal, Local, Metropolitan, and Wide Area Networks 1

Security. Contents. S-72.3240 Wireless Personal, Local, Metropolitan, and Wide Area Networks 1 Contents Security requirements Public key cryptography Key agreement/transport schemes Man-in-the-middle attack vulnerability Encryption. digital signature, hash, certification Complete security solutions

More information

Understanding Digital Signature And Public Key Infrastructure

Understanding Digital Signature And Public Key Infrastructure Understanding Digital Signature And Public Key Infrastructure Overview The use of networked personnel computers (PC s) in enterprise environments and on the Internet is rapidly approaching the point where

More information

Common Pitfalls in Cryptography for Software Developers. OWASP AppSec Israel July 2006. The OWASP Foundation http://www.owasp.org/

Common Pitfalls in Cryptography for Software Developers. OWASP AppSec Israel July 2006. The OWASP Foundation http://www.owasp.org/ Common Pitfalls in Cryptography for Software Developers OWASP AppSec Israel July 2006 Shay Zalalichin, CISSP AppSec Division Manager, Comsec Consulting shayz@comsecglobal.com Copyright 2006 - The OWASP

More information

How To Encrypt Data With Encryption

How To Encrypt Data With Encryption USING ENCRYPTION TO PROTECT SENSITIVE INFORMATION Commonwealth Office of Technology Security Month Seminars Alternate Title? Boy, am I surprised. The Entrust guy who has mentioned PKI during every Security

More information

Research Article. Research of network payment system based on multi-factor authentication

Research Article. Research of network payment system based on multi-factor authentication Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(7):437-441 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Research of network payment system based on multi-factor

More information

CSE/EE 461 Lecture 23

CSE/EE 461 Lecture 23 CSE/EE 461 Lecture 23 Network Security David Wetherall djw@cs.washington.edu Last Time Naming Application Presentation How do we name hosts etc.? Session Transport Network Domain Name System (DNS) Data

More information

CS 348: Computer Networks. - Security; 30 th - 31 st Oct 2012. Instructor: Sridhar Iyer IIT Bombay

CS 348: Computer Networks. - Security; 30 th - 31 st Oct 2012. Instructor: Sridhar Iyer IIT Bombay CS 348: Computer Networks - Security; 30 th - 31 st Oct 2012 Instructor: Sridhar Iyer IIT Bombay Network security Security Plan (RFC 2196) Identify assets Determine threats Perform risk analysis Implement

More information

IBM i Version 7.3. Security Digital Certificate Manager IBM

IBM i Version 7.3. Security Digital Certificate Manager IBM IBM i Version 7.3 Security Digital Certificate Manager IBM IBM i Version 7.3 Security Digital Certificate Manager IBM Note Before using this information and the product it supports, read the information

More information

Lecture 25: Pairing-Based Cryptography

Lecture 25: Pairing-Based Cryptography 6.897 Special Topics in Cryptography Instructors: Ran Canetti and Ron Rivest May 5, 2004 Lecture 25: Pairing-Based Cryptography Scribe: Ben Adida 1 Introduction The field of Pairing-Based Cryptography

More information

Encryption, Data Integrity, Digital Certificates, and SSL. Developed by. Jerry Scott. SSL Primer-1-1

Encryption, Data Integrity, Digital Certificates, and SSL. Developed by. Jerry Scott. SSL Primer-1-1 Encryption, Data Integrity, Digital Certificates, and SSL Developed by Jerry Scott 2002 SSL Primer-1-1 Ideas Behind Encryption When information is transmitted across intranets or the Internet, others can

More information

Authentication, digital signatures, PRNG

Authentication, digital signatures, PRNG Multimedia Security Authentication, digital signatures, PRNG Mauro Barni University of Siena Beyond confidentiality Up to now, we have been concerned with protecting message content (i.e. confidentiality)

More information

CS 665: Computer System Security. Crypto Services. Hashing. Cryptographic Hash Functions. Information Assurance Module

CS 665: Computer System Security. Crypto Services. Hashing. Cryptographic Hash Functions. Information Assurance Module CS 665: Computer System Security Crypto Services Bojan Cukic Lane Department of Computer Science and Electrical Engineering West Virginia University 1 Hashing Primary Goal: Integrity Protection Guarding

More information

SecureMessageRecoveryandBatchVerificationusingDigitalSignature

SecureMessageRecoveryandBatchVerificationusingDigitalSignature Global Journal of Computer Science and Technology: F Graphics & Vision Volume 14 Issue 4 Version 1.0 Year 2014 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Secure Sockets Layer

Secure Sockets Layer SSL/TLS provides endpoint authentication and communications privacy over the Internet using cryptography. For web browsing, email, faxing, other data transmission. In typical use, only the server is authenticated

More information

Part I. Universität Klagenfurt - IWAS Multimedia Kommunikation (VK) M. Euchner; Mai 2001. Siemens AG 2001, ICN M NT

Part I. Universität Klagenfurt - IWAS Multimedia Kommunikation (VK) M. Euchner; Mai 2001. Siemens AG 2001, ICN M NT Part I Contents Part I Introduction to Information Security Definition of Crypto Cryptographic Objectives Security Threats and Attacks The process Security Security Services Cryptography Cryptography (code

More information

Chapter 10. Network Security

Chapter 10. Network Security Chapter 10 Network Security 10.1. Chapter 10: Outline 10.1 INTRODUCTION 10.2 CONFIDENTIALITY 10.3 OTHER ASPECTS OF SECURITY 10.4 INTERNET SECURITY 10.5 FIREWALLS 10.2 Chapter 10: Objective We introduce

More information

Cryptography and Network Security Chapter 9

Cryptography and Network Security Chapter 9 Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 9 Public Key Cryptography and RSA Every Egyptian received two names,

More information

Software Tool for Implementing RSA Algorithm

Software Tool for Implementing RSA Algorithm Software Tool for Implementing RSA Algorithm Adriana Borodzhieva, Plamen Manoilov Rousse University Angel Kanchev, Rousse, Bulgaria Abstract: RSA is one of the most-common used algorithms for public-key

More information

Notes on Network Security Prof. Hemant K. Soni

Notes on Network Security Prof. Hemant K. Soni Chapter 9 Public Key Cryptography and RSA Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications

More information

How encryption works to provide confidentiality. How hashing works to provide integrity. How digital signatures work to provide authenticity and

How encryption works to provide confidentiality. How hashing works to provide integrity. How digital signatures work to provide authenticity and How encryption works to provide confidentiality. How hashing works to provide integrity. How digital signatures work to provide authenticity and non-repudiation. How to obtain a digital certificate. Installing

More information

Final Exam. IT 4823 Information Security Administration. Rescheduling Final Exams. Kerberos. Idea. Ticket

Final Exam. IT 4823 Information Security Administration. Rescheduling Final Exams. Kerberos. Idea. Ticket IT 4823 Information Security Administration Public Key Encryption Revisited April 5 Notice: This session is being recorded. Lecture slides prepared by Dr Lawrie Brown for Computer Security: Principles

More information

CS 393 Network Security. Nasir Memon Polytechnic University Module 11 Secure Email

CS 393 Network Security. Nasir Memon Polytechnic University Module 11 Secure Email CS 393 Network Security Nasir Memon Polytechnic University Module 11 Secure Email Course Logistics HW 5 due Thursday Graded exams returned and discussed. Read Chapter 5 of text 4/2/02 Module 11 - Secure

More information

Introduction to Computer Security

Introduction to Computer Security Introduction to Computer Security Hash Functions and Digital Signatures Pavel Laskov Wilhelm Schickard Institute for Computer Science Integrity objective in a wide sense Reliability Transmission errors

More information

Keywords : audit, cloud, integrity, station to station protocol, SHA-2, third party auditor, XOR. GJCST-B Classification : C.2.4, H.2.

Keywords : audit, cloud, integrity, station to station protocol, SHA-2, third party auditor, XOR. GJCST-B Classification : C.2.4, H.2. Global Journal of Computer Science and Technology Cloud and Distributed Volume 13 Issue 3 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

1 Digital Signatures. 1.1 The RSA Function: The eth Power Map on Z n. Crypto: Primitives and Protocols Lecture 6.

1 Digital Signatures. 1.1 The RSA Function: The eth Power Map on Z n. Crypto: Primitives and Protocols Lecture 6. 1 Digital Signatures A digital signature is a fundamental cryptographic primitive, technologically equivalent to a handwritten signature. In many applications, digital signatures are used as building blocks

More information

A Novel Approach to combine Public-key encryption with Symmetric-key encryption

A Novel Approach to combine Public-key encryption with Symmetric-key encryption Volume 1, No. 4, June 2012 ISSN 2278-1080 The International Journal of Computer Science & Applications (TIJCSA) RESEARCH PAPER Available Online at http://www.journalofcomputerscience.com/ A Novel Approach

More information

A Digital Signature Scheme in Web-based Negotiation Support System

A Digital Signature Scheme in Web-based Negotiation Support System A Digital Signature Scheme in Web-based Negotiation Support System Yuxuan Meng 1 and Bo Meng 2 1 Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C9, Canada yxmeng68@yahoo.ca

More information

Public Key Cryptography of Digital Signatures

Public Key Cryptography of Digital Signatures ACTA UNIVERSITATIS APULENSIS No 13/2007 MATHEMATICAL FOUNDATION OF DIGITAL SIGNATURES Daniela Bojan and Sidonia Vultur Abstract.The new services available on the Internet have born the necessity of a permanent

More information

The Mathematics of the RSA Public-Key Cryptosystem

The Mathematics of the RSA Public-Key Cryptosystem The Mathematics of the RSA Public-Key Cryptosystem Burt Kaliski RSA Laboratories ABOUT THE AUTHOR: Dr Burt Kaliski is a computer scientist whose involvement with the security industry has been through

More information

Cryptographic hash functions and MACs Solved Exercises for Cryptographic Hash Functions and MACs

Cryptographic hash functions and MACs Solved Exercises for Cryptographic Hash Functions and MACs Cryptographic hash functions and MACs Solved Exercises for Cryptographic Hash Functions and MACs Enes Pasalic University of Primorska Koper, 2014 Contents 1 Preface 3 2 Problems 4 2 1 Preface This is a

More information

Understanding digital certificates

Understanding digital certificates Understanding digital certificates Mick O Brien and George R S Weir Department of Computer and Information Sciences, University of Strathclyde Glasgow G1 1XH mickobrien137@hotmail.co.uk, george.weir@cis.strath.ac.uk

More information

Cryptography & Digital Signatures

Cryptography & Digital Signatures Cryptography & Digital Signatures CS 594 Special Topics/Kent Law School: Computer and Network Privacy and Security: Ethical, Legal, and Technical Consideration Prof. Sloan s Slides, 2007, 2008 Robert H.

More information

Digital Signature For Text File

Digital Signature For Text File Digital Signature For Text File Ayad Ibrahim Abdulsada Dept. of Computer Science, College of Education, University of Basrah, Basrah, Iraq. E-mail: mraiadibraheem@yahoo.com Abstract: Digital signatures

More information

Enhance data security of private cloud using encryption scheme with RBAC

Enhance data security of private cloud using encryption scheme with RBAC Enhance data security of private cloud using encryption scheme with RBAC Dimpi Rani 1, Rajiv Kumar Ranjan 2 M.Tech (CSE) Student, Arni University, Indora, Kangra, India 1 Assistant Professor, Dept. of

More information

Connected from everywhere. Cryptelo completely protects your data. Data transmitted to the server. Data sharing (both files and directory structure)

Connected from everywhere. Cryptelo completely protects your data. Data transmitted to the server. Data sharing (both files and directory structure) Cryptelo Drive Cryptelo Drive is a virtual drive, where your most sensitive data can be stored. Protect documents, contracts, business know-how, or photographs - in short, anything that must be kept safe.

More information

Associate Prof. Dr. Victor Onomza Waziri

Associate Prof. Dr. Victor Onomza Waziri BIG DATA ANALYTICS AND DATA SECURITY IN THE CLOUD VIA FULLY HOMOMORPHIC ENCRYPTION Associate Prof. Dr. Victor Onomza Waziri Department of Cyber Security Science, School of ICT, Federal University of Technology,

More information

to hide away details from prying eyes. Pretty Good Privacy (PGP) utilizes many

to hide away details from prying eyes. Pretty Good Privacy (PGP) utilizes many In the world of secure email, there are many options from which to choose from to hide away details from prying eyes. Pretty Good Privacy (PGP) utilizes many cryptographical concepts to achieve a supposedly

More information

Cryptographic Hash Functions Message Authentication Digital Signatures

Cryptographic Hash Functions Message Authentication Digital Signatures Cryptographic Hash Functions Message Authentication Digital Signatures Abstract We will discuss Cryptographic hash functions Message authentication codes HMAC and CBC-MAC Digital signatures 2 Encryption/Decryption

More information

The Feasibility and Application of using a Zero-knowledge Protocol Authentication Systems

The Feasibility and Application of using a Zero-knowledge Protocol Authentication Systems The Feasibility and Application of using a Zero-knowledge Protocol Authentication Systems Becky Cutler Rebecca.cutler@tufts.edu Mentor: Professor Chris Gregg Abstract Modern day authentication systems

More information

Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms

Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms Principles of Public Key Cryptography Chapter : Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter : Security on Network and Transport

More information

Cryptography and Network Security Chapter 14. Key Distribution. Key Management and Distribution. Key Distribution Task 4/19/2010

Cryptography and Network Security Chapter 14. Key Distribution. Key Management and Distribution. Key Distribution Task 4/19/2010 Cryptography and Network Security Chapter 14 Fifth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 14 Key Management and Distribution No Singhalese, whether man or woman, would venture

More information