A Question of Molecular Weight

Size: px
Start display at page:

Download "A Question of Molecular Weight"

Transcription

1 A Question of Molecular Weight Dr. Jack Cazes International Division Waters Associates, Inc. 34 Maple St., Milford, MA The molecular weight of benzene is 78. What is the molecular weight of a given sample of polymer, for example, of polystyrene? A polymer does not have a single molecular weight; we generally refer to a variety of molecular weight averages for a polymer, e.g., weight-average (Mw), number-average (Mn), and others. Before we deal with polymers, let's ask ourselves, what is a molecular weight? What is the number that we refer to as molecular weight? Molecular weight, by the strict definition, is actually the weight, in grams, of Avogadro's number of molecules of a substance i.e., the weight of approximately 6 X 10^23 molecules. So, for instance, if we are talking about a substance like benzene, we can simply think of benzene as consisting of an assemblage of many of the same kind of molecules, all of them having the same size and weight. To obtain the "molecular weight" of benzene we simply add up the atomic weights of all of the atoms in the molecule. Since benzene contains six carbons we take six carbons and multiply by the atomic weight of carbon, 12, and obtain 72. We then take the six hydrogen's that are present in benzene and multiply by the atomic weight of hydrogen, 1 and obtain 6. The sum, , is then the molecular weight of benzene, 78. This is straight forward. But now let's extend the a little further. Let's ask ourselves what is the molecular weight of polystyrene once again, or of any polymer. Here we run into a problem because, if we had the ability to look at the molecules in a sample of polystyrene, we would find that we have a mixture of many different size molecules. And there is where the problem lies! How do you obtain the molecular weight of a mixture of materials that are all different form each other in terms of their sizes and weights? All polymers, with only a few exceptions, are mixtures of molecules having different molecular sizes and molecular weights and therein lies our problem. For a polymer, we use a "molecular weight average". We simply look at all of the different sizes of molecules and average them. The kind of molecular weight average we obtain depends upon the type of measurement used. And, this leads us to the number-average molecular weight, weight-average molecular weight, Z-average molecular weight, viscosity-average molecular weight, and others. Analogy: STRAIGHT Average vs. WEIGHTED Average CREDITS GRADES Math 5 80 English 5 80 French 5 80 Art 2 80 Music 2 80 Phys. Ed STRAIGHT Average: ( ) 6 = 80 WEIGHTED Average: (5 x 80) + (5 x 80) + (2 x 80) + (1 x 80) + 20 = 80 Before we get into a discussion of how to calculate a molecular weight average for a polymer, let's take a look at an analogy, something I am sure you are familiar with. Think back to when you were in school. Suppose you were taking a program of courses such as Math, English, French, Art, Music, and Physical Education. Courses were worth different numbers of credits, depending on the relative difficulty of each course and upon the importance of the course in the curriculum. For example, let's assume that Math, English and French were worth 5 credits each, Art and Music, 2 credits each, and Physical Education

2 only 1 credit, a total program of 20 credits. And let's assume that you were an "average" student; all of your grades were 80. To calculate a straight average, you simply add all of the grades for all the courses and then you divide by the total number of courses. This gives you an average of 80. Note that the average is identical to the grades when all of the grades are identical. In some schools, a different kind of "weighted" average is calculated; they recognize the fact that some courses are more difficult than others, some require more work and, thus, are more important. The grade for each course is multiplied by its corresponding number of credits, all of the products are added together, and the result is divided, not the number of courses, but by the total number of credits, In the case of the above example the result is again 80. Credits Grades Grades Math English French Art Music Phys. Ed STRAIGHT Average WEIGHTED Average If the grades for the courses were different from each other, then the weighted average and straight average would not be the same. Let's see what happens to the averages if we change some of the course grades. Let's assume that you are a fairly good student in Math, English, and French so that, instead of 80, you received grades of 100 in those three courses. Now, if we calculate a straight average we obtain not 80, but 90. However, the weighted average now becomes 95. Suppose you are not very good at Math, English, and French, but, rather, are outstanding in Art, Music and Physical Education. Let's give you a 100 in those three courses; note that the 100 in this case is given to the courses that are worth fewer credits, i.e., the "less important" courses. If we go through this exercise again the straight average is again 90. Note that in both cases we end up with the same straight average, the reasons being that when we calculate a straight average, all courses are given equivalent importance. But, when we calculate a weighted average, since we have the high, i.e., 100%, grades in the courses that do not carry as much credit, that are not as important, the result is a much lower weighted average than in the first case we discussed. In this case, the weighted average is only 85%. Note too, that in the original example, where all the grades were 80, the straight average and the weighted average were identical. Now, keeping in mind what we have just discussed concerning a "straight" or "number" average vs. a "weighted" average, let's get back to molecules, molecular weight, and polymers. There are several reasons why there are different kinds of molecular weight averages for polymers. One of these reasons is that we end up with different kinds of molecular weight averages depending on the way in which we obtain the data, i.e., depending upon the type of physical or chemical measurement that is used to arrive at the molecular weight average. Let's take a look at some examples. If we measure colligative properties of substances or the relative concentrations of end-groups in polymers then we obtain a molecular weight average in which all molecules are treated equally, i.e., are of equivalent importance. What do we mean by colligative properties? Certain properties of solutions are dependent only upon the numbers of molecular or ionic species present in the solution, and not upon their weights or sizes. These are called colligative properties, and include boiling point elevation, freezing point depression, vapor pressure depression, and osmotic pressure changes. All of these are used to measure molecular weights of substances, including polymers. End-group analysis, eg., hydroxyl number, carboxyl equivalent, etc., also lead to the molecular weight of a substance. The resultant molecular weight is analogous to the "straight" average discussed above, and is called the number-average molecular weight.

3 Colligative Properties End-Group Concentration * Osmotic Pressure * Hydroxyl Number * Boiling Point Elevation * Carboxyl Equivalent * Freezing Point Depression * Epoxy Equivalent, etc. * Vapor Pressure M n THEY COUNT THE NUMBER OF MOLECULES OR EQUIVALENTS PER UNIT WEIGHT OF SAMPLE All of these molecular weight methods count the numbers of molecules, or equivalents of a particular kind of group in the molecule, per unit weight of sample. All molecules are of equal importance when we measure colligative properties and end-group concentrations. The number-average molecular weight is very sensitive to changes in the weight-fractions of low molecular weight species. Why is this so? For small molecules, a small weight of material represents a large number of molecules. For high molecular weight materials, a small weight of material represents only a very small number of molecules. The result is that, for low molecular weight materials a small amount of added material, by weight, makes a tremendous change in the number of molecules or particles in solution; so, the contribution to the number-average or "straight-average" is very large. Conversely, number-average molecular weight is relatively insensitive to similar changes in he weight of large molecules. Another technique that is used to measure molecular weights of polymers is light scattering. A light shining through a very dilute solution of a polymer will be scattered by the polymer molecules. The scattering intensity at any given angle is a function of the second power of the molecular weight. Consequently, because of this "square" function, large molecules will contribute much more to the molecular weight that we calculate than small molecules. So, we obtain a "weighted" average as we did earlier in the analogy discussed above. It is called a weight-average molecular weight, and it is very sensitive to changes in number of large molecules in a given sample of a polymer. LIGHT-SCATTERING MEASUREMENT Scattering Intensity (Molecular Weight) 2 Mw LARGE MOLECULES CONTRIBUTE MOST TO SCATTERING INTENSITY Dilute solution viscosities are routinely used to measure molecular weight. The rate at which a dilute solution of a polymer flows though a capillary is measured. What we are measuring then, is the frictional resistance to flow that result from the presence of different sized molecules of polymer in the dilute solution. What we are in fact measuring then, are the molecular sizes or the molecular volumes of the polymer molecules in the solution. The result is that the larger the molecules, the more interactions, and the greater will be the viscosity. The molecular weight average that we obtain by this technique is called the viscosity-average molecular weight. Large molecules contribute more to the viscosity-average than small molecules. DILUTE-SOLUTION VISOSITY Measures Molecular Size (Volume) M v LARGER MOLECULES CONTRIBUTE MORE TO THE VISCOSITY

4 If a dilute solution of a polymer is subjected to a centrifugal field at a fairly low speed, we eventually establish a thermodynamic equilibrium where the molecules become distributed according to their molecular sizes. The molecular weight that we obtain from this experiment is called a Z-average molecular weight. The larger molecules are even more important in the case of the Z-average than the weight- or viscosity-average molecular weight. CENTRIFUGATION Establish thermodynamic equilibrium where molecules distribute according to molecular size M z VERY LARGE MOLECULRES SETTLE MOST IN THE GRAVITATIONAL FIELD IN THE CENTRIFUGE So far, we have looked at the reasons for different molecular weight averages in terms of the ways in which we obtain these averages, i.e., the experimental approaches through which we measure polymer molecular weight averages. Let's look at molecular weight average, now, from a different point of view. Let's see how different molecular weight averages are significant in terms of processing a polymer and in terms the properties of a polymer end-product. Let's examine such properties as tensile strength, hardness, flex life, stiffness, etc. There is often a relationship between the properties of a polymer and the molecular weight average, but this relationship is sometimes a complex one. However, we often find that a given property is the direct result of, or, at least, is most influenced by either the very large or the very small molecules in a polymer sample. I say "most influenced" because all molecules contribute, in some way, to the physical and chemical properties of a substance. If you are a manufacturer of polyethylene plastic bags, polypropylene rope, nylon fishing line, and other, similar materials where the tensile strength of the polymer that you are using is important, you would find, probably, that the tensile strength is a function of the weight-average molecular weight. Apparently, the tensile strength is often most influenced by the large molecules in the material. TENSILE STRENGTH HARDNESS BRITTLENESS-FLOW PROPERTIES FLEX LIFE STIFFNESS M w M z M n M v EXTRUDABILITY MOLDING PROPERTIES Let's assume now, that you manufacture plastic toll boxes of the kind that have plastic flexing hinges. In this case the flex life of the plastic is important to you. It has been found, in many cases, that the flex life is directly related to the Z-average molecular weight. The extremely large molecules are apparently most important in determining that property. You could monitor the quality of your incoming resin by measuring the Z-average molecular weight. The brittleness of a polymer is often directly related to the levels of both the low and the high molecular weight species in a sample of polymer. However, we often add low molecular weight additives, i.e., plasticizers, to decrease the brittleness of a polymer. For example, phthalate esters are often added to polyvinylchloride in the manufacture of such products as plastic tubing, inflatable beach toys, etc. Another example, the addition of a low molecular weight polybutene oil as a plasticizer for polystyrene when manufacturing electrical insulators. We are in effect, "swamping out" the effect of the large molecules on the brittleness of the polymer by simply overloading the sample with very small molecules. Here, we often find a relationship between product quality and the number-average molecular weight. Thus, measurement of the number-average molecular weight provides insight into ultimate product quality. Let's go into just one more example. Let's talk about the extrudability or the "moldability" of a polymer. We are concerned here with the ease with which a molten polymer can be made to flow through an orifice from an extruder into a mold and completely fill the mold. In this case, the viscosity-average molecular weight is important. The viscosityaverage can be directly related to the processability when we consider extrusion and molding.

5 Since a polymer is generally a mixture of molecules of various molecular weights and molecular sizes, we can visualize a molecular weight distribution. If we plot the molecular weight distribution for a polymer and indicate the locations of the various molecular weight averages we have discussed, here is what we would see: The Z-average is located at the extremely high molecular weight end of the distribution, the weight-average slightly lower down in molecular weight; the viscosity average is very close to the weightaverage. The number-average is located closer to the low molecular weight end of the distribution. The narrower the molecular weight distribution of a polymer, i.e., the narrower the distribution of molecular weights of the components of a polymer, the closer the different molecular weight averages will lie to each other. Remember the analogy that we drew involving the course grades in school. When all of the grades where identical, i.e., when you received 80 percent in all six courses, the "weighted average" and the "straight average" were identical; a similar thing happens in polymers. If all of the polymer molecules in a polymer sample were of the same molecular size, then all of the molecular weight averages would be identical. Of course, this is never the case with commercial polymeric materials. But, polymer scientists and polymer technologists use this fact to calculate a number called "polydispersity", which is, essentially, a measure of width of the molecular weight distribution for a polymer. They calculate the ratio of weight to number-average molecular weight. The closer the polydispersity approaches a value of one, the narrower is the molecular weight distribution. Remember too, that the Z-average is always greater than the weight-average which, in turn, is greater than the viscosity-average, which is always greater than the number-average molecular weight. As we go in this series from number- to viscosity- to weight- to Z-average molecular weight, the large molecules in a polymer sample become increasingly important. POLYDISPERSITY: Mw > 1 Mn USEFUL FOR ESTIMATING BREADTH OF A POLYMER DISTRUBTION Mn = Σ Hi Σ(Hi/Mi) Mv = (Σ Hi (Mi) ) 1/ Σ(Hi/Mi) Mw = Σ Hi Mi Σ Hi Mz = Σ Hi Mi 2 Σ Hi Mi CALCULATION OF MOLECULAR WEIGHT AVERAGES FORM GPC

6 Now, let's take a look at the various molecular weight averages from still another stand-point. Let's examine them in terms of the way in which we obtain them from GPC data. Here we see a molecular weight distribution for a polymer. It has been sliced into segments for the purpose of estimating the relative amounts of materials eluting in each molecular weight increment as shown. Hi represents the amount of polymer of a given molecular weight, Mi, eluting from the GPC columns. Now, looking at the equations that are used to calculate the various molecular weight averages, you will notice that as we go from number- to weight- to Z-average molecular weight, the molecular weights, Mi, are raised to increasingly higher powers; in other words, the higher molecular weight species become increasingly important. Now let's look at the equation for the viscosity-average molecular weight. The exponent, alpha, is the Mark-Houwink viscometric exponent, which can have values ranging from 0.5 to 1.0. For most polymers, in thermodynamically good solvents, the values actually range from about 0.7 to 0.9. An interesting property of this equation is that if alpha becomes 1.0 then the viscosity-average becomes identical to the weight-average molecular weight. Let's summarize, now, what we have discussed: 1. Polymers are mixtures of molecules of various molecular weights and molecular sizes. Therefore, we must use molecular weight averages for these substances. 2. The type of average we obtain from various experimental measurements depends upon the physical or chemical property of the molecules involved in the measurement and upon the relative importance of large versus small molecules. Thus, measurement of colligative properties and endgroup concentrations leads to calculation of a number-average molecular weight. Light scattering measurements result in a weight-average molecular weight. A Z-average molecular weight is obtained from centrifugation data; a study of the viscometric behavior of a dilute solution of a polymer leads to the viscosity-average molecular weight. 3. Various properties of polymers that are important in terms of their processability and their end-uses are directly related to specific molecular weight averages. This is because specific properties are primarily influenced by the levels of either high or low molecular weight species. 4. Different molecular weight averages are located at different points in a polymer's molecular weight distribution. If all of a polymer's molecules were identical, then all of its molecular weight averages would be identical. 5. The width of a polymer's molecular weight distribution is estimated by calculating its polydispersity, Mw/Mn. The closer this approaches a value of 1, the narrower is the polymer's molecular weight distribution. 6. The equations that are used to calculate the various molecular weight averages take into account the relative significance of different size molecules in these averages.

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up

More information

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another

More information

M n = (DP)m = (25,000)(104.14 g/mol) = 2.60! 10 6 g/mol

M n = (DP)m = (25,000)(104.14 g/mol) = 2.60! 10 6 g/mol 14.4 (a) Compute the repeat unit molecular weight of polystyrene. (b) Compute the number-average molecular weight for a polystyrene for which the degree of polymerization is 25,000. (a) The repeat unit

More information

Chapter 4. Chemical Composition. Chapter 4 Topics H 2 S. 4.1 Mole Quantities. The Mole Scale. Molar Mass The Mass of 1 Mole

Chapter 4. Chemical Composition. Chapter 4 Topics H 2 S. 4.1 Mole Quantities. The Mole Scale. Molar Mass The Mass of 1 Mole Chapter 4 Chemical Composition Chapter 4 Topics 1. Mole Quantities 2. Moles, Masses, and Particles 3. Determining Empirical Formulas 4. Chemical Composition of Solutions Copyright The McGraw-Hill Companies,

More information

Element of same atomic number, but different atomic mass o Example: Hydrogen

Element of same atomic number, but different atomic mass o Example: Hydrogen Atomic mass: p + = protons; e - = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon-12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine-35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass

More information

The Mole Concept. The Mole. Masses of molecules

The Mole Concept. The Mole. Masses of molecules The Mole Concept Ron Robertson r2 c:\files\courses\1110-20\2010 final slides for web\mole concept.docx The Mole The mole is a unit of measurement equal to 6.022 x 10 23 things (to 4 sf) just like there

More information

Sample Test 1 SAMPLE TEST 1. CHAPTER 12

Sample Test 1 SAMPLE TEST 1. CHAPTER 12 13 Sample Test 1 SAMPLE TEST 1. CHAPTER 12 1. The molality of a solution is defined as a. moles of solute per liter of solution. b. grams of solute per liter of solution. c. moles of solute per kilogram

More information

How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique.

How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique. How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique. What units do we use to define the weight of an atom? amu units of atomic weight. (atomic

More information

Chapter 6 Notes. Chemical Composition

Chapter 6 Notes. Chemical Composition Chapter 6 Notes Chemical Composition Section 6.1: Counting By Weighing We can weigh a large number of the objects and find the average mass. Once we know the average mass we can equate that to any number

More information

Chemical Kinetics. 2. Using the kinetics of a given reaction a possible reaction mechanism

Chemical Kinetics. 2. Using the kinetics of a given reaction a possible reaction mechanism 1. Kinetics is the study of the rates of reaction. Chemical Kinetics 2. Using the kinetics of a given reaction a possible reaction mechanism 3. What is a reaction mechanism? Why is it important? A reaction

More information

Formulas, Equations and Moles

Formulas, Equations and Moles Chapter 3 Formulas, Equations and Moles Interpreting Chemical Equations You can interpret a balanced chemical equation in many ways. On a microscopic level, two molecules of H 2 react with one molecule

More information

HW 10. = 3.3 GPa (483,000 psi)

HW 10. = 3.3 GPa (483,000 psi) HW 10 Problem 15.1 Elastic modulus and tensile strength of poly(methyl methacrylate) at room temperature [20 C (68 F)]. Compare these with the corresponding values in Table 15.1. Figure 15.3 is accurate;

More information

3.4 BRØNSTED LOWRY ACIDS AND BASES

3.4 BRØNSTED LOWRY ACIDS AND BASES 96 CAPTER 3 ACIDS AND BASES. TE CURVED-ARROW NOTATION and that the unshared electron pair (and negative charge) is shared equally by the two terminal carbons. C L C A C 1 allyl anion (c) Using the curved-arrow

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory

More information

Chemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights.

Chemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights. 1 Introduction to Chemistry Atomic Weights (Definitions) Chemical Calculations: The Mole Concept and Chemical Formulas AW Atomic weight (mass of the atom of an element) was determined by relative weights.

More information

Chemical Structure of the polymer showing end groups: CH 3 CH 2 CH H

Chemical Structure of the polymer showing end groups: CH 3 CH 2 CH H Polymer Reference Materials-Polystyrene Introduction Reference materials are used for calibration and performance evaluation of instruments used as part of overall quality assurance programs of polymer.

More information

To calculate the value of the boiling point constant for water. To use colligative properties to determine the molecular weight of a substance.

To calculate the value of the boiling point constant for water. To use colligative properties to determine the molecular weight of a substance. Colligative Properties of Solutions: A Study of Boiling Point Elevation Amina El-Ashmawy, Collin County Community College (With contributions by Timm Pschigoda, St. Joseph High School, St. Joseph, MI)

More information

SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT

SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT Experiment 8, page 1 Version of April 25, 216 Experiment 446.8 SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT Theory Viscous Flow. Fluids attempt to minimize flow gradients by exerting a frictional force,

More information

Name Partners Date. Energy Diagrams I

Name Partners Date. Energy Diagrams I Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy

More information

The Mole. 6.022 x 10 23

The Mole. 6.022 x 10 23 The Mole 6.022 x 10 23 Background: atomic masses Look at the atomic masses on the periodic table. What do these represent? E.g. the atomic mass of Carbon is 12.01 (atomic # is 6) We know there are 6 protons

More information

2 The Structure of Atoms

2 The Structure of Atoms CHAPTER 4 2 The Structure of Atoms SECTION Atoms KEY IDEAS As you read this section, keep these questions in mind: What do atoms of the same element have in common? What are isotopes? How is an element

More information

Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

More information

Organic Chemistry Calculations

Organic Chemistry Calculations Organic Chemistry Calculations There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations

More information

Performing Calculatons

Performing Calculatons Performing Calculatons There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations of them,

More information

CHAPTER 3 Calculations with Chemical Formulas and Equations. atoms in a FORMULA UNIT

CHAPTER 3 Calculations with Chemical Formulas and Equations. atoms in a FORMULA UNIT CHAPTER 3 Calculations with Chemical Formulas and Equations MOLECULAR WEIGHT (M. W.) Sum of the Atomic Weights of all atoms in a MOLECULE of a substance. FORMULA WEIGHT (F. W.) Sum of the atomic Weights

More information

Separation of Amino Acids by Paper Chromatography

Separation of Amino Acids by Paper Chromatography Separation of Amino Acids by Paper Chromatography Chromatography is a common technique for separating chemical substances. The prefix chroma, which suggests color, comes from the fact that some of the

More information

We know from the information given that we have an equal mass of each compound, but no real numbers to plug in and find moles. So what can we do?

We know from the information given that we have an equal mass of each compound, but no real numbers to plug in and find moles. So what can we do? How do we figure this out? We know that: 1) the number of oxygen atoms can be found by using Avogadro s number, if we know the moles of oxygen atoms; 2) the number of moles of oxygen atoms can be found

More information

13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects

13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects Week 3 Sections 13.3-13.5 13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects 13.4 Ways of Expressing Concentration Mass Percentage, ppm, and ppb Mole Fraction,

More information

Notes on Polymer Rheology Outline

Notes on Polymer Rheology Outline 1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity

More information

What s in a Mole? Molar Mass

What s in a Mole? Molar Mass LESSON 10 What s in a Mole? Molar Mass OVERVIEW Key Ideas Lesson Type Lab: Groups of 4 Chemists compare moles of substances rather than masses because moles are a way of counting atoms. When considering

More information

MOLAR MASS of POLYMERS

MOLAR MASS of POLYMERS MOLR MSS of POLYMERS Recogize the ifluece of molar mass (molecular weight) o polymer properties. Uderstad the relatioship betwee molecular weight ad degree of polymerizatio. Uderstad the sigificace of

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

Chemical Calculations: Formula Masses, Moles, and Chemical Equations

Chemical Calculations: Formula Masses, Moles, and Chemical Equations Chemical Calculations: Formula Masses, Moles, and Chemical Equations Atomic Mass & Formula Mass Recall from Chapter Three that the average mass of an atom of a given element can be found on the periodic

More information

Chapter Test A. States of Matter MULTIPLE CHOICE. a fixed amount of STAs2 a. a solid. b. a liquid. c. a gas. d. any type of matter.

Chapter Test A. States of Matter MULTIPLE CHOICE. a fixed amount of STAs2 a. a solid. b. a liquid. c. a gas. d. any type of matter. Assessment Chapter Test A States of Matter MULTIPLE CHOICE Write the letter of the correct answer in the space provided. 1. Boyle s law explains the relationship between volume and pressure for a fixed

More information

Chemical Composition. Introductory Chemistry: A Foundation FOURTH EDITION. Atomic Masses. Atomic Masses. Atomic Masses. Chapter 8

Chemical Composition. Introductory Chemistry: A Foundation FOURTH EDITION. Atomic Masses. Atomic Masses. Atomic Masses. Chapter 8 Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Chemical Composition Chapter 8 1 2 Atomic Masses Balanced equation tells us the relative numbers of molecules

More information

Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

More information

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296)

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) Name Date Class 10 CHEMICAL QUANTITIES SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) This section defines the mole and explains how the mole is used to measure matter. It also teaches

More information

Science Standard Articulated by Grade Level Strand 5: Physical Science

Science Standard Articulated by Grade Level Strand 5: Physical Science Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

More information

Prentice Hall. Chemistry (Wilbraham) 2008, National Student Edition - South Carolina Teacher s Edition. High School. High School

Prentice Hall. Chemistry (Wilbraham) 2008, National Student Edition - South Carolina Teacher s Edition. High School. High School Prentice Hall Chemistry (Wilbraham) 2008, National Student Edition - South Carolina Teacher s Edition High School C O R R E L A T E D T O High School C-1.1 Apply established rules for significant digits,

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

Molar Mass of Polyvinyl Alcohol by Viscosity

Molar Mass of Polyvinyl Alcohol by Viscosity Molar Mass of Polyvinyl Alcohol by Viscosity Introduction Polyvinyl Alcohol (PVOH) is a linear polymer (i. e., it has little branching) of Ethanol monomer units: -CH 2 -CHOH- Unlike most high molar mass

More information

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

More information

Determination of Molar Mass by Freezing-Point Depression

Determination of Molar Mass by Freezing-Point Depression DETERMINATION OF MOLAR MASS BY FREEZING-POINT DEPRESSION 141 Determination of Molar Mass by Freezing-Point Depression OBJECTIVES: Gain familiarity with colligative properties of nonelectrolyte solutions

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

CHEM 36 General Chemistry EXAM #1 February 13, 2002

CHEM 36 General Chemistry EXAM #1 February 13, 2002 CHEM 36 General Chemistry EXAM #1 February 13, 2002 Name: Serkey, Anne INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show

More information

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

More information

Chapter 1: Chemistry: Measurements and Methods

Chapter 1: Chemistry: Measurements and Methods Chapter 1: Chemistry: Measurements and Methods 1.1 The Discovery Process o Chemistry - The study of matter o Matter - Anything that has mass and occupies space, the stuff that things are made of. This

More information

48 Practice Problems for Ch. 17 - Chem 1C - Joseph

48 Practice Problems for Ch. 17 - Chem 1C - Joseph 48 Practice Problems for Ch. 17 - Chem 1C - Joseph 1. Which of the following concentration measures will change in value as the temperature of a solution changes? A) mass percent B) mole fraction C) molality

More information

The Mole Notes. There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the.

The Mole Notes. There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the. The Mole Notes I. Introduction There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the. A. The Mole (mol) Recall that atoms of

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

Calculating Atoms, Ions, or Molecules Using Moles

Calculating Atoms, Ions, or Molecules Using Moles TEKS REVIEW 8B Calculating Atoms, Ions, or Molecules Using Moles TEKS 8B READINESS Use the mole concept to calculate the number of atoms, ions, or molecules in a sample TEKS_TXT of material. Vocabulary

More information

Calculations with Chemical Formulas and Equations

Calculations with Chemical Formulas and Equations Chapter 3 Calculations with Chemical Formulas and Equations Concept Check 3.1 You have 1.5 moles of tricycles. a. How many moles of seats do you have? b. How many moles of tires do you have? c. How could

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2) Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

More information

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g) CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26

More information

Name Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible

Name  Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible Lab #3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon

More information

Chemical Changes. Measuring a Chemical Reaction. Name(s)

Chemical Changes. Measuring a Chemical Reaction. Name(s) Chemical Changes Name(s) In the particle model of matter, individual atoms can be bound tightly to other atoms to form molecules. For example, water molecules are made up of two hydrogen atoms bound to

More information

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012 Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

More information

Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010

Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010 Experiment #4 Sugar in Soft Drinks and Fruit Juices Laboratory Overview CHEM 1361 August 2010 Gary S. Buckley, Ph.D. Department of Physical Sciences Cameron University Learning Objectives Relate density

More information

19.1 Bonding and Molecules

19.1 Bonding and Molecules Most of the matter around you and inside of you is in the form of compounds. For example, your body is about 80 percent water. You learned in the last unit that water, H 2 O, is made up of hydrogen and

More information

INNOVATIVE PLASTICS HIGH & LOW SHEAR RATE RHEOLOGY

INNOVATIVE PLASTICS HIGH & LOW SHEAR RATE RHEOLOGY INNOVATIVE PLASTICS HIGH & LOW SHEAR RATE RHEOLOGY A SABIC COMPANY Innovative Plastics is a strategic business unit of SABIC. Founded in 1976, SABIC is today the first public, global multinational enterprise

More information

SORTING PLASTICS FOR RECYCLING INTRODUCTION

SORTING PLASTICS FOR RECYCLING INTRODUCTION SORTING PLASTICS FOR RECYCLING INTRODUCTION Description Students use the difference in densities of polymers and flame tests as a basis for the development of a scheme to separate plastics. Goals for This

More information

Thermoplastic composites

Thermoplastic composites Thermoplastic composites Definition By definition, a thermoplastic is a material based on polymer (macromolecular compound) which can be shaped, in a liquid (viscous) state at a temperature either higher

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

Vapor Chambers. Figure 1: Example of vapor chamber. Benefits of Using Vapor Chambers

Vapor Chambers. Figure 1: Example of vapor chamber. Benefits of Using Vapor Chambers Vapor Chambers A vapor chamber is a high-end thermal management device that can evenly dissipate heat from a small source to a large platform of area (see Figure 1). It has a similar construction and mechanism

More information

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation Chapter 3 Chemical Reactions and Reaction James F. Kirby Quinnipiac University Hamden, CT The study of the mass relationships in chemistry Based on the Law of Conservation of Mass

More information

Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface

Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Topographic maps represent the complex curves of earth s surface with contour lines that represent the intersection

More information

MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It?

MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It? NAME PARTNERS SECTION DATE_ MOLES, MOLECULES, FORMULAS This activity is designed to introduce a convenient unit used by chemists and to illustrate uses of the unit. Part I: What Is a Mole And Why Are Chemists

More information

Chapter 14 Solutions

Chapter 14 Solutions Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

1 Introduction The Scientific Method (1 of 20) 1 Introduction Observations and Measurements Qualitative, Quantitative, Inferences (2 of 20)

1 Introduction The Scientific Method (1 of 20) 1 Introduction Observations and Measurements Qualitative, Quantitative, Inferences (2 of 20) The Scientific Method (1 of 20) This is an attempt to state how scientists do science. It is necessarily artificial. Here are MY five steps: Make observations the leaves on my plant are turning yellow

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Determination of Molar Mass by Boiling Point Elevation of Urea Solution

Determination of Molar Mass by Boiling Point Elevation of Urea Solution Determination of Molar Mass by Boiling Point Elevation of Urea Solution CHRISTIAN E. MADU, PhD AND BASSAM ATTILI, PhD COLLIN COLLEGE CHEMISTRY DEPARTMENT Purpose of the Experiment Determine the boiling

More information

Chapter 3 Student Reading

Chapter 3 Student Reading Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The

More information

INTERMOLECULAR FORCES

INTERMOLECULAR FORCES INTERMOLECULAR FORCES Intermolecular forces- forces of attraction and repulsion between molecules that hold molecules, ions, and atoms together. Intramolecular - forces of chemical bonds within a molecule

More information

CHEM 101/105 Numbers and mass / Counting and weighing Lect-03

CHEM 101/105 Numbers and mass / Counting and weighing Lect-03 CHEM 101/105 Numbers and mass / Counting and weighing Lect-03 Interpretation of Elemental Chemical Symbols, Chemical Formulas, and Chemical Equations Interpretation of an element's chemical symbol depends

More information

Bonding & Molecular Shape Ron Robertson

Bonding & Molecular Shape Ron Robertson Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving

More information

Oxford University Chemistry Practical Course. X.3 Kinetics

Oxford University Chemistry Practical Course. X.3 Kinetics xford University Chemistry Practical Course 1 st year physical chemistry X.3 Kinetics Introduction Kinetics, the study of the rates of chemical reactions, is one of the most important areas of chemistry.

More information

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4) Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

More information

Atoms, Elements, and the Periodic Table (Chapter 2)

Atoms, Elements, and the Periodic Table (Chapter 2) Atoms, Elements, and the Periodic Table (Chapter 2) Atomic Structure 1. Historical View - Dalton's Atomic Theory Based on empirical observations, formulated as Laws of: Conservation of Mass Definite Proportions

More information

SOLID STATE CHEMISTRY - SURFACE ADSORPTION

SOLID STATE CHEMISTRY - SURFACE ADSORPTION SOLID STATE CHEMISTRY - SURFACE ADSORPTION BACKGROUND The adsorption of molecules on the surfaces of solids is a very interesting and useful phenomenon. Surface adsorption is at the heart of such things

More information

What Is Singapore Math?

What Is Singapore Math? What Is Singapore Math? You may be wondering what Singapore Math is all about, and with good reason. This is a totally new kind of math for you and your child. What you may not know is that Singapore has

More information

AP CHEMISTRY 2006 SCORING GUIDELINES

AP CHEMISTRY 2006 SCORING GUIDELINES AP CHEMISTRY 2006 SCORING GUIDELINES Question 6 6. Answer each of the following in terms of principles of molecular behavior and chemical concepts. (a) The structures for glucose, C 6 H 12 O 6, and cyclohexane,

More information

Stoichiometry Exploring a Student-Friendly Method of Problem Solving

Stoichiometry Exploring a Student-Friendly Method of Problem Solving Stoichiometry Exploring a Student-Friendly Method of Problem Solving Stoichiometry comes in two forms: composition and reaction. If the relationship in question is between the quantities of each element

More information

3.3. Rheological Behavior of Vinyl Ester Resins

3.3. Rheological Behavior of Vinyl Ester Resins 3.3. Rheological Behavior of Vinyl Ester Resins 3.3.1. Introduction Rheology is the study of the deformation and flow of matter 1. There has been significant appreciation of the importance of the rheological

More information

CH3 Stoichiometry. The violent chemical reaction of bromine and phosphorus. P.76

CH3 Stoichiometry. The violent chemical reaction of bromine and phosphorus. P.76 CH3 Stoichiometry The violent chemical reaction of bromine and phosphorus. P.76 Contents 3.1 Counting by Weighing 3.2 Atomic Masses 3.3 The Mole 3.4 Molar Mass 3.5 Percent Composition of Compounds 3.6

More information

1. How many hydrogen atoms are in 1.00 g of hydrogen?

1. How many hydrogen atoms are in 1.00 g of hydrogen? MOLES AND CALCULATIONS USING THE MOLE CONCEPT INTRODUCTORY TERMS A. What is an amu? 1.66 x 10-24 g B. We need a conversion to the macroscopic world. 1. How many hydrogen atoms are in 1.00 g of hydrogen?

More information

Calculation of Molar Masses. Molar Mass. Solutions. Solutions

Calculation of Molar Masses. Molar Mass. Solutions. Solutions Molar Mass Molar mass = Mass in grams of one mole of any element, numerically equal to its atomic weight Molar mass of molecules can be determined from the chemical formula and molar masses of elements

More information

2. Why does the solubility of alcohols decrease with increased carbon chain length?

2. Why does the solubility of alcohols decrease with increased carbon chain length? Colligative properties 1 1. What does the phrase like dissolves like mean. 2. Why does the solubility of alcohols decrease with increased carbon chain length? Alcohol in water (mol/100g water) Methanol

More information

Diffusion and Fluid Flow

Diffusion and Fluid Flow Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

More information

MATERIALS SCIENCE AND ENGINEERING Vol. I Structure and Properties of Polymers - Pavel Kratochvíl STRUCTURE AND PROPERTIES OF POLYMERS

MATERIALS SCIENCE AND ENGINEERING Vol. I Structure and Properties of Polymers - Pavel Kratochvíl STRUCTURE AND PROPERTIES OF POLYMERS STRUCTURE AND PROPERTIES OF POLYMERS Pavel Kratochvíl Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic Keywords: Macromolecule, polymer, monomer,

More information

Experiment #10: Liquids, Liquid Mixtures and Solutions

Experiment #10: Liquids, Liquid Mixtures and Solutions Experiment #10: Liquids, Liquid Mixtures and Solutions Objectives: This experiment is a broad survey of the physical properties of liquids. We will investigate solvent/solute mixtures. We will study and

More information

Soil Chemistry Ch. 2. Chemical Principles As Applied to Soils

Soil Chemistry Ch. 2. Chemical Principles As Applied to Soils Chemical Principles As Applied to Soils I. Chemical units a. Moles and Avogadro s number The numbers of atoms, ions or molecules are important in chemical reactions because the number, rather than mass

More information

The Structure of Water Introductory Lesson

The Structure of Water Introductory Lesson Dana V. Middlemiss Fall 2002 The Structure of Water Introductory Lesson Abstract: This is an introduction to the chemical nature of water and its interactions. In particular, this lesson will explore evaporation,

More information

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions 7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions 11.1 Solution Composition A. Molarity moles solute 1. Molarity ( M ) = liters of solution B. Mass Percent mass of solute 1. Mass percent = 1 mass of solution C. Mole

More information

Atoms, Ions and Molecules The Building Blocks of Matter

Atoms, Ions and Molecules The Building Blocks of Matter Atoms, Ions and Molecules The Building Blocks of Matter Chapter 2 1 Chapter Outline 2.1 The Rutherford Model of Atomic Structure 2.2 Nuclides and Their Symbols 2.3 Navigating the Periodic Table 2.4 The

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions This chapter uses the concepts of conservation of mass to assist the student in gaining an understanding of chemical changes. Upon completion of Chapter

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information