# Exercise 5.0 LUNAR MOTION, ELONGATION, AND PHASES

Size: px
Start display at page:

Transcription

1 Exercise 5.0 LUNAR MOTION, ELONGATION, AND PHASES I. Introduction The Moon's revolution in orbit around the center of gravity (barycenter) of the Earth- Moon System results in an apparent motion of the Moon in the sky eastward relative to the Sun and, therefore, the phases of the Moon. When measured with respect to the fixed stars, the Moon's period of revolution is 27.3 days. That is, this is the length of time it takes the moon to revolve 360 o in its orbit and is called the Sidereal Month. Hence, the Moon's rate of motion is degrees per day, eastward with respect to the fixed stars. However, the Moon's rate of motion is degrees per day eastward with respect to the Sun. This is because the Sun has an apparent motion eastward, along the ecliptic, of 1 o per day with respect to the fixed stars. Recall that this apparent motion of the Sun is a reflection of the Earth's orbital motion around the Sun. The time it takes the moon to appear to move around the celestial sphere and return to the Sun is called the Synodic Month. This takes 29.5 days and is also the length of time it takes the moon to go through a complete cycle of its phases. The Moon s orbital motion around the Earth causes the angle between the Sun and the Moon, as seen in the sky from the Earth, to continuously change. This angle is called Elongation. Elongation is the angular distance of an object measured along the ecliptic, eastward or westward from the Sun. When the Moon has a specific elongation, it has a specific phase, and rises and sets at a specific time. The table below lists the elongations of the Moon, the corresponding aspects or configuration names, and phases of the Moon. The approximate time the Moon rises for a given elongation can be calculated from the following equation: Time of lunar event = Time for corresponding solar event - Elongation in time units. This may be written in symbolic form as: T M = T - T E

2 For example, if we wanted to calculate what time the Moon will rise when it has a certain elongation, the corresponding time for the Sun would be sunrise. For sunrise use 6:00 and for sunset use 18:00. You should know what times to use for UT and LT of the Sun. For example, the full Moon, which has an elongation of 180 o or 12 h, rises at sunset and sets at sunrise. There can be more than an hour error in this calculation because the equation assumes that both the Sun and Moon are always on the celestial equator. Nevertheless, the above equation yields a good approximation, especially when the Sun and Moon are near the CE. The elongation angle, when expressed in time units, is simply the amount of time that the Moon lags the Sun, when the elongation is measured eastward, or precedes the Sun, when measured westward. In this exercise, we explore these relationships. II. Tutorial Logon to SKYLAB2 and select program SKYMATION. A rectangular chart will be drawn that represents the entire celestial sphere. The ecliptic appears as a wavy red curve. As soon as the chart is displayed, an animation will begin that shows the changing positions of the Sun, Moon, and planets in one day steps for the equatorial frame of reference. The positions of each of the planets, the Sun, and the Moon are indicated by small circles that are letter coded. The key to this code can be viewed as a window by typing "S" for symbols. Open the Options window and select "Plot Stars." Now watch the animation run for a while to see what is happening and how the moon changes its position from day to day relative to the stars and the Sun. Note that the moon moves about 13 degrees eastward each day relative to the stars. Since the Sun moves eastward by 1 degree per day, the moon gains about 12 degrees per day on the Sun. Recall that elongation is the angular distance of an object from the Sun as measured along the ecliptic. Watch the elongation of the moon changing. Occasionally press the space bar to stop the motion and see if you can estimate the Moon's elongation angle and direction. To do this, remember that each hour of RA is 15 o. Now change the step size to 1 hour and delay factor to 0.5 second. This will enable you to see details happening over each day. Now allow the animation to begin. Note the planets hardly move at all in 1 hour, but the Moon's motion is noticeable. The large jumps in the position of the LCM are the result of seeing where it is relative to the stars every hour and thereby indicating the sidereal time for the corresponding ZT indicated at the top of the screen. This eastward motion of the LCM is an alternative way of representing diurnal motion of the celestial sphere westward relative to the LCM. Recall that the parallels of declination are the diurnal circles. Now we shall animate the Moon's daily motion in another way. From the main menu of SKYLAB2, select Lunamation. Then from the Lunamation Menu, select NO. 2, Diurnal Motion. Now a diagram will appear on the screen with three different panels. The center panel represents an observer-centered diagram of the horizon system, as seen projected into the plane of the prime vertical. The diurnal circles of the Sun and Moon are shown to be one and the same. The horizontal line with east on the left and west on the right is meant to represent the east-west line in the plane of the celestial horizon. The vertical line represents the plane of the LCM with upper transit at the top and lower transit at the bottom. The observer is located at the center of the diurnal circle. The animation depicts the diurnal motion of the Sun and Moon around the observer from east to west. This is the result of the rotation of the celestial sphere (or Earth). At the same time, the orbital motion of the moon around the Earth shows up as a slow eastward displacement of the moon relative to the Sun at the rate of 12.2 degrees per day (13.2 degrees per day with respect to the fixed stars). The angle between the Sun and the LCM indicates the local apparent solar time, LAT. The angle between the Sun and the moon, as

3 Exercise 13.0 measured along the circle of motion, is the Moon's elongation. This angle is related to the phase of the moon. The lower left panel shows a view of the phase of the Moon as we would see it in the sky. The panel on the lower right is a view of the Moon's position in its orbit relative to the Earth; the direction of the Sun is to the right. This view is from a point in space far above the plane of the Moon's orbit. At the top right of the screen are given the date and the ZT. Watch the animation continue through one lunar cycle or more, until you understand these motions. The animation can be stopped and started by pressing the space bar. Try to run the animation at a speed where you can stop the animation just as the moon rises or sets. Note that the time the moon rises or sets depends on the elongation or phase of the moon. Both of these events are retarded by about 48.8 minutes from the previous day (12.2 deg. x 4 min/deg.). When you have gained experience running the lunamation program, you are ready to advance to Part III. III. Assignment A. Determining the Lunar Orbital period Run the program Skymation with the step size set to 3 hours and a delay time of 0.6 seconds. Plot the stars and a grid. Now set Skylab to trail the Moon's motion (under Options) and then quickly press the space bar to halt the animation. Now get a printout (#1) On the answer sheet, write down the day and time (ZT) as answer No. 1. Also take careful note of the position of the Moon with respect to the stars and record the Moon's RA in hours and minutes and DEC. in degrees. Now start the animation and allow the Moon to complete exactly one orbit relative to the fixed stars and then press the space bar to stop the motion when the Moon returns to the position recorded above. Do not allow the moon to move past this point. You may have to practice before you are able to do this! Record the date and time when this happens on the answer sheet as No. 2 and get a hardcopy of the screen. The two dates that you have recorded will be analyzed later. B. Determining Moonrise and Moonset Now we shall investigate the diurnal and orbital motions of the Moon and the resulting changes in the Moon's elongation and rising and setting. To do this, run the Diurnal Motion program under Lunamation. Set the step size to 4 min. and the delay factor to 0.80 seconds. In this way you should be able to determine the time of moonrise or moonset with a precision of 4 minutes. Now run the program and stop the animation when the center of the moon is just rising or setting (at the East or West Point) for the date assigned to you. Get a printout of this screen (#3). Now we shall watch the diurnal motion of the moon and planets in the horizon system. Exit Lunamation and activate the Skymation program. When the animation begins change the date to the one that is a few days earlier than the one you have been using above. Set the step size to 4 min. and the delay factor to 0.80 sec. After you return to the animation again, type "C" to open the coordinates menu, then select "Horizon" and press Enter. Now pan up by 15 o, and then zoom out by a factor of 3. This will provide a more panoramic view of the horizon system. Allow the animation to run and watch the planets move along their diurnal circles relative to the horizon and LCM. The latter is the red vertical line fixed at azimuth 180. Recall that

5 Exercise 13.0 No. 9. Convert the above hour angle of the Sun to hours and minutes of time using the angular rate of rotation of the Earth, as you did for the Moon s elongation. Record this on the answer page. NO. 10. Now use this value and the equation: 12:00 +סּLAT=HA to compute the LAT for the Moon to rise or set another way. Show this calculation in the top, right corner of chart #3, following each step exactly as shown on the sample chart. Also record your answer on the answer page. The answers to No. 7 and No. 10 should agree within 4 minutes. Compare these results with the value of the ZT displayed at the top right of the chart. The difference between the ZT and your two values may differ by up to 90 minutes or so. Part of this difference is the equation of time (Exercise 8.0). There are also contributions from the obliquity of the ecliptic, the inclination of the Moon's orbit, and the distortion of the Moon's diurnal circle on chart #3 introduced by the software and printer. Also compare the answer in No. 11 with your two calculated values. They may not agree with this either because of the assumptions necessary for the above equations to be valid. No. 11 is probably the most accurate value.

6 Exercise 13.0 Lunar Motion Answer Sheet 1. Date to begin Moon's motion: Date ; ZT. Moon's position on printout 1: RA ; DEC. 2. Date of end of Moon's motion: Date ; ZT. 3. Time for one lunar orbit in days and decimal parts thereof:. 4. Name of Period (See Sec. I):. 5 Lunar Elongation in degrees as measured on printout #3:. 6. Above elongation of the Moon converted to hours and minutes:. 7. Calculated LAT of Moon rise/set using the equation of Sec. I:. 8. Hour angle of the Sun in degrees as measured on printout #3:. 9. Hour angle of the Sun converted to hours and minutes:. 10. Computed Lat from above hour angle of Sun:. 11. Moonrise/set from horizon system printout (#4):. Show here the details of the calculation for the answer to #3:

7

### Lesson 1: Phases of the Moon

Lesson 1: Phases of the Moon The moon takes 29.5 days to revolve around the earth. During this time, the moon you see in the sky appears to change shape. These apparent changes, which are called phases,

### Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)

Lecture 3: Motions of the and Moon ecliptic (path of ) ecliptic (path of ) The 23.5 degree tilt of Earth s spin axis relative to its orbital axis around the causes the seasons Celestial Sphere Celestial

### Basic Coordinates & Seasons Student Guide

Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to

### The ecliptic - Earth s orbital plane

The ecliptic - Earth s orbital plane The line of nodes descending node The Moon s orbital plane Moon s orbit inclination 5.45º ascending node celestial declination Zero longitude in the ecliptic The orbit

### Activity 3: Observing the Moon

Activity 3: Observing the Moon Print Name: Signature: 1.) KEY. 2.). 3.). 4.). Activity: Since the dawn of time, our closest neighbor the moon has fascinated humans. In this activity we will explore the

### EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

### Lunar Phase Simulator Student Guide

Name: Lunar Phase Simulator Student Guide Part I: Background Material Answer the following questions after reviewing the background pages for the simulator. Page 1 Introduction to Moon Phases Is there

### Celestial Observations

Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)

### Newton s Law of Gravity

Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

### Coordinate Systems. Orbits and Rotation

Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million

### Douglas Adams The Hitchhikers Guide to the Galaxy

There is a theory which states that if ever anybody discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.

### Night Sky III Planetary Motion Lunar Phases

Night Sky III Planetary Motion Lunar Phases Astronomy 1 Elementary Astronomy LA Mission College Spring F2015 Quotes & Cartoon of the Day Everything has a natural explanation. The moon is not a god, but

### Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

### Astromechanics. 1 solar day = 1.002737909350795 sidereal days

Astromechanics 13. Time Considerations- Local Sidereal Time The time that is used by most people is that called the mean solar time. It is based on the idea that if the Earth revolved around the Sun at

### SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF SECOND GRADE UNIVERSE WEEK 1. PRE: Discovering stars. LAB: Analyzing the geometric pattern of constellations. POST: Exploring

### Measuring Your Latitude from the Angle of the Sun at Noon

Measuring Your Latitude from the Angle of the Sun at Noon Background: You can measure your latitude in earth's northern hemisphere by finding out the altitude of the celestial equator from the southern

### Orientation to the Sky: Apparent Motions

Chapter 2 Orientation to the Sky: Apparent Motions 2.1 Purpose The main goal of this lab is for you to gain an understanding of how the sky changes during the night and over the course of a year. We will

### The following questions refer to Chapter 19, (PAGES 259 278 IN YOUR MANUAL, 7 th ed.)

GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Locating the Planets (Chapter 19) and the Moon and Sun (Chapter 21) For this assignment you will require: a calculator, colored pencils, a metric

### CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

### Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

### ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS SYNOPSIS: The objective of this lab is to become familiar with the apparent motions of the Sun, Moon, and stars in the Boulder sky. EQUIPMENT:

### The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends

### The Analemma for Latitudinally-Challenged People

The Analemma for Latitudinally-Challenged People Teo Shin Yeow An academic exercise presented in partial fulfillment for the degree of Bachelor of Science with Honours in Mathematics Supervisor : Associate

### CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before

### 1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year X d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

### FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring

### Stellarium a valuable resource for teaching astronomy in the classroom and beyond

Stellarium 1 Stellarium a valuable resource for teaching astronomy in the classroom and beyond Stephen Hughes Department of Physical and Chemical Sciences, Queensland University of Technology, Gardens

### Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality

### 5- Minute Refresher: Daily Observable Patterns in the Sky

5- Minute Refresher: Daily Observable Patterns in the Sky Key Ideas Daily Observable Patterns in the Sky include the occurrence of day and night, the appearance of the moon, the location of shadows and

### Moon Phases and Tides in the Planning the D-Day Invasion Part I: The Phases of the Moon

The Science and Technology of WWII Moon Phases and Tides in the Planning the D-Day Invasion Part I: The Phases of the Moon Objectives: 1. Students will determine what causes the moon to go through a cycle

### Sun Earth Relationships

1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation

### Penn State University Physics 211 ORBITAL MECHANICS 1

ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there

### Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...

### An Introduction to Astronomy and Cosmology. 1) Astronomy - an Observational Science

An Introduction to Astronomy and Cosmology 1) Astronomy - an Observational Science Why study Astronomy 1 A fascinating subject in its own right. The origin and Evolution of the universe The Big Bang formation

### GOTOSTAR HAND CONTROLLER AND DUAL-AXIS DC SERVO-MOTOR DRIVER

GOTOSTAR HAND CONTROLLER AND DUAL-AXIS DC SERVO-MOTOR DRIVER The new GOTOSTAR hand controller and our specially designed dual-axis DC servomotor driver is our new patent product. The controlling accuracy

### Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?

Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the

### Objectives After completing this section, you should be able to:

Chapter 5 Section 1 Lesson Angle Measure Objectives After completing this section, you should be able to: Use the most common conventions to position and measure angles on the plane. Demonstrate an understanding

### The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

### Seasons on Earth LESSON

LESSON 4 Seasons on Earth On Earth, orange and red autumn leaves stand out against the blue sky. NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA) PHOTO LIBRARY/NOAA CENTRAL LIBRARY INTRODUCTION Nearly

### Tropical Horticulture: Lecture 2

Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of

### Earth-Sun Relationships. The Reasons for the Seasons

Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide

### www.mhhe.com/fix Sunrise from Earth orbit by the crew of the STS-47 Space Shuttle Mission. I pray the gods to quit me of my toils,

Confirming Proofs I pray the gods to quit me of my toils, To close the watch I keep this livelong year; For as a watch-dog lying, not at rest, Propped on one arm, upon the palace roof Of Atreus race, too

### Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Purpose To help students understand how solar radiation varies (duration and intensity) during

### A Dialogue Box. dialogue box.

The Sky An introduction and review 1. Open TheSky (version 6, the blue icon). The screen should show the view of the sky looking due south. Even if the sun is above the horizon, the sky will look black

### Astrock, t he A stronomical Clock

Astrock, t he A stronomical Clock The astronomical clock is unlike any other clock. At first glance you ll find it has similar functions of a standard clock, however the astronomical clock can offer much

### Exploration of the Solar System

Exploration of the Solar System I. Phases of the Moon all about perspective. In this section you will use WWT to explore how the moon appears to change phases from our vantage point on Earth over the course

### Explain the Big Bang Theory and give two pieces of evidence which support it.

Name: Key OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric

### Earth In Space Chapter 3

Earth In Space Chapter 3 Shape of the Earth Ancient Greeks Earth casts a circular shadow on the moon during a lunar eclipse Shape of the Earth Ancient Greeks Ships were observed to disappear below the

### The Size & Shape of the Galaxy

name The Size & Shape of the Galaxy The whole lab consists of plotting two graphs. What s the catch? Aha visualizing and understanding what you have plotted of course! Form the Earth Science Picture of

### Phases of the Moon. Preliminaries:

Phases of the Moon Sometimes when we look at the Moon in the sky we see a small crescent. At other times it appears as a full circle. Sometimes it appears in the daylight against a bright blue background.

### ASTRONOMY 161. Introduction to Solar System Astronomy

ASTRONOMY 161 Introduction to Solar System Astronomy Seasons & Calendars Monday, January 8 Season & Calendars: Key Concepts (1) The cause of the seasons is the tilt of the Earth s rotation axis relative

### astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

### First Level: 2D Fundamentals. by Randy H. Shih Oregon Institute of Technology

AutoCAD 2008 Tutorial First Level: 2D Fundamentals by Randy H. Shih Oregon Institute of Technology MultiMedia CD by Jack Zecher Indiana University Purdue University Indianapolis SDC PUBLICATIONS Schroff

### Finding Stars and Constellations Earth & Sky

Finding Stars and Constellations Earth & Sky Name: Introduction If you carefully watched the night sky over a period of time, you would notice that it s not always the same. There are certain changes that

### Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Today FIRST HOMEWORK DUE NEXT TIME Seasons/Precession Recap Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy How do we mark the progression of the seasons? We define four special points: summer

### How To Understand General Relativity

Chapter S3 Spacetime and Gravity What are the major ideas of special relativity? Spacetime Special relativity showed that space and time are not absolute Instead they are inextricably linked in a four-dimensional

### Renewable Energy. Solar Power. Courseware Sample 86352-F0

Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this

APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working

### Geography I Pre Test #1

Geography I Pre Test #1 1. The sun is a star in the galaxy. a) Orion b) Milky Way c) Proxima Centauri d) Alpha Centauri e) Betelgeuse 2. The response to earth's rotation is a) an equatorial bulge b) polar

### Angular Velocity vs. Linear Velocity

MATH 7 Angular Velocity vs. Linear Velocity Dr. Neal, WKU Given an object with a fixed speed that is moving in a circle with a fixed ius, we can define the angular velocity of the object. That is, we can

### Tutorial - First Level: 2D Fundamentals

AutoCAD 2013 Prepares you for the Autodesk Certified Associate Exam Tutorial - First Level: 2D Fundamentals Randy H. Shih Multimedia DVD SDC PUBLICATIONS Schroff Development Corporation Better Textbooks.

### CHAPTER 18 TIME TIME IN NAVIGATION

CHAPTER 18 TIME TIME IN NAVIGATION 1800. Solar Time The Earth s rotation on its axis causes the Sun and other celestial bodies to appear to move across the sky from east to west each day. If a person located

### Solar Angles and Latitude

Solar Angles and Latitude Objectives The student will understand that the sun is not directly overhead at noon in most latitudes. The student will research and discover the latitude ir classroom and calculate

### The Earth Really is Flat! The Globe and Coordinate Systems. Long History of Mapping. The Earth is Flat. Long History of Mapping

The Earth Really is Flat! The Globe and Coordinate Systems Intro to Mapping & GIS The Earth is Flat Day to day, we live life in a flat world sun rises in east, sets in west sky is above, ground is below

### Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

### SIERRA COLLEGE OBSERVATIONAL ASTRONOMY LABORATORY EXERCISE NUMBER III.F.a. TITLE: ASTEROID ASTROMETRY: BLINK IDENTIFICATION

SIERRA COLLEGE OBSERVATIONAL ASTRONOMY LABORATORY EXERCISE NUMBER III.F.a. TITLE: ASTEROID ASTROMETRY: BLINK IDENTIFICATION DATE- PRINT NAME/S AND INITIAL BELOW: GROUP DAY- LOCATION OBJECTIVE: Use CCD

### Activity 10 - Universal Time

Activity 10 - Universal Time Teacher s Guide Scientists use the Universal Time reference to talk about data that is taken around the globe. Universal Time is the time kept in the time zone centered on

### The following words and their definitions should be addressed before completion of the reading:

Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center

### Experiment 9. The Pendulum

Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

### Barycenter of Solar System Earth-Moon barycenter? Moon orbits what?

Barycenter of Solar System Earth-Moon barycenter? Moon orbits what? Dr. Scott Schneider Friday Feb 24 th, 2006 Sponsored by the Society of Physics Students (SPS) Webpage : http://qbx6.ltu.edu/s_schneider/astro/astroweek_2006.shtml

### Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

### INDEPENDENT PROJECT: The Spring Night Sky

INDEPENDENT PROJECT: The Spring Night Sky Your Name: What is the difference between observing and looking? As John Rummel said to the Madison Astronomical Society, January 11, 2002: Looking implies a passive

### Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

### 4 The Rhumb Line and the Great Circle in Navigation

4 The Rhumb Line and the Great Circle in Navigation 4.1 Details on Great Circles In fig. GN 4.1 two Great Circle/Rhumb Line cases are shown, one in each hemisphere. In each case the shorter distance between

### Solstice and Equinox ( Suntrack ) Season Model

Solstice and Equinox ( Suntrack ) Season Model Philip Scherrer & Deborah Scherrer, Stanford Solar Center Introduction This physical model simulates the Sun s tracks across the sky at summer solstice (longest

### Observing the Constellations of the Zodiac

Observing the Constellations of the Zodiac Activity UCIObs 3 Grade Level: 8 12 Source: Copyright (2009) by Tammy Smecker Hane. Contact tsmecker@uci.edu with any questions. Standards:This activity addresses

### Determining Polar Axis Alignment Accuracy

Determining Polar Axis Alignment Accuracy by Frank Barrett 7/6/008 Abstract: In order to photograph dim celestial objects, long exposures on the order of minutes or hours are required. To perform this

### Stellar, solar, and lunar demonstrators

Stellar, solar, and lunar demonstrators Rosa M. Ros, Francis Berthomieu International Astronomical Union, Technical University of Catalonia (Barcelona, España), CLEA (Nice, France) Summary This worksheet

### The Lunar Phase Wheel

The Lunar Phase Wheel A lunar phase wheel is a simple device to help you to visualize the positions of the Earth, Moon, and Sun at various times of the day or month, and then predict the phases and the

### - Time-lapse panorama - TWAN (The World At Night) - Astro-Panoramic Photography

User manual for PHOTOROBOT Photo Robot is a simple, small, lightweight (only 900g), but very reliable panoramic and astro photo head. It is motorised and allows quick and easy entry to all three "exotic"

### 2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit

### Where on Earth are the daily solar altitudes higher and lower than Endicott?

Where on Earth are the daily solar altitudes higher and lower than Endicott? In your notebooks, write RELATIONSHIPS between variables we tested CAUSE FIRST EFFECT SECOND EVIDENCE As you increase the time

### Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'.

is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - ''. Learning Connections Primary Science Interactives are teaching tools which have been created

### The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

### Earth, Moon, and Sun Study Guide. (Test Date: )

Earth, Moon, and Sun Study Guide Name: (Test Date: ) Essential Question #1: How are the Earth, Moon, and Sun alike and how are they different? 1. List the Earth, Moon, and Sun, in order from LARGEST to

### Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z +

Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Quick Review of Reflection Coefficient The Smith chart is a method of graphing reflection coefficients and impedance, and is often useful

### Chapter 3 The Science of Astronomy

Chapter 3 The Science of Astronomy Days of the week were named for Sun, Moon, and visible planets. What did ancient civilizations achieve in astronomy? Daily timekeeping Tracking the seasons and calendar

### Lecture L17 - Orbit Transfers and Interplanetary Trajectories

S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to

### Trajectory Design with STK/Astrogator. New Horizons Mission Tutorial

Trajectory Design with STK/Astrogator New Horizons Mission Tutorial STK/Astrogator New Horizons Mission Tutorial Page 2 Mission Overview In this tutorial, we will model a Mission to Pluto. Starting from

### Periods of Western Astronomy. Chapter 1. Prehistoric Astronomy. Prehistoric Astronomy. The Celestial Sphere. Stonehenge. History of Astronomy

Periods of Western Astronomy Chapter 1 History of Astronomy Western astronomy divides into 4 periods Prehistoric (before 500 B.C.) Cyclical motions of Sun, Moon and stars observed Keeping time and determining

### Local Sidereal Time is the hour angle of the First Point of Aries, and is equal to the hour angle plus right ascension of any star.

1 CHAPTER 7 TIME In this chapter we briefly discuss the several time scales that are in use in astronomy, such as Universal Time, Mean Solar Time, Ephemeris Time, Terrestrial Dynamical Time, and the several

### 1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead

### The Globe Latitudes and Longitudes

INDIAN SCHOOL MUSCAT MIDDLE SECTION DEPARTMENT OF SOCIAL SCIENCE The Globe Latitudes and Longitudes NAME: CLASS VI SEC: ROLL NO: DATE:.04.2015 I NAME THE FOLLOWING: 1. A small spherical model of the Earth:

### ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers pre-requisite material and should be skipped if you are

### Proffessor: J. C. Cersosimo

Proffessor: J. C. Cersosimo Objectives Student will: Recognize the Solar and Lunar calendar Demonstrate the how the Moon phases form Explain the main elements of an orbits Describe the orbit of the Earth

### INDEPENDENT PROJECT: The Spring Night Sky

INDEPENDENT PROJECT: The Spring Night Sky Your Name: What is the difference between observing and looking? As John Rummel said to the Madison Astronomical Society, January 11, 2002: Looking implies a passive

### What causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating

What are Tides? Tides are very long-period waves that move through the oceans as a result of the gravitational attraction of the Moon and the Sun for the water in the oceans of the Earth. Tides start in