hij Teacher Resource Bank GCE Chemistry PSA10: A2 Inorganic Chemistry Carry out a redox titration

Save this PDF as:

Size: px
Start display at page:

Download "hij Teacher Resource Bank GCE Chemistry PSA10: A2 Inorganic Chemistry Carry out a redox titration"

Transcription

1 hij Teacher Resource Bank GCE Chemistry : A2 Inorganic Chemistry Copyright 2009 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number ) and a registered charity (registered charity number ). Registered address: AQA, Devas Street, Manchester M15 6EX. Dr Michael Cresswell, Director General.

2 Technical Sheet To analyse iron tablets by titration using potassium manganate(vii) in acidic solution. Whenever possible, students should work individually. If it is essential to work in a pair or in a small group, because of the availability of apparatus, supervisors must be satisfied that they are able to assess the contribution from each student to the practical activity. Requirements Part 1 o weighing bottle or boat o five iron tablets o approximately 1 mol dm -3 sulfuric acid (50 cm 3 ) o 100 cm 3 conical flask with stopper Part 2 o filter funnel and paper o deionised or distilled water in a wash bottle o 100 cm 3 graduated (or volumetric) flask o burette o stand and clamp o 250 cm 3 beaker o 25 cm 3 pipette o pipette filler o 25 cm 3 measuring cylinder o Two 250 cm 3 conical flasks o mol dm -3 potassium manganate(vii) solution (150 cm 3 ) o approximately 1 mol dm -3 sulfuric acid (100 cm 3 ) The iron tablets commercially available are usually labelled 200mg and contain 65mg of iron in the form of soluble Fe(II) ions. The quantities here are based on this assumption. Centres may choose to scale up the experiment to work with 250 cm 3 graduated flasks. The potassium manganate(vii) solution needs to be a standard solution and could be exactly mol dm -3 Centres are expected to carry out and be responsible for their own safety risk assessments. klm Copyright 2008 AQA and its licensors. All rights reserved. 1

3 Student Sheet The analysis of iron tablets by titration using potassium manganate(vii) solution in acid. Introduction Iron tablets contain iron(ii) sulfate which is a soluble inexpensive form of 'iron supplement'. The experiment is to determine the percentage by mass of iron(ii) sulfate in each tablet. Iron(II) ions can be oxidised to iron(iii) ions by potassium manganate(vii) in acidic solution. In acidic conditions the deep purple solution of manganate(vii) ions is reduced to a very pale pink solution of manganese(ii) ions. This solution is so pale as to appear colourless when dilute and, in practice, the marked difference in colour between these two oxidation states is useful as an end-point for this redox reaction. The manganate(vii) ion accepts electrons and is reduced to colourless Mn 2+ ions according to the following half-equation. MnO 4 (aq) + 8H + (aq) + 5e Mn 2+ (aq) + 4H 2 O(l) purple colourless The electrons are provided by the iron(ii) ions which act as the reducing agent. Fe 2+ (aq) Fe 3+ (aq) + e The potassium manganate(vii) solution is added from the burette to the solution of the reducing agent and is immediately decolourised. As soon as the reducing agent is used up, the next drop of potassium manganate(vii) solution is not decolourised and colours the solution in the conical flask a pale purple colour (often described as a permanent pink colour). The end-point is the first appearance of this pale purple colour. Potassium manganate(vii) is therefore self-indicating and no other indicator is required. The acid used to provide H + (aq) is dilute sulfuric acid, which should always be in excess otherwise insoluble brown manganese(iv) oxide (MnO 2 ) will form. The method described in this experiment ensures that there is a large excess of sulfuric acid in each titration.

4 A2 Inorganic Chemistry It is the responsibility of the student to carry out and be responsible for their own safety risk assessment before carrying out this experiment. Wear safety glasses at all times. Assume that all of the reagents and liquids are toxic, corrosive and flammable. Experiment Part 1 a) Using a weighing bottle, weigh accurately five iron tablets. b) Place the iron tablets into a 100 cm 3 conical flask and add approximately 50 cm 3 of the 1 mol dm -3 sulfuric acid provided. c) Stopper the conical flask, shake its contents well and then leave the tablets to dissolve. This is a slow process and should be carried out at least one day before the titration is to be attempted. The outer coating of each tablet is insoluble in water, but slowly breaks down in the acidic solution. The solution will need filtering before carrying out the titration. Part 2 a) Without disturbing the residue, which will have settled to the bottom of the flask, carefully filter the solution directly into a 100 cm 3 graduated (volumetric) flask. b) Rinse the residue in the filter paper into the graduated flask using a small volume of de-ionised or distilled water. c) Add dilute sulfuric acid to make the solution in the graduated flask up to the mark. d) Ensure that the contents of the graduated flask are fully mixed. You now have an acidified solution of iron(ii) sulfate. e) Fill a burette with the mol dm -3 potassium manganate(vii) solution provided. f) Pour some of the contents of the graduated flask into a clean 250 cm 3 beaker and, using a 25 cm 3 pipette and a pipette filler, measure out a 25.0 cm 3 sample of the iron(ii) sulfate solution into a clean 250 cm 3 conical flask. g) Using a 25 cm 3 measuring cylinder, measure out 25 cm 3 of the 1 mol dm -3 sulfuric acid provided and add this to the contents of the conical flask. h) Titrate this acidified sample of iron(ii) sulfate solution by adding potassium manganate(vii) from the burette until the first permanent pink colour is seen. i) You will only be able to carry out three titrations and if you are careful, you should be able to obtain at least two results that are concordant. Record the three results that you obtain. j) Calculate and record the mean volume of potassium manganate(vii) solution used in the titration (the average titre). Show your working.

5 Analysing the data The ability to calculate the percentage by mass of iron in the iron tablets is NOT part of the PSA but this is a useful task to complete. Your teacher can help you with this part of the work. a) Combine the two half-equations (given in the introduction) to give the overall redox equation for the reaction that has taken place during the titration. b) Use your overall equation to determine the ratio of moles of manganate(vii) ions that react with iron(ii) ions. c) Use the average titre to calculate the moles of manganate(vii) ions which have been used in the titration. d) Calculate the amount, in moles, of iron(ii) ions in the 25 cm 3 sample of iron(ii) sulfate. e) Calculate the amount, in moles, of iron(ii) ions in the 100 cm 3 graduated flask at the start of the experiment. f) Calculate the mass of Fe in the original five iron tablets and hence the mass of Fe in one iron tablet. g) Compare your value for the mass of Fe with the information from the supplier about the composition of each iron tablet.

6 Teacher Notes and Marking Guidance The specific marking guidance in the specification is as follows 2 marks: All areas of the task are carried out competently. The burette is filled safely with the correct reagent (including below the tap) The pipette and filler, burette and conical flask are all used correctly. The titration results are concordant and the average titre is accurate. 1 mark: One of the areas of the task is performed poorly. The burette is filled with the incorrect reagent or the funnel is left in or the burette is not filled below the tap OR One of the pipette, pipette filler, burette or conical flask is used incorrectly OR The titration results are not concordant or the average titre is inaccurate. 0 marks: At least two of the areas of the task are performed poorly. The burette is filled with the incorrect reagent or the funnel is left in or the burette is not filled below the tap. One of either the pipette, filler, burette or conical flask is used incorrectly. The titration results are not concordant or the average titre is inaccurate. Guidance for Teachers Teachers are expected to exercise professional judgement in assessing the competence of their candidates in following the instructions. Candidates should have been given guidance in the correct use of equipment and this guidance can continue during the practical session for which this PSA forms a part. If, however, the guidance required is fundamental or frequent, then the student should not be awarded 2 marks. Judgement of 2 marks, 1 mark or 0 marks will depend on whether the candidate can achieve concordance and whether the result is judged accurate. Centres can judge accuracy either by comparing the student result with the known accurate value, assuming that this is certain. OR a teacher value for the titration taken using the same reagents and on the same day as the PSA. OR a class average which has excluded significant anomalies. In each case the student value should be judged sufficiently accurate provided it is within 2% of the value chosen by the teacher, against which the class is being compared. klm Copyright 2009 AQA and its licensors. All rights reserved. 5

7 A2 Inorganic Chemistry It is important to remember when marking these practical exercises that PSA is about student competence and that for a student to score full marks on this exercise perfection is neither expected nor required. In this exercise it would be harsh to withhold full marks if the student were to meet the specification criteria for 2 marks, but on one occasion were to leave the funnel in the top of the burette. 6 Copyright 2009 AQA and its licensors. All rights reserved. klm

GCE Chemistry PSA14: A2 Physical Chemistry Determine an equilibrium contstant

GCE Chemistry PSA14: A2 Physical Chemistry Determine an equilibrium contstant hij Teacher Resource Bank GCE Chemistry : A2 Physical Chemistry Determine an equilibrium contstant Copyright 2009 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance

More information

Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1

Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1 Experiment 10 Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1 E10-2 The task The goal of this experiment is to determine accurately the concentration of acetic acid in vinegar via volumetric

More information

Apparatus error for each piece of equipment = 100 x margin of error quantity measured

Apparatus error for each piece of equipment = 100 x margin of error quantity measured 1) Error Analysis Apparatus Errors (uncertainty) Every time you make a measurement with a piece of apparatus, there is a small margin of error (i.e. uncertainty) in that measurement due to the apparatus

More information

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked. GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all

More information

OXIDATION-REDUCTION TITRATIONS-Permanganometry

OXIDATION-REDUCTION TITRATIONS-Permanganometry Experiment No. Date OXIDATION-REDUCTION TITRATIONS-Permanganometry INTRODUCTION Potassium permanganate, KMnO 4, is probably the most widely used of all volumetric oxidizing agents. It is a powerful oxidant

More information

Simulation of the determination of lead azide content in waste water from explosives manufacture

Simulation of the determination of lead azide content in waste water from explosives manufacture Simulation of the determination of lead azide content in waste water from explosives manufacture Lead azide ranks in the category of intensive explosives, which may, even in an insignificant amount, initiate

More information

Estimation of Alcohol Content in Wine by Dichromate Oxidation followed by Redox Titration

Estimation of Alcohol Content in Wine by Dichromate Oxidation followed by Redox Titration Sirromet Wines Pty Ltd 850-938 Mount Cotton Rd Mount Cotton Queensland Australia 4165 www.sirromet.com Courtesy of Jessica Ferguson Assistant Winemaker & Chemist Downloaded from seniorchem.com/eei.html

More information

hij GCSE Additional Science Chemistry 2 Foundation Tier Chemistry 2F SPECIMEN MARK SCHEME Version 1.0

hij GCSE Additional Science Chemistry 2 Foundation Tier Chemistry 2F SPECIMEN MARK SCHEME Version 1.0 hij GCSE Additional Science Chemistry 2 Foundation Tier Chemistry 2F SPECIMEN MARK SCHEME Version.0 Copyright 20 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance (AQA)

More information

(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid

(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid The Determination of Hypochlorite in Bleach Reading assignment: Chang, Chemistry 10 th edition, pages 156-159. We will study an example of a redox titration in order to determine the concentration of sodium

More information

TITRATION OF VITAMIN C

TITRATION OF VITAMIN C TITRATION OF VITAMIN C Introduction: In this lab, we will be performing two different types of titrations on ascorbic acid, more commonly known as Vitamin C. The first will be an acid-base titration in

More information

Coordination Compounds with Copper (II) Prelab (Week 2)

Coordination Compounds with Copper (II) Prelab (Week 2) Coordination Compounds with Copper (II) Prelab (Week 2) Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Write the generic chemical formula for the coordination

More information

Final. Mark Scheme. Chemistry CHEM5. (Specification 2420) Unit 5: Energetics, Redox and Inorganic Chemistry

Final. Mark Scheme. Chemistry CHEM5. (Specification 2420) Unit 5: Energetics, Redox and Inorganic Chemistry Version.2 General Certificate of Education (A-level) January 202 Chemistry CHEM5 (Specification 2420) Unit 5: Energetics, Redox and Inorganic Chemistry Final Mark Scheme Mark schemes are prepared by the

More information

Report on the Examination

Report on the Examination Version 1.0 General Certificate of Education (A-level) June Chemistry CHEM5 (Specification 2420) Unit 5: Energetics, Redox and Inorganic Chemistry Report on the Examination Further copies of this Report

More information

Calcium Analysis by EDTA Titration

Calcium Analysis by EDTA Titration Calcium Analysis by EDTA Titration ne of the factors that establish the quality of a water supply is its degree of hardness. The hardness of water is defined in terms of its content of calcium and magnesium

More information

Standardization of Potassium Permanganate solution with Standard Sodium Oxalate Solution.

Standardization of Potassium Permanganate solution with Standard Sodium Oxalate Solution. Experiment Number: 07 Name of the experiment: Standardization of Potassium Permanganate solution with Standard Sodium Oxalate Solution. Course: Chem-114 Name: Noor Nashid Islam Roll: 0105044 Group: A2

More information

Syllabus OC18 Use litmus or a universal indicator to test a variety of solutions, and classify these as acidic, basic or neutral

Syllabus OC18 Use litmus or a universal indicator to test a variety of solutions, and classify these as acidic, basic or neutral Chemistry: 9. Acids and Bases Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OC18 Use litmus or a universal indicator to test a variety

More information

Paper 1 (7404/1): Inorganic and Physical Chemistry Mark scheme

Paper 1 (7404/1): Inorganic and Physical Chemistry Mark scheme AQA Qualifications AS Chemistry Paper (7404/): Inorganic and Physical Chemistry Mark scheme 7404 Specimen paper Version 0.6 MARK SCHEME AS Chemistry Specimen paper Section A 0. s 2 2s 2 2p 6 3s 2 3p 6

More information

Determination of Aspirin using Back Titration

Determination of Aspirin using Back Titration Determination of Aspirin using Back Titration This experiment is designed to illustrate techniques used in a typical indirect or back titration. You will use the NaH you standardized last week to back

More information

Vitamin C Content of Fruit Juice

Vitamin C Content of Fruit Juice 1 Vitamin C Content of Fruit Juice Introduction Vitamin C Vitamins are organic compounds that have important biological functions. For instance, in humans they enable a variety of enzymes in the body to

More information

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container.

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container. TITRATION: STANDARDIZATION OF A BASE AND ANALYSIS OF STOMACH ANTACID TABLETS 2009, 1996, 1973 by David A. Katz. All rights reserved. Reproduction permitted for education use provided original copyright

More information

GCSE Further Additional Science. Higher Tier. Unit 2 Chemistry 3H SPECIMEN MARK SCHEME V1

GCSE Further Additional Science. Higher Tier. Unit 2 Chemistry 3H SPECIMEN MARK SCHEME V1 GCSE Further Additional Science Higher Tier Unit 2 Chemistry 3H SPECIMEN MARK SCHEME V Copyright 202 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance (AQA) is a company

More information

The Determination of Acid Content in Vinegar

The Determination of Acid Content in Vinegar The Determination of Acid Content in Vinegar Reading assignment: Chang, Chemistry 10 th edition, pages 153-156. Goals We will use a titration to determine the concentration of acetic acid in a sample of

More information

4.0 EXPERIMENT ON DETERMINATION OF CHLORIDES

4.0 EXPERIMENT ON DETERMINATION OF CHLORIDES 4.0 EXPERIMENT ON DETERMINATION OF CHLORIDES Sl. No. Contents Preamble 4.1 Aim 4.2 Introduction 4.2.1 Environmental Significance 4.3 Principle 4.4 Materials Required 4.4.1 Apparatus Required 4.4.2 Chemicals

More information

Chapter 16: Tests for ions and gases

Chapter 16: Tests for ions and gases The position of hydrogen in the reactivity series Hydrogen, although not a metal, is included in the reactivity series because it, like metals, can be displaced from aqueous solution, only this time the

More information

Lab #10 How much Acetic Acid (%) is in Vinegar?

Lab #10 How much Acetic Acid (%) is in Vinegar? Lab #10 How much Acetic Acid (%) is in Vinegar? SAMPLE CALCULATIONS NEED TO BE DONE BEFORE LAB MEETS!!!! Purpose: You will determine the amount of acetic acid in white vinegar (sold in grocery stores)

More information

80. Testing salts for anions and cations

80. Testing salts for anions and cations Classic chemistry experiments 203 80. Testing salts for anions and cations Topic Qualitative analysis. Timing Description 12 hours. Students attempt to identify the anions and cations present in a salt

More information

Final. Mark Scheme. Chemistry CHEM5. (Specification 2420) Unit 5: Energetics, Redox and Inorganic Chemistry

Final. Mark Scheme. Chemistry CHEM5. (Specification 2420) Unit 5: Energetics, Redox and Inorganic Chemistry Version.4 General Certificate of Education (A-level) January 203 Chemistry CHEM5 (Specification 2420) Unit 5: Energetics, Redox and Inorganic Chemistry Final Mark Scheme Mark schemes are prepared by the

More information

39. The determination of copper in brass

39. The determination of copper in brass Microscale Chemistry 163 39. The determination of copper in brass Topic Level Timing Description Metals chemical analysis. Post-16. 25 min. Apparatus (per group) In this experiment students dissolve some

More information

PART I: PREPARATION OF SOLUTIONS AND STANDARDIZATION OF A BASE

PART I: PREPARATION OF SOLUTIONS AND STANDARDIZATION OF A BASE TITRATION: STANDARDIZATION OF A BASE AND ANALYSIS OF STOMACH ANTACID TABLETS 2009, 1996, 1973 by David A. Katz. All rights reserved. Reproduction permitted for education use provided original copyright

More information

Experiment 7: Titration of an Antacid

Experiment 7: Titration of an Antacid 1 Experiment 7: Titration of an Antacid Objective: In this experiment, you will standardize a solution of base using the analytical technique known as titration. Using this standardized solution, you will

More information

Acid Base Titrations

Acid Base Titrations Acid Base Titrations Introduction A common question chemists have to answer is how much of something is present in a sample or a product. If the product contains an acid or base, this question is usually

More information

Determination of a Chemical Formula

Determination of a Chemical Formula 1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

More information

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND #3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric

More information

ANALYSIS OF VITAMIN C

ANALYSIS OF VITAMIN C Purpose To learn how to analyze food for vitamin C content and to examine various sources for vitamin C content. Caution Handle the glassware with caution to prevent breakage. When using a burner in the

More information

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT --------------------------------------------------------------------------------------------------------------------------------------------

More information

A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach

A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach CHEM 311L Quantitative Analysis Laboratory Revision 2.3 A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach In this laboratory exercise, we will determine the concentration of the active

More information

MEASUREMENTS AND ERRORS

MEASUREMENTS AND ERRORS Measurements 1 MESUREMENTS ND ERRORS ccuracy Error Precision Uncertainty Reliability measure of the closeness of agreement between an individual result and the accepted value. n accurate result is in close

More information

EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT

EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT PURPOSE: 1. To determine experimentally the molar solubility of potassium acid tartrate in water and in a solution of potassium nitrate. 2. To examine the effect of a common ion on the solubility of slightly

More information

Leaving Certificate Chemistry Student Laboratory Notebook. Suggested Answers. by Declan Kennedy and Don O Shea

Leaving Certificate Chemistry Student Laboratory Notebook. Suggested Answers. by Declan Kennedy and Don O Shea Leaving Certificate Chemistry Student Laboratory Notebook Suggested Answers by Declan Kennedy and Don O Shea Experiment 3.2. To carry out flame tests with salts of lithium, sodium, potassium, barium, strontium

More information

The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all deodorants contain aluminium chlorohydrate:

The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all deodorants contain aluminium chlorohydrate: Engineeringfragrance make a deodorant practical activity 2 student instructions page 1 of 5 chemical compounds The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all

More information

5.0 EXPERIMENT ON DETERMINATION OF TOTAL HARDNESS

5.0 EXPERIMENT ON DETERMINATION OF TOTAL HARDNESS 5.0 EXPERIMENT ON DETERMINATION OF TOTAL HARDNESS Sl. No. Contents Preamble 5.1 Aim 5.2 Introduction 5.2.1 Environmental Significance 5.3 Principle 5.4 Materials Required 5.4.1 Apparatus Required 5.4.2

More information

Lab 25. Acid-Base Titration and Neutralization Reactions: What Is the Concentration of Acetic Acid in Each Sample of Vinegar?

Lab 25. Acid-Base Titration and Neutralization Reactions: What Is the Concentration of Acetic Acid in Each Sample of Vinegar? Lab 25. Acid-Base Titration and Neutralization Reactions: What Is the Concentration of Acetic Acid in Each Sample of Vinegar? Introduction Vinegar is basically a solution of acetic acid (CH3COOH). It is

More information

EDTA Titrations 1: Standardization of EDTA and Analysis of Zinc in a Supplement Tablet. by Professor David Cash. September, 2008

EDTA Titrations 1: Standardization of EDTA and Analysis of Zinc in a Supplement Tablet. by Professor David Cash. September, 2008 CHEMICAL, ENVIRONMENTAL, AND BIOTECHNOLOGY DEPARTMENT EDTA Titrations 1: Standardization of EDTA and Analysis of Zinc in a Supplement Tablet by Professor David Cash September, 2008 Mohawk College is the

More information

CSUS Department of Chemistry Experiment 8 Chem.1A

CSUS Department of Chemistry Experiment 8 Chem.1A EXPERIMENT #8 Name: PRE-LABORATORY ASSIGNMENT: Lab Section 1. The alkali metals are so reactive that they react directly with water in the absence of acid. For example, potassium reacts with water as follows:

More information

Determination of Citric Acid in Powdered Drink Mixes

Determination of Citric Acid in Powdered Drink Mixes Determination of Citric Acid in Powdered Drink Mixes Citric acid and its salts (sodium citrate and potassium citrate) are found in many foods, drinks, pharmaceuticals, shampoos, and cosmetics. The tartness

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

To determine the mass of iron in one adult dose of either a ferrous sulfate or. ferrous gluconate iron supplement using a colorimetric technique.

To determine the mass of iron in one adult dose of either a ferrous sulfate or. ferrous gluconate iron supplement using a colorimetric technique. Lab: Colorimetric Analysis of Iron in Iron Supplements Purpose To determine the mass of iron in one adult dose of either a ferrous sulfate or ferrous gluconate iron supplement using a colorimetric technique.

More information

Juice Titration. Background. Acid/Base Titration

Juice Titration. Background. Acid/Base Titration Juice Titration Background Acids in Juice Juice contains both citric and ascorbic acids. Citric acid is used as a natural preservative and provides a sour taste. Ascorbic acid is a water-soluble vitamin

More information

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4) Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

More information

GCE AS and A Level. Chemistry. AS exams 2009 onwards A2 exams 2010 onwards. Unit 2: Specimen mark scheme. Version 1.1

GCE AS and A Level. Chemistry. AS exams 2009 onwards A2 exams 2010 onwards. Unit 2: Specimen mark scheme. Version 1.1 GCE AS and A Level Chemistry AS exams 2009 onwards A2 exams 2010 onwards Unit 2: Specimen mark scheme Version 1.1 Version 1.1: 07/07 abc General Certificate of Education Chemistry 2420 CHEM2 Chemistry

More information

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

hij GCSE Additional Science Chemistry 2 Higher Tier Chemistry 2H SPECIMEN MARK SCHEME Version 1.0

hij GCSE Additional Science Chemistry 2 Higher Tier Chemistry 2H SPECIMEN MARK SCHEME Version 1.0 hij GCSE Additional Science Chemistry 2 Higher Tier Chemistry 2H SPECIMEN MARK SCHEME Version.0 Copyright 20 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance (AQA)

More information

The introduction of your report should be written on the on the topic of the role of indicators on acid base titrations.

The introduction of your report should be written on the on the topic of the role of indicators on acid base titrations. Experiment # 13A TITRATIONS INTRODUCTION: This experiment will be written as a formal report and has several parts: Experiment 13 A: Basic methods (accuracy and precision) (a) To standardize a base (~

More information

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD Objective To gain familiarity with basic laboratory procedures, some chemistry of a typical transition element, and the concept of percent yield. Apparatus

More information

hij GCSE Additional Science 2 Foundation Tier Unit 6F SPECIMEN MARK SCHEME Version 1.0

hij GCSE Additional Science 2 Foundation Tier Unit 6F SPECIMEN MARK SCHEME Version 1.0 hij GCSE Additional Science 2 Foundation Tier Unit 6F SPECIMEN MARK SCHEME Version.0 Copyright 20 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance (AQA) is a company

More information

JUNIOR COLLEGE CHEMISTRY DEPARTMENT EXPERIMENT 21 SECOND YEAR PRACTICAL. Name: Group: Date: THE CHEMISTRY OF COPPER AND IRON

JUNIOR COLLEGE CHEMISTRY DEPARTMENT EXPERIMENT 21 SECOND YEAR PRACTICAL. Name: Group: Date: THE CHEMISTRY OF COPPER AND IRON JUNIOR COLLEGE CHEMISTRY DEPARTMENT EXPERIMENT 21 SECOND YEAR PRACTICAL Name: Group: Date: COPPER THE CHEMISTRY OF COPPER AND IRON 1. To a solution of Cu 2+ ions add aqueous sodium hydroxide and heat the

More information

EXPERIMENT 10: TITRATION AND STANDARDIZATION

EXPERIMENT 10: TITRATION AND STANDARDIZATION EXPERIMENT 10: TITRATION AND STANDARDIZATION PURPOSE To determine the molarity of a NaOH solution by titrating it with a standard HCl solution. To determine the molarity of acetic acid in vinegar using

More information

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide below. HF (aq) + NaOH (aq) H2O (l) + NaF (aq)

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide below. HF (aq) + NaOH (aq) H2O (l) + NaF (aq) Weak Acid Titration v120413 You are encouraged to carefully read the following sections in Tro (2 nd ed.) to prepare for this experiment: Sec 4.8, pp 158-159 (Acid/Base Titrations), Sec 16.4, pp 729-43

More information

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration.

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration. S HIFT INTO NEUTRAL 15. Acid-Base Titration Shift into Neutral Student Instruction Sheet Challenge Discover the concentration of an unknown acid solution using acid-base titration. Equipment and Materials

More information

Colorimetric Determination of Iron in Vitamin Tablets

Colorimetric Determination of Iron in Vitamin Tablets Cautions: 6 M hydrochloric acid is corrosive. Purpose: To colorimetrically determine the mass of iron present in commercial vitamin tablets using a prepared calibration curve. Introduction: Iron is considered

More information

Determination of the amount of sodium carbonate and sodium hydroxide in a mixture by titration.

Determination of the amount of sodium carbonate and sodium hydroxide in a mixture by titration. Module 9 : Experiments in Chemistry Lecture 38 : Titrations : Acid-Base, Redox and Complexometric Objectives In this lecture you will learn the techniques to do following Determination of the amount of

More information

Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

More information

Practical Lesson No 4 TITRATIONS

Practical Lesson No 4 TITRATIONS Practical Lesson No 4 TITRATIONS Reagents: 1. NaOH standard solution 0.1 mol/l 2. H 2 SO 4 solution of unknown concentration 3. Phenolphthalein 4. Na 2 S 2 O 3 standard solution 0.1 mol/l 5. Starch solution

More information

18 Conductometric Titration

18 Conductometric Titration Lab Activity 18 CONDUCTOMETRIC TITRATION LAB ACTIVITY 18 Conductometric Titration Background Titration is the a method of determining the concentration of an unknown solution (the analyte) by reacting

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole Topic 4 National Chemistry Summary Notes Formulae, Equations, Balancing Equations and The Mole LI 1 The chemical formula of a covalent molecular compound tells us the number of atoms of each element present

More information

BACKGROUND INFORMATION

BACKGROUND INFORMATION BACKGROUND INFORMATION It is often important to measure the concentration of glucose in a solution. The so-called ISOTONIC drinks can be tested to see if they are in fact isotonic with the blood. You may

More information

REACTIONS OF SOME TRANSITION METAL IONS

REACTIONS OF SOME TRANSITION METAL IONS Transition Metals 2815 1 REACTIONS OF SOME TRANSITION METAL IONS COBALT Cobalt(II) aqueous solutions contain the pink, octahedral hexaaquacobalt(ii) ion. hexaaqua ions can also be present in solid samples

More information

Additional Lecture: TITRATION BASICS

Additional Lecture: TITRATION BASICS Additional Lecture: TITRATION BASICS 1 Definition and Applications Titration is the incremental addition of a reagent solution (called titrant) to the analyte until the reaction is complete Common applications:

More information

How to prepare standard solutions

How to prepare standard solutions World Bank & Government of The Netherlands funded Training module # WQ -04 How to prepare standard solutions New Delhi, May 1999 CSMRS Building, 4th Floor, Olof Palme Marg, Hauz Khas, New Delhi 11 00 16

More information

ANALYSIS OF FOOD AND NATURAL PRODUCTS LABORATORY EXERCISE

ANALYSIS OF FOOD AND NATURAL PRODUCTS LABORATORY EXERCISE ANALYSIS OF FOOD AND NATURAL PRODUCTS LABORATORY EXERCISE Determination of total nitrogen in food and crude protein calculation (Kjeldahl method) Responsible person: Assoc.Prof. Ing.Kateřina Riddellová,

More information

Analysis of Vitamin C Using Iodine. Introduction

Analysis of Vitamin C Using Iodine. Introduction Analysis of Vitamin C Using Iodine Introduction Vitamin C (ascorbic acid) is oxidized to dehydroascorbic acid using a mild oxidizing agent such as iodine. The oxidation is a two- electron process, following

More information

Mass of thoroughly dried filter paper. Mass of filter paper + precipitate after third drying. Mass of filter paper + precipitate after second drying

Mass of thoroughly dried filter paper. Mass of filter paper + precipitate after third drying. Mass of filter paper + precipitate after second drying Mass of KI tablet Mass of thoroughly dried filter paper Mass of filter paper + precipitate after first drying Mass of filter paper + precipitate after second drying Mass of filter paper + precipitate after

More information

Synthesis of Aspirin and Oil of Wintergreen

Synthesis of Aspirin and Oil of Wintergreen Austin Peay State University Department of hemistry hem 1121 autions Purpose Introduction Acetic Anhydride corrosive and a lachrymator all transfers should be done in the vented fume hood Methanol, Ethanol

More information

REACTIONS OF SOME TRANSITION METAL IONS COBALT

REACTIONS OF SOME TRANSITION METAL IONS COBALT Transition Metals 1 REACTIONS OF SOME TRANSITION METAL IONS COBALT Cobalt(II) aqueous solutions contain the pink, octahedral hexaaquacobalt(ii) ion hexaaqua ions can also be present in solid samples of

More information

Separation by Solvent Extraction

Separation by Solvent Extraction Experiment 3 Separation by Solvent Extraction Objectives To separate a mixture consisting of a carboxylic acid and a neutral compound by using solvent extraction techniques. Introduction Frequently, organic

More information

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 OBJECTIVE The objective of this experiment will be the standardization of sodium hydroxide using potassium hydrogen phthalate by the titration

More information

Newton s Chymistry of Metal Solubilities

Newton s Chymistry of Metal Solubilities Newton s Chymistry of Metal Solubilities Introduction and Background Sir Isaac Newton (1642-1727) is a famous name, of course, but few people realize that the man who discovered the law of universal gravitation,

More information

Where the exp subscripts refer to the experimental temperature and pressure acquired in the laboratory.

Where the exp subscripts refer to the experimental temperature and pressure acquired in the laboratory. Molar Volume of Carbon Dioxide Reading assignment: Julia Burdge, Chemistry 3rd edition, Chapter 10. Goals To determine the molar volume of carbon dioxide gas and the amount of sodium carbonate in a sample.

More information

Petri Dish Electrolysis Electrolysis Reactions

Petri Dish Electrolysis Electrolysis Reactions elearning 2009 Introduction Petri Dish Electrolysis Electrolysis Reactions Publication No. 95008 Electrolysis is defined as the decomposition of a substance by means of an electric current. When an electric

More information

Chemistry 119: Experiment 7. Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets

Chemistry 119: Experiment 7. Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets Chemistry 119: Experiment 7 Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets Vitamin C is another name for ascorbic acid (C 6 H 8 O 6, see below ), a weak acid that can be determined by titration

More information

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT -----------------------------------------------------------------------------------------------------------------------------

More information

SOLUBILITY, IONIC STRENGTH AND ACTIVITY COEFFICIENTS

SOLUBILITY, IONIC STRENGTH AND ACTIVITY COEFFICIENTS SOLUBILITY, IONIC STRENGTH AND ACTIVITY COEFFICIENTS References: 1. See `References to Experiments' for text references.. W. C. Wise and C. W. Davies, J. Chem. Soc., 73 (1938), "The Conductivity of Calcium

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission 2015. M33 Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 2015 CHEMISTRY ORDINARY LEVEL TUESDAY, 16 JUNE AFTERNOON 2.00 TO 5.00 400 MARKS Answer eight questions

More information

Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115

Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115 Volumetric Analysis Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115 Experimental Aims To prepare and standardize (determine concentration) a NaOH solution Using your standardized NaOH calculate

More information

hij Teacher Resource Bank GCE Religious Studies Unit A Religion and Ethics 1 Example of Candidate s Work from the January 2009 Examination Candidate C

hij Teacher Resource Bank GCE Religious Studies Unit A Religion and Ethics 1 Example of Candidate s Work from the January 2009 Examination Candidate C hij Teacher Resource Bank GCE Religious Studies Unit A Religion and Ethics 1 Example of Candidate s Work from the January 2009 Examination Candidate C Copyright 2009 AQA and its licensors. All rights reserved.

More information

AQA CERTIFICATE Science: Double Award

AQA CERTIFICATE Science: Double Award AQA CERTIFICATE Science: Double Award 8404/C/2H Mark scheme 8404 June 205 Version/Stage:.0 Final Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions,

More information

Practical 1: Measure the molar volume of a gas

Practical 1: Measure the molar volume of a gas Practical Student sheet Practical : Wear eye protection. Ensure the delivery tube does not become blocked. Ethanoic acid will sting if it gets into cuts in the skin. Equipment boiling tube stand and clamp

More information

Colorful Iron Complexes

Colorful Iron Complexes elearning 2009 Introduction Colorful Iron Complexes Transition Metal Complex Ions Publication No. 91857 Easily distinguish between solutions of iron(ii) and iron(iii) ions by performing re-dox reactions

More information

Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared!

Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared! Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared! Introduction Vitamin C (also known as ascorbic acid, HC6H7O6) is a necessary ingredient

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

EXPERIMENT 9 Evaluation of the Universal Gas Constant, R

EXPERIMENT 9 Evaluation of the Universal Gas Constant, R Outcomes EXPERIMENT 9 Evaluation of the Universal Gas Constant, R After completing this experiment, the student should be able to: 1. Determine universal gas constant using reaction of an acid with a metal.

More information

Determining Equivalent Weight by Copper Electrolysis

Determining Equivalent Weight by Copper Electrolysis Purpose The purpose of this experiment is to determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis reaction.

More information

Number of moles of solute = Concentration (mol. L ) x Volume of solution (litres) or n = C x V

Number of moles of solute = Concentration (mol. L ) x Volume of solution (litres) or n = C x V 44 CALCULATIONS INVOLVING SOLUTIONS INTRODUCTION AND DEFINITIONS Many chemical reactions take place in aqueous (water) solution. Quantities of such solutions are measured as volumes, while the amounts

More information

Determination of Ascorbic Acid in Vitamin C Tablets by Redox and Acid/Base Titrations

Determination of Ascorbic Acid in Vitamin C Tablets by Redox and Acid/Base Titrations hemistry 211 Spring 2011 Purpose: Determination of Ascorbic Acid in Vitamin Tablets by Redox and Acid/Base Titrations To determine the quantity of Vitamin (ascorbic acid) found in commercially available

More information

COMMON LABORATORY APPARATUS

COMMON LABORATORY APPARATUS COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen

More information

Mark Scheme (Results) January 2012. International GCSE Chemistry (4CH0) Paper 2C

Mark Scheme (Results) January 2012. International GCSE Chemistry (4CH0) Paper 2C Mark Scheme (Results) January 202 International GCSE Chemistry (4CH0) Paper 2C Edexcel and BTEC Qualifications Edexcel and BTEC qualifications come from Pearson, the world s leading learning company. We

More information

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER Chemistry 111 Lab: Synthesis of a Copper Complex Page H-1 SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER In this experiment you will synthesize a compound by adding NH 3 to a concentrated

More information

The Electrical Control of Chemical Reactions E3-1

The Electrical Control of Chemical Reactions E3-1 Experiment 3 The Electrical Control of Chemical Reactions E3-1 E3-2 The Task In this experiment you will explore the processes of oxidation and reduction, in which electrons flow between materials, and

More information