AVR1510: Xplain training - XMEGA USART. 8-bit Microcontrollers. Application Note. Prerequisites. 1 Introduction
|
|
- Eunice Garrett
- 3 years ago
- Views:
Transcription
1 AVR1510: Xplain training - XMEGA USART Prerequisites Required knowledge AVR1500: Xplain training XMEGA Basics AVR1502: Xplain training XMEGA Direct Memory Access Controller Software prerequisites Atmel AVR Studio 4.18 or later WinAVR/GCC or later Hardware prerequisites Xplain evaluation board JTAGICE mkii Estimated completion time: 1.5 hours 8-bit Microcontrollers Application Note 1 Introduction The USART (Universal Synchronous Asynchronous Receiver Transmitter) is the key element in serial communications between computers, terminals and other devices. This training covers basic setup and use of the Atmel XMEGA USART and the three tasks will demonstrate how to use the USART I polling-mode, interrupt mode and how to use the DMAC (Direct Memory Access Controller) to transfer data without CPU interaction. Rev.
2 2 Overview This training covers some of the Atmel XMEGA USART basic features: Task 1: Polled mode The first task shows how to set up the USART in polling mode. Some characters will be transferred in loop-back mode. Task 2: Interrupt mode This task shows how to use a driver to set up the USART. The driver has a ring buffer that makes life easier for the developer. Also the hardware buffer is shown in this task. Task 3: DMAC Atmel XMEGA introduces Direct Memory Access Controller (DMAC) for 8-bit processors. With the USART, DMAC is very useful allowing data to flow with nearly no CPU intervention. This task will show how to set up the USART with the DMAC. 2 AVR1510
3 3 Task 1: USART in polling mode AVR1510 Using polling mode with the USART is especially useful when for example debugging the application or when steps in the program are expected to happen synchronously. In this task, we will set up the Xplain evaluation board to send data from USART to another USART. This is a good way to test the USART. The goal for this task is that you know how to: Set up the USART in polling mode Send some characters in loop-back mode Verify that the transmission was successful 1. Start Atmel AVR Studio and open the project file Polled_Usart.aps in the XMEGA- USART folder 2. On the Xplain evaluation board, connect a jumper or cable between pins PD2 and PD3 3.1 Baud rate The Baud rate is calculated by using the peripheral frequency (f PER ), the BSCALE and BSEL as parameters. The target frequency and peripheral frequency on the Atmel XMEGA is set to 2 MHz default. The BSEL bits are setting the baud rate, and the BSCALE is adding even more functionality, but is ignored at this stage. By setting BSCALE to 0, the BSEL can be found by Equation 3-1. Equation 3-1. Equation for Calculating BSEL Value f PER BSEL = 1 BSCALE 2 16 f BAUD 3. Calculate and find the BSEL value for f BAUD = Verify that the calculated value is the same as in task1.c 5. Compile the project and verify that there are no errors or warnings 3
4 3.2 Debugging the Polled USART 6. Look through the code and see comments. Try to understand what happens 7. Build the project and start a debug session (click the Play icon) 8. Add a breakpoint on the while-loop as seen in Figure Add watches to the Rx_Buf and the Tx_Buf 10. Run the code (press F5) 11. Confirm that the Rx_Buf and the Tx_Buf are equal 12. Single step (F11) and check that no transfer error occurred (LEDs light up) Figure 3-1: Add break-point in the last while-loop 4 AVR1510
5 AVR Task 2: USART in interrupt mode USART in interrupt mode will free CPU cycles since the microcontroller doesn t have to poll the transmit register to see if it is empty or poll the receive register to see if it contains new data. This way, the microcontroller can do other and more useful things than waiting, and increase use of its performance. New to Atmel XMEGA are the three byte hardware buffers to keep data. The advantage of this buffer is to reduce occurrences of buffer overflow. Buffer overflow can occur, for instance, when interrupt service routines (ISRs) with higher priority are starving out 1 other ISRs with lower priority. A driver is used to set up a USART in interrupt mode. The driver also has a ring buffer implemented which will be explored briefly. As seen from Figure 4-1, the application will send data to the driver which transfers it via the cable to the receiving USART. At the receiver, the driver sends the data to the application. Figure 4-1: Data flow in task 2 The goal for this task is to: Know how to set up the Atmel XMEGA USART in interrupt mode Understand how to use a driver for the setup Take a quick look at the ring buffer in the driver Understand how the hardware buffer works 1. Locate and open the project InterruptControlled.aps 2. Connect a jumper between Tx and Rx on PORTD, that is PD2 and PD3 3. Look through the code (task2.c) and try to understand what happens 4. Compile the code and assure that there are no warnings or errors 5. Start the debugging session 1 The high priority interrupts are running so frequently that the lower priority interrupt routines never get time (CPU cycles) to run. 5
6 6. Step into USART_InterruptDriver_Initialize() (press F11) and access the driver file 7. Try to understand how the driver sets up the registers. Step out of the driver file, press Shift+F11 8. Locate the receivearray[] buffer and add a watch, see Figure 4-2 Figure 4-2. Add a watch to the buffer pointers 9. Now, run the code for a while by pressing F5 10. After a short while, break the execution (press Ctrl+F5) 11. Now, take a look at receivearray[]. Have the characters been transferred correctly? 12. Reset the debug session (Shift+F5) and place break-points to the ISR routines. Run the program and see if it acts as expected 13. Open the usart_driver.h and set both USART_RX_BUFFER_SIZE and USART_TX_BUFFER_SIZE to In Task2.c, set NUM_BYTES to 7 and recompile the project 15. In the Atmel AVR Studio menu, press Debug->Remove all Breakpoints 16. Run the program for a while (press F5) and break the execution (Ctrl+F5) Why cannot the program run to completion? (Hint: What sizes are the software ring buffer and the hardware buffer and what is the size of the array to send.) 6 AVR1510
7 AVR Task 3: USART using DMAC Atmel XMEGA introduces DMA controller for 8-bit microcontrollers. Using a DMA controller will offload the CPU when handling data transmission and help increase the performance of the microcontroller significantly. This task will show how to set up the USART with the DMAC driver. Figure 5-1 illustrates the data flow in this task using DMA. The goal for this task is that you know how to: Set up the USART using DMAC Set up the DMAC to read data from SRAM Set up the DMAC to write data to USART Set up the DMAC to read data from USART Set up the DMAC to write data to SRAM Figure 5-1. Data flow in the DMA example 1. Open the project file USART_DMA.aps in Atmel AVR Studio and open task3.c 2. Connect a jumper between Tx and Rx on PORTD, that is PD2 and PD3 3. Study how the Transmit channel is set up (SetupTransmitChannel) a. Tx_Buf is the input for the DMA transmit channel b. The DMA is set up to increase the address of Tx_Buf. Why? c. The USART data register is the output for the DMA transmit channel d. The DMA is set up to keep the address to the data register fixed during transmission. Why? e. Are you able to verify the correct trigger source (Data Register Empty) in the Atmel XMEGA manual? (0x6C) 4. Study how the Receive channel is set up (SetupReceiveChannel) a. The USART data register is the input for the DMA receive channel b. Rx_Buf is the output for the DMA receive channel c. The DMA is set up to have fixed receive data register address and to increase the address of Rx_Buf. Why? d. Are you able to verify that the correct trigger source (Receive complete) is used in the XMEGA manual? 7
8 5. Build the project and start a debug session (click the Play icon) 6. Put a breakpoint on the first line after the DMA has completed ( LEDPORT.OUT = ). Run the code (press F5) 7. What is shown on the LEDs? Was the CPU able to increment the variable i while waiting for the DMA to complete? 8. Put a breakpoint on the line LEDPORT.OUT = Rx_Buf[i]; 9. Run the code(press F5) 10. Check the status of the LEDs in comparison with the code; do the LEDs blink as expected? 11. Add watches to Rx_Buf and Tx_Buf and compare them, are they equal and contain characters from a to t, see Figure 5-2. Figure 5-2. Verify DMA transmission 8 AVR1510
9 AVR Summary Here are some of the high-lights from this training: USART in Polling mode USART in interrupt mode USART driver USART software ring buffer USART hardware buffer USART DMA 7 Resources Atmel XMEGA Manual and Datasheets o Atmel AVR Studio with help files o WINAVR GCC compiler o Atmel IAR Embedded Workbench compiler o 8 Atmel Technical Support Center Atmel has several support channels available: Web portal: All Atmel microcontrollers All Atmel AVR products All AVR32 products Please register on the web portal to gain access to the following services: Access to a rich FAQ database Easy submission of technical support requests History of all your past support requests Register to receive Atmel microcontrollers newsletters Get information about available trainings and training material 9
10 Disclaimer Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA USA Tel: 1(408) Fax: 1(408) Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) Fax: (852) Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP Saint-Quentin-en- Yvelines Cedex France Tel: (33) Fax: (33) Atmel Japan 9F, Tonetsu Shinkawa Bldg Shinkawa Chuo-ku, Tokyo Japan Tel: (81) Fax: (81) Product Contact Web Site Technical Support Sales Contact Literature Request Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life Atmel Corporation. All rights reserved. Atmel, Atmel logo and combinations thereof, AVR, AVR logo, AVR Studio and others, are the registered trademarks, XMEGA and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
AVR1900: Getting started with ATxmega128A1 on STK600. 8-bit Microcontrollers. Application Note. 1 Introduction
AVR1900: Getting started with ATxmega128A1 on STK600 1 Introduction This document contains information about how to get started with the ATxmega128A1 on STK 600. The first three sections contain information
AVR1922: Xplain Board Controller Firmware. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1922: Xplain Board Controller Firmware Features USB interface - Mass-storage to on-board DataFlash memory Atmel AVR XMEGA TM reset control 1 Introduction The Xplain board controller, an AT90USB1287,
AVR1309: Using the XMEGA SPI. 8-bit Microcontrollers. Application Note. Features. 1 Introduction SCK MOSI MISO SS
AVR1309: Using the XMEGA SPI Features Introduction to SPI and the XMEGA SPI module Setup and use of the XMEGA SPI module Implementation of module drivers Polled master Interrupt controlled master Polled
AVR1318: Using the XMEGA built-in AES accelerator. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1318: Using the XMEGA built-in AES accelerator Features Full compliance with AES (FIPS Publication 197, 2002) - Both encryption and decryption procedures 128-bit Key and State memory XOR load option
AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series. 32-bit Microcontrollers. Application Note.
AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series 1 Introduction This application note outlines the steps necessary to optimize analog to digital conversions on AT32UC3A0/1,
8-bit. Application Note. Microcontrollers. AVR282: USB Firmware Upgrade for AT90USB
AVR282: USB Firmware Upgrade for AT90USB Features Supported by Atmel FLIP program on all Microsoft O/S from Windows 98SE and later FLIP 3.2.1 or greater supports Linux Default on chip USB bootloader In-System
AVR32701: AVR32AP7 USB Performance. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32701: AVR32AP7 USB Performance Features Linux USB bulk transfer performance ATSTK1000 (32-bit SDRAM bus width) ATNGW100 (16-bit SDRAM bus width) GadgetFS driver and gadgetfs-test application USB performance
AVR1301: Using the XMEGA DAC. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1301: Using the XMEGA DAC Features 12 bit resolution Up to 1 M conversions per second Continuous drive or sample-and-hold output Built-in offset and gain calibration High drive capabilities Driver source
AVR115: Data Logging with Atmel File System on ATmega32U4. Microcontrollers. Application Note. 1 Introduction. Atmel
AVR115: Data Logging with Atmel File System on ATmega32U4 Microcontrollers 01101010 11010101 01010111 10010101 Application Note 1 Introduction Atmel provides a File System management for AT90USBx and ATmegaxxUx
AVR32788: AVR 32 How to use the SSC in I2S mode. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32788: AVR 32 How to use the SSC in I2S mode Features I²S protocol overview I²S on the AVR32 I²S sample rate configurations Example of use with AT32UC3A on EVK1105 board 32-bit Microcontrollers Application
AVR1600: Using the XMEGA Quadrature Decoder. 8-bit Microcontrollers. Application Note. Features. 1 Introduction. Sensors
AVR1600: Using the XMEGA Quadrature Decoder Features Quadrature Decoders 16-bit angular resolution Rotation speed and acceleration 1 Introduction Quadrature encoders are used to determine the position
AVR033: Getting Started with the CodeVisionAVR C Compiler. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR033: Getting Started with the CodeVisionAVR C Compiler Features Installing and Configuring CodeVisionAVR to Work with the Atmel STK 500 Starter Kit and AVR Studio Debugger Creating a New Project Using
Using CryptoMemory in Full I 2 C Compliant Mode. Using CryptoMemory in Full I 2 C Compliant Mode AT88SC0104CA AT88SC0204CA AT88SC0404CA AT88SC0808CA
Using CryptoMemory in Full I 2 C Compliant Mode 1. Introduction This application note describes how to communicate with CryptoMemory devices in full I 2 C compliant mode. Full I 2 C compliance permits
32-bit AVR UC3 Microcontrollers. 32-bit AtmelAVR Application Note. AVR32769: How to Compile the standalone AVR32 Software Framework in AVR32 Studio V2
AVR32769: How to Compile the standalone AVR32 Software Framework in AVR32 Studio V2 1. Introduction The purpose of this application note is to show how to compile any of the application and driver examples
Application Note. 8-bit Microcontrollers. AVR270: USB Mouse Demonstration
AVR270: USB Mouse Demonstration Features Runs with AT90USB Microcontrollers at 8MHz USB Low Power Bus Powered Device (less then 100mA) Supported by any PC running Windows (98SE or later), Linux or Mac
Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures. Atmel Microcontrollers. Application Note. Features.
Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures Features Compliance to USB 2.0 - Chapters 8 and 9 - Classes: HID, MSC, CDC, PHDC Interoperability: OS, classes, self- and bus-powered
Atmel AVR4921: ASF - USB Device Stack Differences between ASF V1 and V2. 8-bit Atmel Microcontrollers. Application Note. Features.
Atmel AVR4921: ASF - USB Device Stack Differences between ASF V1 and V2 Features Advantages Implementation differences Integration Migration from stack V1 to stack V2 8-bit Atmel Microcontrollers Application
AVR317: Using the Master SPI Mode of the USART module. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR317: Using the Master SPI Mode of the USART module Features Enables Two SPI buses in one device Hardware buffered SPI communication Polled communication example Interrupt-controlled communication example
AVR353: Voltage Reference Calibration and Voltage ADC Usage. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR353: Voltage Reference Calibration and Voltage ADC Usage Features Voltage reference calibration. - 1.100V +/-1mV (typical) and < 90ppm/ C drift from 10 C to +70 C. Interrupt controlled voltage ADC sampling.
AVR305: Half Duplex Compact Software UART. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR305: Half Duplex Compact Software UART Features 32 Words of Code, Only Handles Baud Rates of up to 38.4 kbps with a 1 MHz XTAL Runs on Any AVR Device Only Two Port Pins Required Does Not Use Any Timer
AVR287: USB Host HID and Mass Storage Demonstration. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR287: USB Host HID and Mass Storage Demonstration Features Based on AVR USB OTG Reduced Host Runs on AT90USB647/1287 Support bootable/non-bootable standard USB mouse Support USB Hub feature (Mass Storage
AT91SAM ARM-based Flash MCU. Application Note
Modbus Slave Stack for the Atmel Family of SAM3 Microcontrollers (Free Modbus Stack from Embedded Solutions) 1. Scope This application note provides directions and instructions to application engineers
Application Note. 8-bit Microcontrollers. AVR272: USB CDC Demonstration UART to USB Bridge
AVR272: USB CDC Demonstration UART to USB Bridge Features Supported by Windows 2000 or later No driver installation Virtual COM Port Enumeration USB to RS232 Bridge with dynamic baudrate Bus powered 8-bit
AVR2006: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna. Application Note. Features.
AVR26: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna Features Radiation pattern Impedance measurements WIPL design files NEC model Application Note 1 Introduction This
APPLICATION NOTE. Atmel AVR32848: Android Accessory Demo. 32-bit Atmel Microcontrollers. Features. Introduction
APPLICATION NOTE Atmel AVR32848: Android Accessory Demo 32-bit Atmel Microcontrollers Features Control an accessory from an Android device Send data to and from an Android device to an accessory Supported
AVR319: Using the USI module for SPI communication. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR319: Using the USI module for SPI communication Features C-code driver for SPI master and slave Uses the USI module Supports SPI Mode 0 and 1 Introduction The Serial Peripheral Interface (SPI) allows
APPLICATION NOTE. Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer. Atmel AVR 8-bit Microcontroller. Introduction.
APPLICATION NOTE Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer Introduction Atmel AVR 8-bit Microcontroller This application note describes how to implement a real time counter (RTC)
Atmel AVR4903: ASF - USB Device HID Mouse Application. Atmel Microcontrollers. Application Note. Features. 1 Introduction
Atmel AVR4903: ASF - USB Device HID Mouse Application Features USB 2.0 compliance - Chapter 9 compliance - HID compliance - Low-speed (1.5Mb/s) and full-speed (12Mb/s) data rates Standard USB HID mouse
USER GUIDE EDBG. Description
USER GUIDE EDBG Description The Atmel Embedded Debugger (EDBG) is an onboard debugger for integration into development kits with Atmel MCUs. In addition to programming and debugging support through Atmel
Application Note. 8-bit Microcontrollers. AVR293: USB Composite Device
AVR293: USB Composite Device Features Combining several USB applications using ONE DEVICE No HUB needed Bus powered 1. Introduction Adding to the flexibility given to the user with the Hot Plug & Play,
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR. 8-bit Microcontrollers. Application Note. Features.
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR Features How to open a new workspace and project in IAR Embedded Workbench Description and option settings for compiling the c-code Setting
AVR1321: Using the Atmel AVR XMEGA 32-bit Real Time Counter and Battery Backup System. 8-bit Microcontrollers. Application Note.
AVR1321: Using the Atmel AVR XMEGA 32-bit Real Time Counter and Battery Backup System Features 32-bit Real Time Counter (RTC) - 32-bit counter - Selectable clock source 1.024kHz 1Hz - Long overflow time
AVR1003: Using the XMEGA Clock System. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1003: Using the XMEGA Clock System Features Internal 32 khz, 2 MHz, and 32 MHz oscillators External crystal oscillator or clock input Internal PLL with multiplication factor 1x to 31x Safe clock source
Application Note. Atmel ATSHA204 Authentication Modes. Prerequisites. Overview. Introduction
Application Note Atmel Authentication Modes Prerequisites Hardware Atmel AT88CK454BLACK Evaluation Board Atmel AT88CK109STK8 Kit Software Atmel Crypto Evaluation Studio (ACES) Overview Understand which
General Porting Considerations. Memory EEPROM XRAM
AVR097: Migration between ATmega128 and ATmega2561 Features General Porting Considerations Memory Clock sources Interrupts Power Management BOD WDT Timers/Counters USART & SPI ADC Analog Comparator ATmega103
AVR055: Using a 32kHz XTAL for run-time calibration of the internal RC. 8-bit Microcontrollers. Application Note. Features.
AVR055: Using a 32kHz XTAL for run-time calibration of the internal RC Features Calibration using a 32 khz external crystal Adjustable RC frequency with maximum +/-2% accuracy Tune RC oscillator at any
AVR2004: LC-Balun for AT86RF230. Application Note. Features. 1 Introduction
AVR2004: LC-Balun for AT86RF230 Features Balun for AT86RF230 with lumped elements Simulation results S-Parameter file 1 Introduction In some cases the used balun on the ATAVR RZ502 Radio Boards must be
AVR151: Setup and Use of the SPI. Introduction. Features. Atmel AVR 8-bit Microcontroller APPLICATION NOTE
Atmel AVR 8-bit Microcontroller AVR151: Setup and Use of the SPI APPLICATION NOTE Introduction This application note describes how to set up and use the on-chip Serial Peripheral Interface (SPI) of the
USER GUIDE. ZigBit USB Stick User Guide. Introduction
USER GUIDE ZigBit USB Stick User Guide Introduction This user guide describes how to get started with the Atmel ZigBit USB sticks. The ZigBit USB sticks is targeted for evaluating the USB features of the
8051 Flash Microcontroller. Application Note. A Digital Thermometer Using the Atmel AT89LP2052 Microcontroller
A Digital Thermometer Using the Atmel AT89LP2052 Microcontroller Features Temperature range -55 C to +125 C in.5 C increments LCD Display RS485 Interface Applicable to any AT89LP Microcontroller C and
APPLICATION NOTE. Atmel AT04389: Connecting SAMD20E to the AT86RF233 Transceiver. Atmel SAMD20. Description. Features
APPLICATION NOTE Atmel AT04389: Connecting SAMD20E to the AT86RF233 Transceiver Description Atmel SAMD20 This application note describes a method to connect an Atmel ATSAMD20E microcontroller to an Atmel
3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary. Features. Applications. 1. Description
Features Three Selectable Outputs All Outputs Can Be Used Either for Standard (5V) or High Voltage (9V) Maximum Output Current at All Outputs Up to 150 ma On-chip Low-EMI RF Oscillator With Spread-spectrum
APPLICATION NOTE Atmel AT02509: In House Unit with Bluetooth Low Energy Module Hardware User Guide 8-bit Atmel Microcontroller Features Description
APPLICATION NOTE Atmel AT259: In House Unit with Bluetooth Low Energy Module Hardware User Guide Features 8-bit Atmel Microcontroller Low power consumption Interface with BLE with UART Bi-direction wake
Application Note. Atmel CryptoAuthentication Product Uses. Atmel ATSHA204. Abstract. Overview
Application Note Atmel CryptoAuthentication Product Uses Atmel Abstract Companies are continuously searching for ways to protect property using various security implementations; however, the cost of security
AVR245: Code Lock with 4x4 Keypad and I2C LCD. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR245: Code Lock with 4x4 Keypad and I2C LCD Features Application example for code lock - Ideal for low pin count AVRs Uses I/O pins to read 4x4 keypad Uses Timer/Counter to control piezoelectric buzzer
APPLICATION NOTE. Atmel AT02985: User s Guide for USB-CAN Demo on SAM4E-EK. Atmel AVR 32-bit Microcontroller. Features. Description.
APPLICATION NOTE Atmel AT02985: User s Guide for USB-CAN Demo on SAM4E-EK Atmel AVR 32-bit Microcontroller Features USB-CAN gateway USB CDC class (virtual serial port) provides low level data stream Customized
AVR125: ADC of tinyavr in Single Ended Mode. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR125: ADC of tinyavr in Single Ended Mode Features Up to 10bit resolution Up to 15kSPS Auto triggered and single conversion mode Optional left adjustment for ADC result readout Driver source code included
APPLICATION NOTE. Atmel AVR443: Sensor-based Control of Three Phase Brushless DC Motor. Atmel AVR 8-bit Microcontrollers. Features.
APPLICATION NOTE Features Atmel AVR443: Sensor-based Control of Three Phase Brushless DC Motor Less than 5µs response time on Hall sensor output change Theoretical maximum of 1600k RPM Over-current sensing
Application Note. C51 Bootloaders. C51 General Information about Bootloader and In System Programming. Overview. Abreviations
C51 General Information about Bootloader and In System Programming Overview This document describes the Atmel Bootloaders for 8051 family processors. Abreviations ISP: In-System Programming API : Applications
APPLICATION NOTE. Atmel LF-RFID Kits Overview. Atmel LF-RFID Kit. LF-RFID Kit Introduction
APPLICATION NOTE Atmel LF-RFID Kits Overview Atmel LF-RFID Kit LF-RFID Kit Introduction Atmel offers several design and evaluation kits for a fast and easy way to test the LF-RFID technology but also developing
Atmel AVR1017: XMEGA - USB Hardware Design Recommendations. 8-bit Atmel Microcontrollers. Application Note. Features.
Atmel AVR1017: XMEGA - USB Hardware Design Recommendations Features USB 2.0 compliance - Signal integrity - Power consumption - Back driver voltage - Inrush current EMC/EMI considerations Layout considerations
AT91 ARM Thumb Microcontrollers. AT91SAM CAN Bootloader. AT91SAM CAN Bootloader User Notes. 1. Description. 2. Key Features
User Notes 1. Description The CAN bootloader SAM-BA Boot4CAN allows the user to program the different memories and registers of any Atmel AT91SAM product that includes a CAN without removing them from
AVR32100: Using the AVR32 USART. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32100: Using the AVR32 USART Features Supports character length from 5 to 9 bits Interrupt Generation Parity, Framing and Overrun Error Detection Programmable Baud Rate Generator Line Break Generation
AVR ONE!... Quick-start Guide. EVK1101 + Windows 32104B AVR ONE! 02/10
AVR ONE!... Quick-start Guide EVK1101 + Windows Table of Contents (Continued) Section 1 Introduction...1-1 1.1 General... 1-1 1.2 Requirements... 1-1 Section 2 Quick-start guide (short version)...2-1 2.1
AVR32110: Using the AVR32 Timer/Counter. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32110: Using the AVR32 Timer/Counter Features Three independent 16 bit Timer/Counter Channels Multiple uses: - Waveform generation - Analysis and measurement support: Frequency and interval measurements
8-bit Microcontroller. Application Note. AVR222: 8-point Moving Average Filter
AVR222: 8-point Moving Average Filter Features 31-word Subroutine Filters Data Arrays up to 256 Bytes Runable Demo Program Introduction The moving average filter is a simple Low Pass FIR (Finite Impulse
256K (32K x 8) Battery-Voltage Parallel EEPROMs AT28BV256
Features Single 2.7V - 3.6V Supply Fast Read Access Time 200 ns Automatic Page Write Operation Internal Address and Data Latches for 64 Bytes Internal Control Timer Fast Write Cycle Times Page Write Cycle
AVR134: Real Time Clock (RTC) using the Asynchronous Timer. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR134: Real Time Clock (RTC) using the Asynchronous Timer Features Real Time Clock with Very Low Power Consumption (4 μa @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts
Introducing a platform to facilitate reliable and highly productive embedded developments
Beyond the IDE Introducing a platform to facilitate reliable and highly productive embedded developments Author: Joerg Bertholdt, Director of Marketing, MCU Tools and Software, Atmel Corporation Beyond
APPLICATION NOTE. AT07175: SAM-BA Bootloader for SAM D21. Atmel SAM D21. Introduction. Features
APPLICATION NOTE AT07175: SAM-BA Bootloader for SAM D21 Atmel SAM D21 Introduction Atmel SAM Boot Assistant (Atmel SAM-BA ) allows In-System Programming (ISP) from USB or UART host without any external
SMARTCARD XPRO. Preface. SMART ARM-based Microcontrollers USER GUIDE
SMART ARM-based Microcontrollers SMARTCARD XPRO USER GUIDE Preface Atmel SMARTCARD Xplained Pro is an extension board to the Atmel Xplained Pro evaluation platform. Atmel SMARTCARD Xplained Pro is designed
AT88CK490 Evaluation Kit
AT88CK490 Evaluation Kit CryptoAuthentication USB Dongle HARDWARE USER GUIDE Atmel AT88CK490 CryptoAuthentication Evaluation Kit Introduction The Atmel AT88CK490 CryptoAuthentication Evaluation Kit is
Software Prerequisites Linux Ubuntu 12.04 LTS. Estimated completion time: 15min. The goal of this hands-on is to:
TRAINING MANUAL Using SAM-BA for Linux on SAMA5D3 Xplained AN-8995 Prerequisites Hardware Prerequisites Atmel SAMA5D3 Xplained USB serial TTL adapter (optional) FTDI TTL-232R-3V3 USB to TTL serial cable
AT89C5131A Starter Kit... Software User Guide
AT89C5131A Starter Kit... Software User Guide Table of Contents Section 1 Introduction... 1-1 1.1 Abbreviations...1-1 Section 2 Getting Started... 2-3 2.1 Hardware Requirements...2-3 2.2 Software Requirements...2-3
8-bit RISC Microcontroller. Application Note. AVR910: In-System Programming
AVR910: In-System Programming Features Complete In-System Programming Solution for AVR Microcontrollers Covers All AVR Microcontrollers with In-System Programming Support Reprogram Both Data Flash and
Atmel AT32UC3A3256 microcontroller 64MBit SDRAM Analog input (to ADC) Temperature sensor RC filter
APPLICATION NOTE Features Atmel AVR32918: UC3-A3 Xplained Hardware User s Guide Atmel AT32UC3A3256 microcontroller 64MBit SDRAM Analog input (to ADC) Temperature sensor RC filter I/O One mechanical button
Atmel AVR4027: Tips and Tricks to Optimize Your C Code for 8-bit AVR Microcontrollers. 8-bit Atmel Microcontrollers. Application Note.
Atmel AVR4027: Tips and Tricks to Optimize Your C Code for 8-bit AVR Microcontrollers Features Atmel AVR core and Atmel AVR GCC introduction Tips and tricks to reduce code size Tips and tricks to reduce
8-bit RISC Microcontroller. Application Note. AVR182: Zero Cross Detector
AVR182: Zero Cross Detector Features Interrupt Driven Modular C Source Code Size Efficient Code Accurate and Fast Detection A Minimum of External Components Introduction One of the many issues with developing
APPLICATION NOTE. AT09567: ISM Band PCB Antenna Reference Design. Atmel Wireless. Features. Description
APPLICATION NOTE Features AT09567: ISM Band PCB Antenna Reference Design Atmel Wireless Compact PCB antennas for 915MHz and 2.4GHz ISM bands Easy to integrate Altium design files and gerber files Return
Two mechanical buttons Two user LEDs Four expansion headers. Board controller with USB interface. One power LED and one status LED
APPLICATION NOTE Features Atmel AT02667: XMEGA-E5 Xplained Hardware User s Guide Atmel AVR ATxmega32E5 microcontroller OLED display with 128 32 pixels resolution Ambient light sensor Analog filter Rotary
8-bit RISC Microcontroller. Application Note. AVR236: CRC Check of Program Memory
AVR236: CRC Check of Program Memory Features CRC Generation and Checking of Program Memory Supports all AVR Controllers with LPM Instruction Compact Code Size, 44 Words (CRC Generation and CRC Checking)
APPLICATION NOTE. Atmel AT01095: Joystick Game Controller Reference Design. 8-/16-bit Atmel Microcontrollers. Features.
APPLICATION NOTE Features Atmel AT01095: Joystick Game Controller Reference Design 8-/16-bit Atmel Microcontrollers Joystick Game Controller Atmel ATxmega32A4U microcontroller In System Programming (ISP)
Application Note. USB Microcontrollers. USB PC Drivers Based on Generic HID Class. 1. Introduction
USB PC Drivers Based on Generic HID Class Supported by Windows 98 SE or later Full Duplex Communication Send Commands Through the EP 0 Dynamic Link Library Supported by any Compiler: VC++, JAVA, VB...
8-bit Microcontroller. Application Note. AVR415: RC5 IR Remote Control Transmitter. Features. Introduction. Figure 1.
AVR415: RC5 IR Remote Control Transmitter Features Utilizes ATtiny28 Special HW Modulator and High Current Drive Pin Size Efficient Code, Leaves Room for Large User Code Low Power Consumption through Intensive
AT91 ARM Thumb Microcontrollers. Application Note. Interfacing a PC Card to an AT91RM9200-DK. Introduction. Hardware Interface
Interfacing a PC Card to an AT91RM9200-DK Introduction This Application Note describes the implementation of a PCMCIA interface on an AT91RM9200 Development Kit (DK) using the External Bus Interface (EBI).
AVR106: C functions for reading and writing to Flash memory. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR106: C functions for reading and writing to Flash memory Features C functions for accessing Flash memory - Byte read - Page read - Byte write - Page write Optional recovery on power failure Functions
APPLICATION NOTE. Secure Personalization with Transport Key Authentication. ATSHA204A, ATECC108A, and ATECC508A. Introduction.
APPLICATION NOTE Secure Personalization with Transport Key Authentication ATSHA204A, ATECC108A, and ATECC508A Introduction The Atmel CryptoAuthentication ATSHA204A, ATECC108A, and ATECC508A devices (crypto
AVR106: C Functions for Reading and Writing to Flash Memory. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE
AVR 8-bit Microcontrollers AVR106: C Functions for Reading and Writing to Flash Memory APPLICATION NOTE Introduction The Atmel AVR devices have a feature called Self programming Program memory. This feature
Application Note. 1. Introduction. 2. Associated Documentation. 3. Gigabit Ethernet Implementation on SAMA5D3 Series. AT91SAM ARM-based Embedded MPU
Application Note AT91SAM ARM-based Embedded MPU Gigabit Ethernet Implementation on SAMA5D3 Series 1. Introduction The SAMA5D3 series is a member of the Atmel microprocessor family which is based on the
AT89LP Flash Data Memory. Application Note. AT89LP Flash Data Memory API. 1. Introduction. 2. Theory of Operation. 2.1 Flash Memory Operation
AT89LP Flash Data Memory API 1. Introduction Many embedded systems rely on nonvolatile parameters that are preserved across reset or power-loss events. In some systems this static information is used to
8-bit RISC Microcontroller. Application Note. AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface
AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface Features Compatible with Philips' I 2 C protocol 2-wire Serial Interface Master Driver for Easy Transmit and Receive Function
Dell One Identity Cloud Access Manager 8.0 - How to Configure vworkspace Integration
Dell One Identity Cloud Access Manager 8.0 - How to Configure vworkspace Integration February 2015 This guide describes how to configure Dell One Identity Cloud Access Manager to communicate with a Dell
New Features and Enhancements
Dell Migration Manager for SharePoint 4.7 Build number: 4.7.20141207 December 9, 2014 These release notes provide information about the Dell Migration Manager for SharePoint release. New Features and Enhancements
Atmel AVR ATxmega384C3 microcontroller OLED display with 128 32 pixels resolution Analog sensors. Ambient light sensor Temperature sensor
APPLICATION NOTE AVR1925: XMEGA-C3 Xplained Hardware User s Guide Features Atmel AVR ATxmega384C3 microcontroller OLED display with 128 32 pixels resolution Analog sensors Ambient light sensor Temperature
64K (8K x 8) Parallel EEPROM with Page Write and Software Data Protection AT28C64B
Features Fast Read Access Time 150 ns Automatic Page Write Operation Internal Address and Data Latches for 64 Bytes Fast Write Cycle Times Page Write Cycle Time: 10 ms Maximum (Standard) 2 ms Maximum (Option
APPLICATION NOTE. AT16268: JD Smart Cloud Based Smart Plug Getting. Started Guide ATSAMW25. Introduction. Features
APPLICATION NOTE AT16268: JD Smart Cloud Based Smart Plug Getting Started Guide ATSAMW25 Introduction This application note aims to help readers to get started with the Atmel smart plug reference design
APPLICATION NOTE. Authentication Counting. Atmel CryptoAuthentication. Features. Introduction
APPLICATION NOTE Authentication Counting Atmel CryptoAuthentication Features How to achieve high endurance counters in excess of 800,000 counts. How to disable the Atmel CryptoAuthentication ATSHA204A
8-bit Microcontroller. Application Note. AVR314: DTMF Generator
AVR314: DTMF Generator Features Generation of Sine Waves Using PWM (Pulse-Width Modulation) Combine Different Sine Waves to DTMF Signal Assembler and C High-level Language Code STK500 Top-Module Design
8-bit Microcontroller. Application Note. AVR286: LIN Firmware Base for LIN/UART Controller. LIN Features. 1. Atmel LIN/UART Controller
AVR286: LIN Firmware Base for LIN/UART Controller LIN Features The LIN (Local Interconnect Network) is a serial communications protocol which efficiently supports the control of mechatronics nodes in distributed
AVR1324: XMEGA ADC Selection Guide. 8-bit Atmel Microcontrollers. Application Note. Features. 1 Introduction
AVR1324: XMEGA ADC Selection Guide Features The Atmel AVR XMEGA A family Pipelined architecture Up to 2M samples per second Up to 12-bit resolution Signed and unsigned mode Selectable gain 2MHz maximum
8-bit Microcontroller. Application Note. AVR400: Low Cost A/D Converter
AVR400: Low Cost A/D Converter Features Interrupt Driven : 23 Words Low Use of External Components Resolution: 6 Bits Measurement Range: 0-2 V Runs on Any AVR Device with 8-bit Timer/Counter and Analog
AVR223: Digital Filters with AVR. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR223: Digital Filters with AVR Features Implementation of Digital Filters Coefficient and Data scaling Fast Implementation of 4 th Order FIR Filter Fast Implementation of 2 nd Order IIR Filter Methods
AVR315: Using the TWI Module as I2C Master. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE
AVR 8-bit Microcontrollers AVR315: Using the TWI Module as I2C Master APPLICATION NOTE Introduction The Two-wire Serial Interface (TWI) is compatible with Philips I 2 C protocol. The bus allows simple,
Quick Start Guide. CAN Microcontrollers. ATADAPCAN01 - STK501 CAN Extension. Requirements
ATADAPCAN01 - STK501 CAN Extension The ATADAPCAN01 - STK501 CAN add-on is an extension to the STK500 and STK501 development boards from Atmel Corporation, adding support for the AVR AT90CAN128 device in
AT15007: Differences between ATmega328/P and ATmega328PB. Introduction. Features. Atmel AVR 8-bit Microcontrollers APPLICATION NOTE
Atmel AVR 8-bit Microcontrollers AT15007: Differences between ATmega328/P and ATmega328PB APPLICATION NOTE Introduction This application note assists the users of Atmel ATmega328 variants to understand
formerly Help Desk Authority 9.1.2 Quest Free Network Tools User Manual
formerly Help Desk Authority 9.1.2 Quest Free Network Tools User Manual 2 Contacting Quest Software Email: Mail: Web site: info@quest.com Quest Software, Inc. World Headquarters 5 Polaris Way Aliso Viejo,
8-bit Microcontroller. Application Note. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer. Features. Theory of Operation.
AVR134: Real-Time Clock (RTC) using the Asynchronous Timer Features Real-Time Clock with Very Low Power Consumption (4µA @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts Time,
Dell Spotlight on Active Directory 6.8.3. Server Health Wizard Configuration Guide
Dell Spotlight on Active Directory 6.8.3 Server Health Wizard Configuration Guide 2013 Dell Software Inc. ALL RIGHTS RESERVED. This guide contains proprietary information protected by copyright. The software
AVR131: Using the AVR s High-speed PWM. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE
AVR 8-bit Microcontrollers AVR131: Using the AVR s High-speed PWM APPLICATION NOTE Introduction This application note is an introduction to the use of the high-speed Pulse Width Modulator (PWM) available
APPLICATION NOTE. Atmel AVR600: STK600 Expansion, Routing and Socket Boards. Atmel Microcontrollers. Introduction
APPLICATION NOTE Atmel AVR600: STK600 Expansion, Routing and Socket Boards Introduction Atmel Microcontrollers This application note describes the process of developing new routing, socket and expansion