SUBSTITUTION I.. f(ax + b)


 Iris Wilkinson
 4 years ago
 Views:
Transcription
1 Integrtion SUBSTITUTION I.. f(x + b) Grhm S McDonld nd Silvi C Dll A Tutoril Module for prctising the integrtion of expressions of the form f(x + b) Tble of contents Begin Tutoril c 004
2 . Theory. Exercises 3. Answers 4. Stndrd integrls 5. Tips Full worked solutions Tble of contents
3 Section : Theory 3. Theory Consider n integrl of the form f(x + b)dx where nd b re constnts. We hve here n unspecified function f of liner function of x Letting u = x + b then du dx =, nd this gives dx = du This llows us to chnge the integrtion vrible from x to u f(x + b)dx = f(u) du
4 Section : Theory 4 The finl result is where u = x + b f(x + b)dx = f(u) du This is generl result for integrting functions of liner function of x Ech ppliction of this result involves dividing by the coefficient of x nd then integrting
5 Section : Exercises 5. Exercises Click on EXERCISE links for full worked solutions (0 exercises in totl). Perform the following integrtions: Exercise. (x ) 3 dx Exercise. cos(3x + 5)dx Exercise 3. e 5x+ dx Theory Stndrd integrls Answers Tips
6 Section : Exercises 6 Exercise 4. sinh 3x dx Exercise 5. dx x Exercise 6. dx + (5x) Exercise 7. sec (7x + )dx Theory Stndrd integrls Answers Tips
7 Section : Exercises 7 Exercise 8. sin(3x )dx Exercise 9. cosh( + x)dx Exercise 0. tn(9x )dx Theory Stndrd integrls Answers Tips
8 Section 3: Answers 8 3. Answers. 8 (x )4 + C, sin(3x + 5) + C, e5x+ + C, cosh 3x + C, ln x + C, 6. 5 tn 5x + C, tn(7x + ) + C, cos(3x ) + C, 9. sinh( + x) + C, 0. 9 ln cos(9x ) + C.
9 Section 4: Stndrd integrls 9 4. Stndrd integrls f (x) x n x f(x)dx f (x) f(x)dx xn+ n+ (n ) [g (x)] n g (x) ln x g (x) g(x) [g(x)] n+ n+ (n ) ln g (x) e x e x x x ln ( > 0) sin x cos x sinh x cosh x cos x sin x cosh x sinh x tn x ln cos x tnh x ln cosh x cosec x ln tn x cosech x ln tnh x sec x ln sec x + tn x sech x tn e x sec x tn x sech x tnh x cot x ln sin x coth x ln sinh x sin x cos x x x sin x 4 sinh x sinh x 4 x + sin x 4 cosh x sinh x 4 + x
10 Section 4: Stndrd integrls 0 f (x) f (x) dx f (x) f (x) dx +x tn x x ln +x x (0< x <) ( > 0) x ln x x+ ( x > >0) x sin x +x ( < x < ) x ln ln x+ +x x+ x ( > 0) (x>>0) x [ sin ( ) x +x ] x + x x [ [ sinh ( x cosh ( x ) + x +x ] ) + x ] x
11 Section 5: Tips 5. Tips STANDARD INTEGRALS re provided. Do not forget to use these tbles when you need to When looking t the THEORY, STANDARD INTEGRALS, AN SWERS or TIPS pges, use the Bck button (t the bottom of the pge) to return to the exercises Use the solutions intelligently. For exmple, they cn help you get strted on n exercise, or they cn llow you to check whether your intermedite results re correct Try to mke less use of the full solutions s you work your wy through the Tutoril
12 Solutions to exercises Full worked solutions Exercise. (x ) 3 dx Let u = x then du dx = nd dx = du (x ) 3 dx = u 3 du = u 3 du = 4 u4 + C = 8 (x )4 + C. Note. The finl result cn lso be obtined using the generl pttern: f(x + b) dx = f(u) du where = nd f(u)du is u 3 du. Return to Exercise
13 Solutions to exercises 3 Exercise. cos(3x + 5)dx Let u = 3x + 5 then du dx = 3 nd dx = du 3 cos(3x + 5)dx = cos u du = 3 3 cos u du = 3 sin u + C = sin(3x + 5) + C. 3 Note. The finl result cn lso be obtined using the generl pttern: f(x + b) dx = f(u) du where = 3 nd f(u)du is cos udu. Return to Exercise
14 Solutions to exercises 4 Exercise 3. e 5x+ dx Let u = 5x + then du dx = 5 nd dx = du 5 e 5x+ dx = e u du = 5 5 e u du = 5 eu + C = 5 e5x+ + C. Note. The finl result cn lso be obtined using the generl pttern: f(x + b) dx = f(u) du where = 5 nd f(u)du is e u du. Return to Exercise 3
15 Solutions to exercises 5 Exercise 4. sinh 3x dx Let u = 3x then du dx = 3 nd dx = du 3 sinh 3x dx = sinh u du 3 = 3 sinh u du = 3 cosh u + C = cosh 3x + C. 3 Note. The finl result cn lso be obtined using the generl pttern: f(x + b) dx = f(u) du where = 3 nd f(u)du is sinh u du. Return to Exercise 4
16 Solutions to exercises 6 Exercise 5. dx x Let u = x then du dx = nd dx = du dx = x du u = = ln u + C du u = ln x + C. Note. The finl result cn lso be obtined using the generl pttern: f(x + b) dx = f(u) du where = nd f(u)du is du u. Return to Exercise 5
17 Solutions to exercises 7 Exercise 6. dx + (5x) Let u = 5x then du dx = 5 nd dx = du 5 dx + (5x) = du + u = 5 5 du + u = 5 tn u + C = = 5 tn 5x + C. Note. The finl result cn lso be obtined using the generl pttern: f(x + b) dx = f(u) du where = 5 nd f(u)du is du +u du. Return to Exercise 6
18 Solutions to exercises 8 Exercise 7. sec (7x + )dx Let u = 7x + then du dx = 7 nd dx = du 7 sec (7x + )dx = sec u du 7 = 7 tn u + C = tn(7x + ) + C. 7 Note. The finl result cn lso be obtined using the generl pttern: f(x + b) dx = f(u) du where = 7 nd f(u)du is sec udu. Return to Exercise 7
19 Solutions to exercises 9 Exercise 8. sin(3x )dx Let u = 3x then du dx = 3 nd dx = du 3 sin(3x )dx = sin u du 3 = 3 cos u + C = cos(3x ) + C. 3 Note. The finl result cn lso be obtined using the generl pttern: f(x + b) dx = f(u) du where = 3 nd f(u)du is sin udu. Return to Exercise 8
20 Solutions to exercises 0 Exercise 9. cosh( + x)dx Let u = + x then du dx = nd dx = du cosh( + x)dx = cosh u du = sinh u + C = sinh( + x) + C. Note. The finl result cn lso be obtined using the generl pttern: f(x + b) dx = f(u) du where = nd f(u)du is cosh u du. Return to Exercise 9
21 Solutions to exercises Exercise 0. tn(9x )dx Let u = 9x then du dx = 9 nd dx = du 9 tn(9x ) dx = tn u du = 9 9 tn u du = ln cos u + C 9 = ln cos(9x ) + C. 9 Note. The finl result cn lso be obtined using the generl pttern: f(x + b) dx = f(u) du where = 9 nd f(u)du is tn u du. Return to Exercise 0
INTEGRATING FACTOR METHOD
Differential Equations INTEGRATING FACTOR METHOD Graham S McDonald A Tutorial Module for learning to solve 1st order linear differential equations Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk
More informationSeries FOURIER SERIES. Graham S McDonald. A selfcontained Tutorial Module for learning the technique of Fourier series analysis
Series FOURIER SERIES Graham S McDonald A selfcontained Tutorial Module for learning the technique of Fourier series analysis Table of contents Begin Tutorial c 004 g.s.mcdonald@salford.ac.uk 1. Theory.
More informationIntegration ALGEBRAIC FRACTIONS. Graham S McDonald and Silvia C Dalla
Integration ALGEBRAIC FRACTIONS Graham S McDonald and Silvia C Dalla A selfcontained Tutorial Module for practising the integration of algebraic fractions Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk
More informationIntegration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
More information14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style
Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of
More informationAREA OF A SURFACE OF REVOLUTION
AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.
More informationSection 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a
More informationExam 1 Study Guide. Differentiation and Antidifferentiation Rules from Calculus I
Exm Stuy Guie Mth 2020  Clculus II, Winter 204 The following is list of importnt concepts from ech section tht will be teste on exm. This is not complete list of the mteril tht you shoul know for the
More informationCalculus 1: Sample Questions, Final Exam, Solutions
Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.
More informationFunction Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015
Harold s s Cheat Sheet 8 December 05 Algebra Constant Linear Identity f(x) c f(x) x Range: [c, c] Undefined (asymptote) Restrictions: c is a real number Ay + B 0 g(x) x Restrictions: m 0 General Fms: Ax
More informationThe Velocity Factor of an Insulated TwoWire Transmission Line
The Velocity Fctor of n Insulted TwoWire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the
More informationReview guide for the final exam in Math 233
Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered
More informationMODULE 3. 0, y = 0 for all y
Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)
More informationwww.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)
www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input
More informationExample A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
More informationLectures 8 and 9 1 Rectangular waveguides
1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves
More information5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.
5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous relvlued
More informationApplications to Physics and Engineering
Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics
More informationPROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
More information15.6. The mean value and the rootmeansquare value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style
The men vlue nd the rootmensqure vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time
More informationQUADRATURE METHODS. July 19, 2011. Kenneth L. Judd. Hoover Institution
QUADRATURE METHODS Kenneth L. Judd Hoover Institution July 19, 2011 1 Integrtion Most integrls cnnot be evluted nlyticlly Integrls frequently rise in economics Expected utility Discounted utility nd profits
More informationReview Problems for the Final of Math 121, Fall 2014
Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since
More informationy cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C
Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.
More informationHomework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
More informationMath 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
More informationVectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments  they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
More informationGraphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
More informationand thus, they are similar. If k = 3 then the Jordan form of both matrices is
Homework ssignment 11 Section 7. pp. 24925 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If
More informationOperations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
More informationUsing a table of derivatives
Using a table of derivatives In this unit we construct a Table of Derivatives of commonly occurring functions. This is done using the knowledge gained in previous units on differentiation from first principles.
More informationUNIT 1: ANALYTICAL METHODS FOR ENGINEERS
UNIT : ANALYTICAL METHODS FOR ENGINEERS Unit code: A/60/40 QCF Level: 4 Credit value: 5 OUTCOME 3  CALCULUS TUTORIAL DIFFERENTIATION 3 Be able to analyse and model engineering situations and solve problems
More informationThe Riemann Integral. Chapter 1
Chpter The Riemnn Integrl now of some universities in Englnd where the Lebesgue integrl is tught in the first yer of mthemtics degree insted of the Riemnn integrl, but now of no universities in Englnd
More informationPhysics 43 Homework Set 9 Chapter 40 Key
Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nmwide region t x
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More informationAll pay auctions with certain and uncertain prizes a comment
CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 12015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin
More informationy cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx
Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.
More informationNonhomogeneous Linear Equations
Nonhomogeneous Linear Equations In this section we learn how to solve secondorder nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where
More informationPRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
More informationFactoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
More informationChange of Variables in Double Integrals
Change of Variables in Double Integrals Part : Area of the Image of a egion It is often advantageous to evaluate (x; y) da in a coordinate system other than the xycoordinate system. In this section, we
More information6.2 Volumes of Revolution: The Disk Method
mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine soclled volumes of
More informationLecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
More information6 Energy Methods And The Energy of Waves MATH 22C
6 Energy Methods And The Energy of Wves MATH 22C. Conservtion of Energy We discuss the principle of conservtion of energy for ODE s, derive the energy ssocited with the hrmonic oscilltor, nd then use this
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More information1. Firstorder Ordinary Differential Equations
Advanced Engineering Mathematics 1. Firstorder ODEs 1 1. Firstorder Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential
More information4 Approximations. 4.1 Background. D. Levy
D. Levy 4 Approximtions 4.1 Bckground In this chpter we re interested in pproximtion problems. Generlly speking, strting from function f(x) we would like to find different function g(x) tht belongs to
More information3 The Utility Maximization Problem
3 The Utility Mxiiztion Proble We hve now discussed how to describe preferences in ters of utility functions nd how to forulte siple budget sets. The rtionl choice ssuption, tht consuers pick the best
More informationTo differentiate logarithmic functions with bases other than e, use
To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with
More informationIntegration by substitution
Integration by substitution There are occasions when it is possible to perform an apparently difficult piece of integration by first making a substitution. This has the effect of changing the variable
More informationSection 2.7 OnetoOne Functions and Their Inverses
Section. OnetoOne Functions and Their Inverses OnetoOne Functions HORIZONTAL LINE TEST: A function is onetoone if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.
More informationPure C4. Revision Notes
Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd
More informationI. Pointwise convergence
MATH 40  NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.
More informationEuler Euler Everywhere Using the EulerLagrange Equation to Solve Calculus of Variation Problems
Euler Euler Everywhere Using the EulerLgrnge Eqution to Solve Clculus of Vrition Problems Jenine Smllwood Principles of Anlysis Professor Flschk My 12, 1998 1 1. Introduction Clculus of vritions is brnch
More informationMathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
More information4.11 Inner Product Spaces
314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces
More informationLecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is onetoone, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationCHAPTER 11 Numerical Differentiation and Integration
CHAPTER 11 Numericl Differentition nd Integrtion Differentition nd integrtion re bsic mthemticl opertions with wide rnge of pplictions in mny res of science. It is therefore importnt to hve good methods
More informationLINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
More informationIntegration. 148 Chapter 7 Integration
48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but
More informationRAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I  ORDINARY DIFFERENTIAL EQUATIONS PART A
RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I  ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:
More informationExperiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
More informationVendor Rating for Service Desk Selection
Vendor Presented By DATE Using the scores of 0, 1, 2, or 3, plese rte the vendor's presenttion on how well they demonstrted the functionl requirements in the res below. Also consider how efficient nd functionl
More informationModule 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur
Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives
More informationDistributions. (corresponding to the cumulative distribution function for the discrete case).
Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive
More informationUNLOCKING TECHNOLOGY IVECO
UNLOCKING TECHNOLOGY IVECO IVECO  CONTENTS PPLICTIONS PGE DS136 IVECO 3 DS177 IVECO CN 3 DIGNOSTIC SOCKETS LOCTIONS IVECO 4 GENERL OPERTION 5 6 TIPS & HINTS 15 2 Version: 2.3 July 2011 Copyright 2009
More informationNotes and questions to aid Alevel Mathematics revision
Notes and questions to aid Alevel Mathematics revision Robert Bowles University College London October 4, 5 Introduction Introduction There are some students who find the first year s study at UCL and
More information200506 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration
Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 256 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting
More information4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
More informationTechniques of Integration
8 Techniques of Integration Over the next few sections we examine some techniques that are frequently successful when seeking antiderivatives of functions. Sometimes this is a simple problem, since it
More informationPROBLEMS 13  APPLICATIONS OF DERIVATIVES Page 1
PROBLEMS  APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.
More informationTechniques of Integration
CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an artform than a collection of algorithms. Many problems in applied mathematics involve the integration
More informationSection 54 Trigonometric Functions
5 Trigonometric Functions Section 5 Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form
More information6 Further differentiation and integration techniques
56 6 Further differentiation and integration techniques Here are three more rules for differentiation and two more integration techniques. 6.1 The product rule for differentiation Textbook: Section 2.7
More informationMATH 381 HOMEWORK 2 SOLUTIONS
MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e
More informationEuler s Formula Math 220
Euler s Formula Math 0 last change: Sept 3, 05 Complex numbers A complex number is an expression of the form x+iy where x and y are real numbers and i is the imaginary square root of. For example, + 3i
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More information1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator
AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.
More informationChapter. Numerical Calculations
Chapter 3 Numerical Calculations 31 Before Performing a Calculation 32 Differential Calculations 33 Quadratic Differential Calculations 34 Integration Calculations 35 Maximum/Minimum Value Calculations
More informationCore Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
More informationWarmup for Differential Calculus
Summer Assignment Wrmup for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:
More informationv T R x m Version PREVIEW Practice 7 carroll (11108) 1
Version PEVIEW Prctice 7 crroll (08) his printout should he 5 questions. Multiplechoice questions y continue on the next colun or pge find ll choices before nswering. Atwood Mchine 05 00 0.0 points A
More informationSection 74 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 74 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
More informationThe Exponential Form of a Complex Number
The Exponential Form of a Complex Number 10.3 Introduction In this block we introduce a third way of expressing a complex number: the exponential form. We shall discover, through the use of the complex
More informationMath Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
More informationJaERM SoftwareasaSolution Package
JERM SoftwresSolution Pckge Enterprise Risk Mngement ( ERM ) Public listed compnies nd orgnistions providing finncil services re required by Monetry Authority of Singpore ( MAS ) nd/or Singpore Stock
More informationLectures 56: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5: Taylor Series Weeks 5 Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
More informationSample Problems. Practice Problems
Lecture Notes Partial Fractions page Sample Problems Compute each of the following integrals.. x dx. x + x (x + ) (x ) (x ) dx 8. x x dx... x (x + ) (x + ) dx x + x x dx x + x x + 6x x dx + x 6. 7. x (x
More informationUNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES
UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES Solution to exm in: FYS30, Quntum mechnics Dy of exm: Nov. 30. 05 Permitted mteril: Approved clcultor, D.J. Griffiths: Introduction to Quntum
More informationApproximating functions by Taylor Polynomials.
Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If
More informationtrademark and symbol guidelines FOR CORPORATE STATIONARY APPLICATIONS reviewed 01.02.2007
trdemrk nd symbol guidelines trdemrk guidelines The trdemrk Cn be plced in either of the two usul configurtions but horizontl usge is preferble. Wherever possible the trdemrk should be plced on blck bckground.
More informationVectors VECTOR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the vector product of two vectors. Table of contents Begin Tutorial
Vectors VECTOR PRODUCT Graham S McDonald A Tutorial Module for learning about the vector product of two vectors Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk 1. Theory 2. Exercises
More information9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes
The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is soclled becuse when the sclr product of two vectors
More informationUNIVERSITY OF NOTTINGHAM. Discussion Papers in Economics STRATEGIC SECOND SOURCING IN A VERTICAL STRUCTURE
UNVERSTY OF NOTTNGHAM Discussion Ppers in Economics Discussion Pper No. 04/15 STRATEGC SECOND SOURCNG N A VERTCAL STRUCTURE By Arijit Mukherjee September 004 DP 04/15 SSN 10438 UNVERSTY OF NOTTNGHAM Discussion
More informationSection 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
More informationCypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:
Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A
More informationThe invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism.
Instrutor: Longfei Li Mth 43 Leture Notes 16. Line Integrls The invention of line integrls is motivted by solving problems in fluid flow, fores, eletriity nd mgnetism. Line Integrls of Funtion We n integrte
More informationRate and Activation Energy of the Iodination of Acetone
nd Activtion Energ of the Iodintion of Acetone rl N. eer Dte of Eperiment: //00 Florence F. Ls (prtner) Abstrct: The rte, rte lw nd ctivtion energ of the iodintion of cetone re detered b observing the
More informationDIFFERENTIAL FORMS AND INTEGRATION
DIFFERENTIAL FORMS AND INTEGRATION TERENCE TAO The concept of integrtion is of course fundmentl in singlevrible clculus. Actully, there re three concepts of integrtion which pper in the subject: the indefinite
More information