# Kinetic Molecular Theory and Gas Laws

Save this PDF as:

Size: px
Start display at page:

## Transcription

2 i. Demo: Bouncing various balls ii. Kinesthetic Lab: Kinesthetic Modeling of a Superball. List all the rules we need to model a ball rolling around on a table full of objects. iii. Superballs are Like Atoms I. List every kind of energy that you can think of. II. The energy of motion is called kinetic energy. III. The amount of kinetic energy something has depends on both its mass and velocity [speed]. An object with more mass and/or higher velocity [speed] will have more kinetic energy [energy of motion]. IV. Which has more kinetic energy, a bowling ball or a baseball moving at the same velocity? V. How can we make the baseball have the same kinetic energy as the bowling ball? VI. Demo: Bouncing Superball VII. Why does the superball stop bouncing? page 2

3 VIII. When most objects bounce off something, they convert some of their kinetic energy [energy of motion] into heat or sound energy. That is why, when you drop a superball straight down, it bounces to lower and lower heights each time. Its kinetic energy [energy of motion] is changing to heat and sound energy. IX. Atoms (which we can't directly handle) behave very much like superballs (which we can handle). We will spend some time understanding the behavior of superballs, so that we can better understand the less accessible world of atoms. iv. Computer Lab: Modeling of a Superball(How to run this?) v. Demo: Two Atoms in a Box(How to run this?) vi. Homework: Modeling Questions III. Spatial Equilibrium (or Nature Abhors a Vacuum) I. Gas molecules are in continual motion. They move in a straight line until they collide with another molecule or with the walls of their container (also made of atoms and molecules). When molecules collide, they rebound with 100% elasticity. II. Air is made of colliding gas molecules and odors are also made of gas molecules. If some odor is released from a container then the molecules will mix with molecules in the air. The multiple random collisions will cause the odor molecules to diffuse [spread randomly in all directions] into the surroundings. III. The random motion of atoms as they jostled around by other atoms is called "Brownian Motion". IV. After the model is allowed to run for some time the gas molecules will reach a dynamic equilibrium. V. A state of dynamic equilibrium occurs when measurements on a system are constant even though individual parts of the system are rapidly changing. For example, imagine two sets of people on opposite sides of a bridge. They begin to walk across in such a way that for every person who crosses from side A to side B, one crosses from side B to A. If you were to measure how many people are on either side of the bridge you would always get the same number. However, the specific people are always changing. This is a state of dynamic equilibrium. VI. Spatial equilibrium occurs when the average number of molecules of a particular kind found in a specific volume is unchanging. VII. For simplicity all gasses will be modeled as if they are made from single atoms. While true of some gasses (the ones in the Noble gas column of the periodic table), this is not true of other gasses at room temperature. i. Lab: View Brownian motion in microscope. ii. Demo: Computer model of Brownian motion(how to run this?) iii. Demo: Mint Smell page 3

4 iv. Computer Lab: Spatial Equilibrium(How to run this?) v. Computer Lab: Diffusion and Osmosis(How to run this?) vi. Homework: Equilibrium/Diffusion Questions IV. Heat vs. Temperature Heat and temperature are not the same thing. II. Heat energy is the total kinetic energy of the atoms of a substance. III. Temperature is the average kinetic energy of the atoms of a substance. IV. Test score analogy with points being like heat: Heat is like the total number of points and temperature is like the average score. V. Each atom has a certain amount of kinetic energy. This energy fluctuates due to the many collisions with other atoms. However, when two atoms collide transferring kinetic energy from one to the other, no kinetic energy is lost. If the amount of kinetic energy for each atom is added up then you would have a value representing the heat energy of that collection of atoms. It follows that the more atoms which are counted, the greater the heat energy will be. page 4

5 VI. Temperature is a measure of the average kinetic energy of those atoms. The result of this difference between heat and temperature causes the number of atoms measured to play a major role in understanding how much heat energy an object has at a particular temperature. VII. For example, if two glasses of water are left out on the table, one completely full and the other exactly half full, they will eventually both come to room temperature, about 21 C. They may have the same temperature, but the full glass has twice the heat energy of the half full glass. Because the full glass has twice as many molecules each carrying some heat energy (or kinetic energy) the full glass has more heat at the same temperature. VIII. The higher the temperature the faster the atoms move. IX. Large objects can have a kinetic energy and temperature which are distinctly separate things. For example, a baseball sitting still has no kinetic energy, but its atoms are moving, so they have kinetic energy. Because the temperature of a substance is due to the average kinetic energy of its atoms, the ball does have a temperature. Depending on how many atoms it takes to make up the ball, it has a certain amount of heat energy (the total energy of the atoms comprising the ball). X. Because temperature is a function of the average kinetic energy of the atoms, the lowest possible temperature would be when the atoms stop moving, therefore having no kinetic energy. Because there is a lowest possible temperature, it would make sense to use a temperature scale that starts at zero. This temperature scale is called the Kelvin temperature scale and zero Kelvin is a special temperature called absolute zero (when all atomic motion is stopped). XI. An atom, however, can't separate kinetic energy from heat energy. For atoms they are one and the same thing. A bunch of atoms sitting still have no kinetic energy, no heat energy, and would have zero temperature (on the Kelvin temperature scale). XII. In summary: i. For an atom Kinetic Energy = Heat Energy ii. For a substance Heat Energy = Total of all the Kinetic Energies of its atoms iii. For a substance Temperature = Average Kinetic energy of its atoms i. Demo: Heat vs. Temperature(How to run this?) ii. Computer Lab: Heat vs. Temperature(How to run this?) iii. Heat Transfer and Thermal Equilibrium I. Heat energy can be transferred between two containers by putting them in direct physical contact, and this heat energy will always flow from the hotter container to the cooler container. II. The temperature of a substance is dependent on the kinetic energy of its atoms or molecules. Because page 5

6 atoms or molecules can transfer some of their kinetic energy by colliding with other atoms, heat energy can be transferred through atomic collisions. III. If there are two substances each inside their own container, then heat energy can be transferred between the two substances through the following process: i. The atoms of each substance collide with the atoms of their respective containers. ii. If the containers are touching each other, the atoms of one container can collide with the atoms of the other container which can then collide with the atoms of the substance within the container. iii. Eventually, the two substances and their containers come to thermal equilibrium [a state in which all atoms in the system have the same average kinetic energy]. IV. During the process of exchanging kinetic energy through collisions, substances are reaching thermal equilibrium. You might wonder how atoms know which way to transfer their kinetic energy. In fact, heat is flowing from the hot container to the cold AND from the cold to the hot. However, because the hotter container has a greater portion of atoms with higher kinetic energies, the rate of kinetic energy transfer from the hotter container to the cooler container is faster than the the rate of energy transfer back from the cooler container to the hotter container. The result is a decrease in the temperature of the hotter container and an increase in the temperature of the cooler container. V. Eventually, when the temperatures become equal, the rate of energy exchange is equal and it appears that nothing is happening. However, energy is still being exchanged from one container to another. It s just that the rate of exchange is equal. This state is known as thermal equilibrium. I. Demo: Heat Transfer(How to run this?) II. Homework: Heat Questions III. Kinetic Molecular Theory I. Matter is made of tiny particles (atoms and molecules) II. These particles are always in motion. III. The kinetic energy of the particles remains constant if the temperature and pressure of the substance remains constant. i. Kinetic energy = 1/2mv2 (m=mass and v=velocity) ii. Temperature is a measure of the average kinetic energy of the atoms of a substance. Higher average kinetic energy = faster moving molecules or atoms = higher temperature. iii. Pressure is related to the impacts of molecules. Higher average molecular kinetic energy = Increased number of impacts and increased speed of impacts = higher pressure. iv. See the Flash plugin below to see demonstration of Kinetic Molecular Theory: page 6

7 i. Demo: Balloon on bottle IV. Force vs. Pressure I. Force is the total impact of one object or gas on another II. Pressure is the ratio of force to area over which it is applied. i. ii. The force I exert on the floor when standing on both feet is equal to the force I exert on the floor when standing on one foot. However, when standing on one foot I put twice the pressure on the floor as if I were standing on two feet. Calculate your own pressure when standing on two and then one foot. III. Units for pressure i. Lab: Measure the mass of a car with just a ruler. V. Gas Pressure I. Gasses exert pressure through the impacts of their molecules on the walls of their containers. II. Although we can t see any physical evidence of how a gas can exert a pressure, we certainly can feel that pressure. To understand how a gas exerts pressure we need to recall the underlying atomic model: a gas is a bunch of atoms bouncing around like superballs. III. When an atom bounces off the walls of its container, the container feels the impact in the same way you would feel an impact from a ball bouncing off of a tennis racquet. However, the impact felt by the wall of the container is extremely small. The bouncing of one atom off of the wall of a container would be virtually insignificant. It takes millions upon millions of impacts between atoms and the walls of their containers concentrated on a vary small area to register a measurable pressure. IV. There are two primary factors which explain the magnitude of the pressure exerted by atoms: the frequency of impacts and the force of those impacts. page 7

8 i. There are several ways that gas pressure can be increased due to increased frequency of impacts. a. Put more gas in the container. If you have more gaseous atoms in a container then there will be more frequent impacts against the walls of the container causing a greater pressure on its walls. b. Make the container smaller. If you have the same number of atoms crammed into a smaller space, then they will hit the walls more frequently with more atoms hitting the same area repeatedly, increasing the pressure on the walls. c. Raise the temperature. If you make the atoms move faster then they will hit the walls more frequently, increasing the pressure on the walls. ii. We can also increase gas pressure if each atom hits the wall of its container with greater force. There is one primary way to make this happen: a. Raise the temperature. By raising the temperature you add kinetic energy [energy of motion] to the atoms, therefore, increasing their velocity. If they are moving faster when they hit the wall of the container, then the impact against the wall will be greater, increasing the pressure on the walls. V. There is an intimate relationship between gas pressure, temperature, volume of the container, and the number of molecules inside the container. i. Computer Lab: Gas Laws(How to run this?) ii. Demo: Hydrogen Spout iii. Homework: Gas Pressure Questions VI. Air pressure I. We live at the bottom of an ocean of air. II. Gravity pulls down on our atmosphere just as it pulls on all nearby matter. III. We are under constant bombardment by an uncountable number of gas molecules every second over every part of our body. The impacts of these molecules are collectively felt as a pressure. We don't normally recognize this pressure because we are used to it. IV. The higher we go in the atmosphere the fewer molecules there are on top of us. Since gravity pulls on these molecules they are less compressed by having fewer molecules on top of them, so the gas pressure drops the higher you go in the atmosphere. V. Notice the mountain climber's body is being hit by fewer gas molecules per second. Pressure is lower on top of the mountain and the air is "thinner" making it hard to get enough oxygen molecules into your lungs. page 8

9 i. Demo: Tube with holes filled with water. ii. Demo: upside down test tube and bottle. iii. Demo: Hg barometer iv. Normal air pressure can support a column of mercury mm tall or water 32 ft tall v. Homework: Describe in detail at the molecular level how a straw works. VII. You Can't Vacuum the Moon I. There is no such thing as the pulling force of suction!!!! II. Gases exert a pressure through the collective impacts of their atoms on the surface of an object or container. Because of this, pressure is always a positive value. In other words, gasses can only push on things, never pull on things. The lowest pressure achievable occurs when there are no atoms around, such as in outer space. (Actually, there are some atoms in outer space, but they are so few and far between that the pressure is almost zero there.) III. Any time something seems to be pulled by suction, the actual cause must be explained by using pushing forces of gasses. Suction is better defined as a net pushing force in a particular direction due to the differences in two gas pressures. i. Demo: Plates ii. Demos: Multiple "suction" demos and explanations that don't involve the pulling forces of suction iii. Homework: No Such Thing As Suction Questions XIII. Handout: Review Sheet page 9

### 1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

### 13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,

### A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to

### Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

### SAM Teachers Guide Heat and Temperature

SAM Teachers Guide Heat and Temperature Overview Students learn that temperature measures average kinetic energy, and heat is the transfer of energy from hot systems to cold systems. They consider what

### TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

### Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

### KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

### Chemistry 13: States of Matter

Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

### Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K Kinetic Molecular Theory of Gases 1. Large number of atoms/molecules in random motion 2.

### 9460218_CH06_p069-080.qxd 1/20/10 9:44 PM Page 69 GAS PROPERTIES PURPOSE

9460218_CH06_p069-080.qxd 1/20/10 9:44 PM Page 69 6 GAS PROPERTIES PURPOSE The purpose of this lab is to investigate how properties of gases pressure, temperature, and volume are related. Also, you will

### CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

### Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages 385 389)

13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains how temperature

### Energy and Energy Transformations Test Review

Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.

### Kinetic Theory & Ideal Gas

1 of 6 Thermodynamics Summer 2006 Kinetic Theory & Ideal Gas The study of thermodynamics usually starts with the concepts of temperature and heat, and most people feel that the temperature of an object

### THE IDEAL GAS LAW AND KINETIC THEORY

Chapter 14 he Ideal Gas Law and Kinetic heory Chapter 14 HE IDEAL GAS LAW AND KINEIC HEORY REIEW Kinetic molecular theory involves the study of matter, particularly gases, as very small particles in constant

### Practice TEST 2. Explain your reasoning

Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

### Heat Energy FORMS OF ENERGY LESSON PLAN 2.7. Public School System Teaching Standards Covered

FORMS OF ENERGY LESSON PLAN 2.7 Heat Energy This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the seven states served

Chapter 1 Student Reading Chemistry is the study of matter You could say that chemistry is the science that studies all the stuff in the entire world. A more scientific term for stuff is matter. So chemistry

### 1.4.6-1.4.8 Gas Laws. Heat and Temperature

1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because

### Chapter 4: Transfer of Thermal Energy

Chapter 4: Transfer of Thermal Energy Goals of Period 4 Section 4.1: To define temperature and thermal energy Section 4.2: To discuss three methods of thermal energy transfer. Section 4.3: To describe

### HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

### Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

### Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C

Practice Test 1) Increase the pressure in a container of oxygen gas while keeping the temperature constant and you increase the A) molecular speed. B) molecular kinetic energy. C) Choice A and choice B

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

### The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

Our Atmosphere The Gas Laws 99% N 2 and O 2 78% N 2 80 70 Nitrogen Chapter 10 21% O 2 1% CO 2 and the Noble Gases 60 50 40 Oxygen 30 20 10 0 Gas Carbon dioxide and Noble Gases Pressure Pressure = Force

### (Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION

Convection (Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION You know from common experience that when there's a difference in temperature between two places close to each other, the temperatures

### (1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed.

Gas Laws and Kinetic Molecular Theory The Gas Laws are based on experiments, and they describe how a gas behaves under certain conditions. However, Gas Laws do not attempt to explain the behavior of gases.

### Temperature. PJ Brucat

PJ Brucat Temperature - the measure of average kinetic energy (KE) of a gas, liquid, or solid. KE is energy of motion. KE = ½ mv 2 where m=mass and v=velocity (speed) 1 All molecules have KE whether solid,

### PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

### Thermodynamics. Thermodynamics 1

Thermodynamics 1 Thermodynamics Some Important Topics First Law of Thermodynamics Internal Energy U ( or E) Enthalpy H Second Law of Thermodynamics Entropy S Third law of Thermodynamics Absolute Entropy

### Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1

Answers Additional Questions 12.1 1. A gas collected over water has a total pressure equal to the pressure of the dry gas plus the pressure of the water vapor. If the partial pressure of water at 25.0

### 10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory

### CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry

CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,

### = 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

Convection, Conduction & Radiation There are three basic ways in which heat is transferred: convection, conduction and radiation. In gases and liquids, heat is usually transferred by convection, in which

### THE HUMIDITY/MOISTURE HANDBOOK

THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M

### 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

### EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

### Chapter 7 Momentum and Impulse

Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time

### Multiple Choice For questions 1-10, circle only one answer.

Test Bank - Chapter 1 The questions in the test bank cover the concepts from the lessons in Chapter 1. Select questions from any of the categories that match the content you covered with students. The

### Unit 3: States of Matter Practice Exam

Page 1 Unit 3: States of Matter Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Two gases with unequal masses are injected into opposite

### Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### Chillin Out: Designing an Insulator

SHPE Jr. Chapter May 2015 STEM Activity Instructor Resource Chillin Out: Designing an Insulator Students learn about the three ways heat can be transferred from one object to another. They also learn what

### Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

### Surface Tension. the surface tension of a liquid is the energy required to increase the surface area a given amount

Tro, Chemistry: A Molecular Approach 1 Surface Tension surface tension is a property of liquids that results from the tendency of liquids to minimize their surface area in order to minimize their surface

### Kinetic Theory of Gases

Kinetic Theory of Gases Physics 1425 Lecture 31 Michael Fowler, UVa Bernoulli s Picture Daniel Bernoulli, in 1738, was the first to understand air pressure in terms of molecules he visualized them shooting

### The Physics of Kicking a Soccer Ball

The Physics of Kicking a Soccer Ball Shael Brown Grade 8 Table of Contents Introduction...1 What actually happens when you kick a soccer ball?...2 Who kicks harder shorter or taller people?...4 How much

### Mechanical Energy. Mechanical Energy is energy due to position or motion.

Mechanical Energy Mechanical Energy is energy due to position or motion. Position: This means that matter can have energy even though it is not moving. If you knock something off of your kitchen counter,

### CLASSICAL CONCEPT REVIEW 8

CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with

### Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

### Work, Energy and Power

Name: KEY Work, Energy and Power Objectives: 1. To understand work and its relation to energy. 2. To understand how energy can be transformed from one form into another. 3. To compute the power from the

### Preview of Period 5: Thermal Energy, the Microscopic Picture

Preview of Period 5: Thermal Energy, the Microscopic Picture 5.1 Temperature and Molecular Motion What is evaporative cooling? 5.2 Temperature and Phase Changes How much energy is required for a phase

### IDEAL AND NON-IDEAL GASES

2/2016 ideal gas 1/8 IDEAL AND NON-IDEAL GASES PURPOSE: To measure how the pressure of a low-density gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to

### 2. Room temperature: C. Kelvin. 2. Room temperature:

Temperature I. Temperature is the quantity that tells how hot or cold something is compared with a standard A. Temperature is directly proportional to the average kinetic energy of molecular translational

### There is no such thing as heat energy

There is no such thing as heat energy We have used heat only for the energy transferred between the objects at different temperatures, and thermal energy to describe the energy content of the objects.

### AS COMPETITION PAPER 2008

AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

### ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Work is a transfer of a. energy. c. mass. b. force. d. motion. 2. What

### Engaging Students Through Interactive Activities In General Education Classes

Engaging Students Through Interactive Activities In General Education Classes On the Cutting Edge: Early Career Geoscience Faculty Workshop 14-18 June 2009 Presented by Randy Richardson Department of Geosciences,

### Online Changing States of Matter Lab Solids What is a Solid? 1. How are solids different then a gas or a liquid?

Name: Period: Online Changing States of Matter Lab Solids What is a Solid? 1. How are solids different then a gas or a liquid? 2. What are the atoms doing in a solid? 3. What are the characteristics of

### 7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

### LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes DESCRIPTION Apply the concepts of pressure and Newton s laws of motion to build simple rockets. OBJECTIVE This lesson

### Bounce! Name. Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure.

Bounce 1 Name Bounce! Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure. Background information: Energy causes things to happen. During the day, the sun gives

### What is Energy? What is the relationship between energy and work?

What is Energy? What is the relationship between energy and work? Compare kinetic and potential energy What are the different types of energy? What is energy? Energy is the ability to do work. Great, but

### Basic Forms of Energy:

Background Information: Energy can be defined in many different ways: the ability to do work, the ability to the change the properties of a material, or simply the ability to do something. Energy is a

### PHYS-2010: General Physics I Course Lecture Notes Section XIII

PHYS-2010: General Physics I Course Lecture Notes Section XIII Dr. Donald G. Luttermoser East Tennessee State University Edition 2.5 Abstract These class notes are designed for use of the instructor and

### Chapter 15 Collision Theory

Chapter 15 Collision Theory 151 Introduction 1 15 Reference Frames Relative and Velocities 1 151 Center of Mass Reference Frame 15 Relative Velocities 3 153 Characterizing Collisions 5 154 One-Dimensional

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

### Roanoke Pinball Museum Key Concepts

Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.

### Name Date Class. As you read about the properties of air, fill in the detail boxes that explain the main idea in the graphic organizer below.

Name Date Class The Atmosphere Guided Reading and Study Air Pressure This section describes several properties of air, including density and air pressure. The section also explains how air pressure is

### Grade 8 Science Chapter 9 Notes

Grade 8 Science Chapter 9 Notes Force Force - Anything that causes a change in the motion of an object. - usually a push or a pull. - the unit for force is the Newton (N). Balanced Forces - forces that

### Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work.

Work and Energy Ch. 6 Work = Force Distance Work increases the energy of an object. Energy can be converted back to work. Therefore, energy and work have the same unit: Newton meter = Nm Energy per gram,

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The

### Pushes and Pulls. TCAPS Created June 2010 by J. McCain

Pushes and Pulls K i n d e r g a r t e n S c i e n c e TCAPS Created June 2010 by J. McCain Table of Contents Science GLCEs incorporated in this Unit............... 2-3 Materials List.......................................

### Chapter Test A. States of Matter MULTIPLE CHOICE. a fixed amount of STAs2 a. a solid. b. a liquid. c. a gas. d. any type of matter.

Assessment Chapter Test A States of Matter MULTIPLE CHOICE Write the letter of the correct answer in the space provided. 1. Boyle s law explains the relationship between volume and pressure for a fixed

### The Earth, Sun, and Moon

reflect The Sun and Moon are Earth s constant companions. We bask in the Sun s heat and light. It provides Earth s energy, and life could not exist without it. We rely on the Moon to light dark nights.

### Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).

CHEM110 Week 9 Notes (Gas Laws) Page 1 of 7 Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). Gases Are mostly empty space Occupy containers uniformly and completely Expand infinitely Diffuse

### Name per due date mail box

Name per due date mail box Rolling Momentum Lab (1 pt for complete header) Today in lab, we will be experimenting with momentum and measuring the actual force of impact due to momentum of several rolling

### Bottle Rockets. Vanderbilt Student Volunteers for Science. Fall 2008

Bottle Rockets Vanderbilt Student Volunteers for Science Fall 2008 I. Introduction: History of Rockets Explain to the students that rockets are more than two thousand years old. Give the students a BRIEF

### What Is Energy? Energy and Work: Working Together. 124 Chapter 5 Energy and Energy Resources

1 What You Will Learn Explain the relationship between energy and work. Compare kinetic and potential energy. Describe the different forms of energy. Vocabulary energy kinetic energy potential energy mechanical

Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.

### Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### Lesson 3 - Understanding Energy (with a Pendulum)

Lesson 3 - Understanding Energy (with a Pendulum) Introduction This lesson is meant to introduce energy and conservation of energy and is a continuation of the fundamentals of roller coaster engineering.

### THE KINETIC THEORY OF GASES

Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

### Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

Gases and Kinetic-Molecular heory: Chapter Chapter Outline Comparison of Solids, Liquids, and Gases Composition of the Atmosphere and Some Common Properties of Gases Pressure Boyle s Law: he Volume-Pressure

### Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

### Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

### Physics 101 Hour Exam 3 December 1, 2014

Physics 101 Hour Exam 3 December 1, 2014 Last Name: First Name ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Calculators cannot be shared. Please keep

### Physics 1114: Unit 6 Homework: Answers

Physics 1114: Unit 6 Homework: Answers Problem set 1 1. A rod 4.2 m long and 0.50 cm 2 in cross-sectional area is stretched 0.20 cm under a tension of 12,000 N. a) The stress is the Force (1.2 10 4 N)

### When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

### Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature

OpenStax-CNX module: m42217 1 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons

### Name Period 4 th Six Weeks Notes 2015 Weather

Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

### CHEMISTRY: Sublimation of Dry Ice

CHEMISTRY: Sublimation of Dry Ice By Darby Sloss and Marianne Smith Edited by Anne Starace Abstract Chemistry is an important part of our lives. This module demonstrates sublimation. Keywords Chemical,

### KINETIC THEORY AND THERMODYNAMICS

KINETIC THEORY AND THERMODYNAMICS 1. Basic ideas Kinetic theory based on experiments, which proved that a) matter contains particles and quite a lot of space between them b) these particles always move

### Gas Laws. vacuum. 760 mm. air pressure. mercury

Gas Laws Some chemical reactions take place in the gas phase and others produce products that are gases. We need a way to measure the quantity of compounds in a given volume of gas and relate that to moles.

### AP Physics C Fall Final Web Review

Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of