Internal Combustion Engines

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Internal Combustion Engines"

Transcription

1 Lecture-24 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1

2 Break-up of Energy The energy released in the combustion chamber of an internal combustion engine is dissipated in three different ways. About 35 % of the fuel energy is converted to useful crankshaft work, and about 30 % energy is expelled with the exhaust. This leaves about one-third of the total energy that must be transmitted from the enclosed cylinder through the cylinder walls and head to the surrounding atmosphere. 2

3 3

4 Combustion Chamber Temperature The temperature in the combustion chamber of an engine goes up to 2700 K, and the materials used in the engine cannot withstand this. Further, this high temperature destroys the lubricating properties of the oil film on the cylinder walls. At the same time, thermal stresses will be developed thereby distorting the cylinders, head and piston. 4

5 Energy Distribution η P bth = mq bp = mq η f f f f c Power generated = bp + Q exhaust + Q loss + Pacc where Q exhaust Q loss Pacc = energy lost to exhaust = energy lost to surroundings by heat transfer = power required to drive engine accessories 5

6 Temperature Distribution Exhaust valve 650 C Exhaust flow 450 C Spark plug 600 C Intake valve 250 C Intake manifold 60 C Piston ring 220 C Piston skirt 190 C Piston face 300 C Cylinder wall 185 C Oil 70 C 6

7 Modes of Heat Transfer In general, heat transfer by conduction takes place through the cylinder head, cylinder walls, and piston; through the piston rings to the cylinder wall; through the engine block and manifolds. Heat transfer by forced convection occurs between the in-cylinder gases and cylinder head, valves, cylinder walls, and piston during the engine cycle. Heat transfer by radiation occurs through the emission and absorption of electromagnetic waves. Radiative heat transfer occurs from the high temperature combustion gases and the flame region to the combustion chamber walls. 7

8 Heat Transfer in Intake System The walls of the intake manifold are hotter than the flowing gases, heating them by convection: Q = ha T T ( ) wall where, T = temperature h = convection heat transfer coefficient A = inside surface area of intake manifold The manifold is hot, either by design on some engines or just as a result of its location close to other hot components in the engine compartment. gas 8

9 Heating the Manifolds Some are designed such that the flow passages of the runners come in close thermal contact with the hot exhaust manifold. Others use hot coolant flow through a surrounding water jacket. Electricity is used to heat some intake manifolds. Some systems have special localized hot surfaces, called hot spots, in optimum locations, such as immediately after fuel addition or at a tee where maximum convection occurs. 9

10 Heating the Manifolds Engine systems using multipoint port injectors have less need for heating the intake manifold, relying on finer fuel droplets and higher temperature around the intake valve to assure necessary fuel evaporation. This results in higher volumetric efficiency for these engines. Often, the fuel is sprayed directly onto the back of the intake valve face. This not only speeds evaporation, but cools the intake valve, which can reach cyclic temperatures up to 400ºC. Steady-state temperature of intake valves generally is in the 200º-300ºC range. 10

11 Heat Transfer in Combustion Chambers During combustion, peak gas temperature on the order of 3000 K occur within the cylinders, and effective heat transfer is needed to keep the cylinder walls from overheating. Convection and conduction are the main heat transfer modes to remove energy from the combustion chamber and keep the cylinder walls from melting. 11

12 Heat Transfer through a Cylinder Wall 12

13 Heat Transfer through a Cylinder Wall Heat transfer per unit surface area will be: q = Q / A= T T / 1/ h + x/ k + 1/ h ( ) ( ) ( ) ( ) g c g c T = where, gas temperature in the combustion g chamber T c = coolant temperature h convection heat transfer coefficient g = on the gas side h c = convection heat transfer coefficient on the coolant side = x thickness of the combustion chamber wall thermal conductivity of cylinder wall k = 13

14 Convective Heat Transfer Convection heat transfer on the inside surface of the cylinder is: q = Q A= h T T ( ) / g g w Wall temperature should not exceed 180º-200ºC to assure thermal stability of the lubricating oil and structural strength of the wall. 14

15 Reynolds Number There are number of ways of identifying a Reynolds number to use for comparing flow characteristics and heat transfer in engines of different sizes, speeds, and geometries. Choosing the best characteristic length and velocity is sometimes difficult. One way of defining a Reynolds number for engines that correlates data fairly well is: ( m a m f ) B ( A pµ g) Re = + / where, m a = air mass flow rate into the cylinder m f = fuel mass flow rate into the cylinder B = bore A p = area of piston face µ g = dynamic viscosity of gas in cylinder 15

16 Nusselt Number A Nusselt number for the inside of the combustion chamber can be defined using the Reynolds number: ( ) 2 Nu = hb/ k = C Re c g g where, C 1 and C 2 = constants k g = thermal conductivity of cylinder gas k g = average convective heat transfer coefficient The Nusselt number and convection heat transfer coefficient on the coolant side of the cylinder walls can be approximated by conventional methods of forced convection heat transfer. 1 16

17 Radiation Heat Transfer Radiation heat transfer between cylinder gas and combustion chamber walls is: { } q = Q / A= σ Tg T w / 1 g / g + 1/ F + 1 w / w ( 4 4) ( ) [ 12 ] ( ) where, T = g gas temperature T w = σ = = g = w F = 1 2 wall temperature Stefan-Boltzmann constant emissivity of gas emissivity of wall view factor between gas and wall 17

18 Radiation Heat Transfer Even though gas temperatures are very high, radiation to the walls only amounts to about 10% of the total heat transfer in SI engines. This is due to the poor emitting properties of gases, which emit only at specific wavelength. N 2 and O 2, which make up the majority of the gases before combustion, radiate very little, while the CO 2 and H 2 O of the products do contribute more to radiation heat transfer. 18

19 Radiation Heat Transfer The solid carbon particles that are generated in the combustion products of a CI engine are good radiators at all wave lengths, and radiation heat transfer to the walls in these engines is in the range of 20-35% of the total. A large percent of radiation heat transfer to the walls occurs early in the power stroke. At this point the combustion temperature is maximum, and with thermal radiation potential equal to T 4, a very large heat flux is generated. This is also the time when there is a maximum amount of carbon soot in CI engines, which further increases radiative heat flow. 19

20 Local heat flux variation experienced at one location in a single cylinder of a typical engine for three consecutive engine cycles. 20

21 Local heat flux variation experienced at three different locations within the combustion chamber of a single cylinder during one cycle of a typical engine. 21

22 The piston face (A) is one of the hottest surfaces in a combustion chamber. Cooling is mainly done by convection to the lubricating oil on the back side of the piston face, by conduction through the piston rings in contact with cylinder walls, and by conduction down the connecting rod to the oil reservoir. High conduction resistance occurs because of lubricated surfaces at cylinder walls (X) and the rod bearings (Y). Cooling of Piston 22

23 Heat Transfer in Exhaust System Pseudo-steady-state exhaust temperatures of SI engines are generally in the range of 400º-600ºC, with extremes of 300º-900ºC. Exhaust temperatures of CI engines are lower due to their greater expansion ratio and are generally in the range of 200º-500ºC. Some large engines have exhaust valves with hollow stems containing sodium. These act as heat pipes and are very effective in removing heat from the face area of the valve. 23

24 Effect of Variables on Heat Transfer 1. Engine Size: If two geometrically similar engines of different size (displacement) are run at the same speed keeping all other variables (temperature, AF, fuel etc.) as close as possible, the larger engines will have a greater absolute heat loss but will be more thermal efficient. 2. Engine Speed: As engine speed is increased, gas flow velocity into and out of the engine goes up, with a resulting rise in turbulence and convective heat transfer coefficient. This increases heat transfer during intake and exhaust strokes and even early part of the compression strokes. During combustion and power strokes, gas velocities within the cylinders are fairly independent of engine speed. 24

25 Effect of Variables on Heat Transfer 3. Load: As the load on an engine is increased (going uphill, pulling a trailer), the throttle must be further opened to keep the keep the engine speed constant. This causes less pressure drop across the throttle and higher pressure and density in the intake system. Mass flow rate of air and fuel, therefore, goes up with load at a given engine speed. The percentage of heat loss goes down slightly as engine load increases. CI engines run unthrottled, and total mass flow is almost independent of load. When speed or load is increased and more is needed, the amount of fuel injected is increased. This increases the total mass flow in the latter part of each cycle by about 5 %. Thus, convection heat transfer coefficient within the engine is fairly independent of load. 25

26 Effect of Variables on Heat Transfer 4. Inlet Air Temperature: Increasing inlet air temperature to an engine results in a temperature increase over the entire cycle, with a resulting increase in heat loss. A C increase in inlet temperature will give a % increase in heat losses. 5. Swirl and Squish: Higher swirl and squish velocities result in a higher convection heat transfer coefficient within the cylinder. This results in better heat transfer to the walls. 26

27 References 1. Crouse WH, and Anglin DL, (1985), Automotive Engines, Tata McGraw Hill. 2. Eastop TD, and McConkey A, (1993), Applied Thermodynamics for Engg. Technologists, Addison Wisley. 3. Fergusan CR, and Kirkpatrick AT, (2001), Internal Combustion Engines, John Wiley & Sons. 4. Ganesan V, V (2003), Internal Combustion Engines, Tata McGraw Hill. 5. Gill PW, Smith JH, and Ziurys EJ, (1959), Fundamentals of I. C. Engines, Oxford and IBH Pub Ltd. 6. Heisler H, (1999), Vehicle and Engine Technology, Arnold Publishers. 7. Heywood JB, (1989), Internal Combustion Engine Fundamentals, McGraw Hill. 8. Heywood JB, and Sher E, (1999), The Two-Stroke Cycle Engine, Taylor & Francis. 9. Joel R, (1996), Basic Engineering Thermodynamics, Addison-Wesley. 10. Mathur ML, and Sharma RP, (1994), A Course in Internal Combustion Engines, Dhanpat Rai & Sons, New Delhi. 11. Pulkrabek WW, (1997), Engineering Fundamentals of the I. C. Engine, Prentice Hall. 12. Rogers GFC, and Mayhew YR, (1992), Engineering Thermodynamics, Addison Wisley. 13. Srinivasan S, (2001), Automotive Engines, Tata McGraw Hill. 14. Stone R, (1992), Internal Combustion Engines, The Macmillan Press Limited, London. 15. Taylor CF, (1985), The Internal-Combustion Engine in Theory and Practice, Vol. 1 & 2, The MIT Press, Cambridge, Massachusetts. 27

28 Web Resources me429/lecture-air-cyc-web%5b1%5d.ppt ppt/ secondary/powerpoint/sge-parts.ppt

Internal Combustion Engines

Internal Combustion Engines Lecture-6 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Engine Operating Cycle Valves

More information

Internal Combustion Engines

Internal Combustion Engines Lecture-28 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Introduction Shortage of liquid

More information

Internal Combustion Engines

Internal Combustion Engines Lecture-22 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Engine Friction The frictional

More information

Internal Combustion Engines

Internal Combustion Engines Lecture-18 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Combustion in CI Engine Combustion

More information

Internal Combustion Engines

Internal Combustion Engines Lecture-23 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Purpose of Lubrication Reduce

More information

Internal Combustion Engines

Internal Combustion Engines Lecture-15 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Background The increasing motorization

More information

Internal Combustion Engines

Internal Combustion Engines Lecture-12 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Diesel Engines - Facts The

More information

Engine Heat Transfer. Engine Heat Transfer

Engine Heat Transfer. Engine Heat Transfer Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel

More information

Internal Combustion Engines

Internal Combustion Engines Lecture-5 Prepared under QIP-CD Cell Project Internal Cobustion Engines Ujjwal K Saha, Ph.D. Departent of Mechanical Engineering Indian Institute of Technology Guwahati 1 Che.Energy Theral Energy Mech.

More information

Spark Ignition Engine Combustion

Spark Ignition Engine Combustion Spark Ignition Engine Combustion MAK 652E Lean Combustion in Stratified Charge Engines Prof.Dr. Cem Soruşbay Istanbul Technical University - Automotive Laboratories Contents Introduction Lean combustion

More information

Engineering Fundamentals of the Internal Combustion Engine

Engineering Fundamentals of the Internal Combustion Engine Engineering Fundamentals of the Internal Combustion Engine SECOND EDITION Willard W. Pulkrabek University of Wisconsin Plattevilie PEARSON Prentice Hall Upper Saddle River, New Jersey 07458 Preface Acknowledgments

More information

EXPERIMENT NO. 3. Aim: To study the construction and working of 4- stroke petrol / diesel engine.

EXPERIMENT NO. 3. Aim: To study the construction and working of 4- stroke petrol / diesel engine. EXPERIMENT NO. 3 Aim: To study the construction and working of 4- stroke petrol / diesel engine. Theory: A machine or device which derives heat from the combustion of fuel and converts part of this energy

More information

Principles of Engine Operation

Principles of Engine Operation Internal Combustion Engines ME 422 Yeditepe Üniversitesi Principles of Engine Operation Prof.Dr. Cem Soruşbay Information Prof.Dr. Cem Soruşbay İstanbul Teknik Üniversitesi Makina Fakültesi Otomotiv Laboratuvarı

More information

INTERNAL COMBUSTION (IC) ENGINES

INTERNAL COMBUSTION (IC) ENGINES INTERNAL COMBUSTION (IC) ENGINES An IC engine is one in which the heat transfer to the working fluid occurs within the engine itself, usually by the combustion of fuel with the oxygen of air. In external

More information

Unit C: Agricultural Power Systems. Lesson 2: Identifying Engine Systems and Their Components

Unit C: Agricultural Power Systems. Lesson 2: Identifying Engine Systems and Their Components Unit C: Agricultural Power Systems Lesson 2: Identifying Engine Systems and Their Components Student Learning Objectives: Instruction in this lesson should result in students achieving the following objectives:

More information

Office hours Tue, Wed, Thu 14:00 16:00, Ayazağa or by appointment

Office hours Tue, Wed, Thu 14:00 16:00, Ayazağa or by appointment Internal Combustion Engines MAK 493E Principles of Engine Operation Prof.Dr. Cem Soruşbay Istanbul Technical University Information Prof.Dr. Cem Soruşbay İ.T.Ü. Makina Fakültesi Otomotiv Anabilim Dalı

More information

Hydrogen Fueled I.C. Engine

Hydrogen Fueled I.C. Engine Hydrogen Fueled I.C. Engine Chetan Patel[90] Roll No:-10105143 chetanp@iitk.ac.in Abstract In this paper, initially in this paper some design modification is required for using hydrogen as a fuel in existing

More information

Toyota s High Efficiency Diesel Combustion Concept

Toyota s High Efficiency Diesel Combustion Concept 2015 Engine Research Center Symposium University of Wisconsin-Madison 1 Takeshi HASHIZUME Toyota Motor Corporation Content 2 1. Introduction 2. Combustion Concept 3. Results Combustion characteristics

More information

Vehicular Engine Design Extra Material

Vehicular Engine Design Extra Material Vehicular Engine Design Extra Material Contents Chapter 1: The Internal Combustion Engine An Introduction... 2 Problem 1.1: Calculate Total Engine Displacement... 2 Problem 1.2: Calculate Engine Power

More information

Nom : Date : TD Note : How engine works

Nom : Date : TD Note : How engine works Page 1 sur 5 1. How a car engine Works The process by which a car works is a lot simpler than you may think. When a driver turns a key in the ignition: The car battery powers up sending Power to the starter

More information

Identifying Engine Systems and Their Components

Identifying Engine Systems and Their Components Lesson A6 2 Identifying Engine Systems and Their Components Unit A. Mechanical Systems and Technology Problem Area 6. Agricultural Power Systems Lesson 2. Identifying Engine Systems and Their Components

More information

Piston Diagnosis A rough Guide

Piston Diagnosis A rough Guide Piston Diagnosis A rough Guide The process of examining used pistons can tell us a lot of helpful information on the condition of an engine. When engine failure does occur the piston is likely to take

More information

EXPERIMENTAL VALIDATION AND COMBUSTION CHAMBER GEOMETRY OPTIMIZATION OF DIESEL ENGINE BY USING DIESEL RK

EXPERIMENTAL VALIDATION AND COMBUSTION CHAMBER GEOMETRY OPTIMIZATION OF DIESEL ENGINE BY USING DIESEL RK INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

Jet Propulsion. Lecture-2. Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1

Jet Propulsion. Lecture-2. Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Lecture-2 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Simple Gas Turbine Cycle A gas turbine that

More information

Entropy and the Second Law of Thermodynamics. The Adiabatic Expansion of Gases

Entropy and the Second Law of Thermodynamics. The Adiabatic Expansion of Gases Lecture 7 Entropy and the Second Law of Thermodynamics 15/08/07 The Adiabatic Expansion of Gases In an adiabatic process no heat is transferred, Q=0 = C P / C V is assumed to be constant during this process

More information

M52TU Introduction Overview Technical Data Crankcase Crankshaft Pistons and Connecting Rods...

M52TU Introduction Overview Technical Data Crankcase Crankshaft Pistons and Connecting Rods... Table of Contents ENGINES Subject Page M52TU................................................. 3 Introduction............................................ 4 Overview..............................................

More information

C H A P T E R 5. Principles of Engine Operation, Two- and Four-Stroke Engines

C H A P T E R 5. Principles of Engine Operation, Two- and Four-Stroke Engines C H A P T E R 5 Principles of Engine Operation, Two- and Four-Stroke Engines Learning Objectives Explain simple engine operation. Explain why gasoline is atomized in the small engine. Describe four-stroke

More information

ENGINE PROPER. 1. Cylinder Head Cover. 2. Cylinder Head Gasket EG-6 ENGINE 2TR-FE ENGINE

ENGINE PROPER. 1. Cylinder Head Cover. 2. Cylinder Head Gasket EG-6 ENGINE 2TR-FE ENGINE EG-6 ENGINE PROPER 1. Cylinder Head Cover The cylinder head cover is made of plastic to reduce weight and noise. Acrylic rubber, which excels in heat resistance and reliability, is used for the cylinder

More information

CFD Simulation of HSDI Engine Combustion Using VECTIS

CFD Simulation of HSDI Engine Combustion Using VECTIS CFD Simulation of HSDI Engine Combustion Using VECTIS G. Li, S.M. Sapsford Ricardo Consulting Engineer s Ltd., Shoreham-by-Sea, UK ABSTRACT As part of the VECTIS code validation programme, CFD simulations

More information

ENGINE COOLING SYSTEM

ENGINE COOLING SYSTEM ENGINE COOLING SYSTEM 3.1 Necessity for cooling In an internal combustion engine, the fuel is burned within the engine cylinder. During combustion, high temperatures are reached within the cylinder, for

More information

STUDY OF TRIBOLOGICAL PARAMETERS ON SI ENGINE A CASE STUDY

STUDY OF TRIBOLOGICAL PARAMETERS ON SI ENGINE A CASE STUDY STUDY OF TRIBOLOGICAL PARAMETERS ON SI ENGINE A CASE STUDY H R Mistry 1, D V Bhatt 2 1 Research Scholar, S V National Institute of Technology, Surat, Gujarat, India 2 Associate Professor, S V National

More information

Air Inlet and Exhaust System

Air Inlet and Exhaust System SENR9703-05 15 i02363770 Air Inlet and Exhaust System SMCS Code: 1050 Illustration 12 Fill (A) Moving parts (B) Mechanical movement (C) Fuel movement. g00942802 When the plunger reaches the bottom of the

More information

Course Name Engine Emissions. Department Mechanical Engineering IIT Kanpur. NPTEL Online - IIT Bombay

Course Name Engine Emissions. Department Mechanical Engineering IIT Kanpur. NPTEL Online - IIT Bombay NPTEL Online - IIT Bombay Course Name Engine Emissions Department Mechanical Engineering IIT Kanpur Instructor Prof. BP Pundir file:///c /...s%20and%20settings/iitkrana1/my%20documents/google%20talk%20received%20files/engine_combustion/lecture1/main.html[6/15/2012

More information

Diesel Power Plant. - Arrangement - Equipment - Advantages & disadvantages

Diesel Power Plant. - Arrangement - Equipment - Advantages & disadvantages Diesel Power Plant - Arrangement - Equipment - Advantages & disadvantages Intake air filter Diesel Engine Fuel injection pump Filter Oil pump Storage tank Schematic arrangement of Diesel Power Plant Equipment

More information

Cylinder Pressure in a Spark-Ignition Engine: A Computational Model

Cylinder Pressure in a Spark-Ignition Engine: A Computational Model J. Undergrad. Sci. 3: 141-145 (Fall 1996) Engineering Sciences Cylinder Pressure in a Spark-Ignition Engine: A Computational Model PAULINA S. KUO The project described in this article attempts to accurately

More information

- Service Bulletin - Pistons.

- Service Bulletin - Pistons. Normal combustion: is smooth and even from the spark plug through the top of the chamber. 1 2 3 Spark occurs Combustion moves smoothly across chamber Combustion and power completed Pre-Ignition: occurs

More information

The Three Heat Transfer Modes in Reflow Soldering

The Three Heat Transfer Modes in Reflow Soldering Section 5: Reflow Oven Heat Transfer The Three Heat Transfer Modes in Reflow Soldering There are three different heating modes involved with most SMT reflow processes: conduction, convection, and infrared

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

Section 6 System Diagrams

Section 6 System Diagrams Page 6-1 Section Contents Page Overview...6-3 Flow Diagram, Fuel System...6-4 Flow Diagram, Lubricating Oil System...6-5 Flow Diagrams, Cooling System...6-9 Flow Diagrams, Air Intake System...6-11 Flow

More information

EMISSIONS #1 - COMBUSTION CHEMISTRY

EMISSIONS #1 - COMBUSTION CHEMISTRY Introduction to Combustion Chemistry The gasoline-powered internal combustion engine takes air from the atmosphere and gasoline, a hydrocarbon fuel, and through the process of combustion releases the chemical

More information

ENGINE COOLING SYSTEM

ENGINE COOLING SYSTEM 06 3 ENGINE GENERAL Radiator Radiator Coolant reservoir Coolant reservoir Thermostat Water pump Thermostat Water pump Engine Cylinder head Cylinder block (Heater line) Oil cooler

More information

Pollution by 2-Stroke Engines

Pollution by 2-Stroke Engines Pollution by 2-Stroke Engines By Engr. Aminu Jalal National Automotive Council At The Nigerian Conference on Clean Air, Clean Fuels and Vehicles, Abuja, 2-3 May 2006 Introduction to the 2-Stroke Engine

More information

PRODUCT. Piston Rings. Sealing under extreme conditions POSTER INSIDE

PRODUCT. Piston Rings. Sealing under extreme conditions POSTER INSIDE Piston Rings Sealing under extreme conditions PRODUCT I N F O R M A T I O N POSTER INSIDE Under pressure KOLBENSCHMIDT piston rings. Controlled application of force. Inertia and gas loads as well as high

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Part PatC1: Last updated: 22nd October 2005 Author: Patrick J. Kelly Please note that this is a re-worded excerpt from this patent. If the content interests you,

More information

LECTURE - 3 DIFFERENT SYSTEMS OF IC ENGINE COOLING, LUBRICATING, FUEL INJECTION SYSTEMS

LECTURE - 3 DIFFERENT SYSTEMS OF IC ENGINE COOLING, LUBRICATING, FUEL INJECTION SYSTEMS LECTURE - 3 DIFFERENT SYSTEMS OF IC ENGINE COOLING, LUBRICATING, FUEL INJECTION SYSTEMS Different systems available for efficient functioning of an engine are as follows 1. fuel supply system 2. lubrication

More information

(Received 9 May 2012, Revised 10 June 2013, Accepted 10 June 2013)

(Received 9 May 2012, Revised 10 June 2013, Accepted 10 June 2013) 에너지공학, 제 22 권제 2 호 (2013) Journal of Energy Engineering, Vol. 22, No. 2, pp. 205~210 (2013) Sung Bin Han, Sung Il Hwang * Department of Mechanical & Automotive Engineering, Induk University, * Department

More information

E - THEORY/OPERATION

E - THEORY/OPERATION E - THEORY/OPERATION 1995 Volvo 850 1995 ENGINE PERFORMANCE Volvo - Theory & Operation 850 INTRODUCTION This article covers basic description and operation of engine performance-related systems and components.

More information

Engine Friction and Lubrication

Engine Friction and Lubrication Engine Friction and Lubrication Engine friction terminology Pumping loss Rubbing friction loss Engine Friction: terminology Pumping work: W p Work per cycle to move the working fluid through the engine

More information

Engineering, Bharathiyar College of Engineering and Technology, Karaikal, Pondicherry 609 609, India

Engineering, Bharathiyar College of Engineering and Technology, Karaikal, Pondicherry 609 609, India 74 The Open Fuels & Energy Science Journal, 2008, 1, 74-78 Open Access Some Comparative Performance and Emission Studies on DI Diesel Engine Fumigated with Methanol and Methyl Ethyl Ketone Using Microprocessor

More information

1. CAUTIONS FOR DI ENGINE

1. CAUTIONS FOR DI ENGINE 188101 033 188101 1. CAUTIONS FOR DI ENGINE This chapter describes the cautions for DI engine equipped vehicle. This includes the water separation from engine, warning lights, symptoms when engine malfunctioning,

More information

Engine Bearings and how they work

Engine Bearings and how they work Engine Bearings and how they work Dr. Dmitri Kopeliovich (Research & Development Manager) A Bearing is a device supporting a mechanical element and providing its movement relatively to another element

More information

Effects of Compression Ratios, Fuels And Specific Heats On The Energy Distribution in Spark- Ignition Engine

Effects of Compression Ratios, Fuels And Specific Heats On The Energy Distribution in Spark- Ignition Engine International Journal of Emerging Technology and Advanced Engineering Effects of Compression Ratios, Fuels And Specific Heats On The Energy Distribution in Spark- Ignition Engine Sandeep kumar kamboj 1,

More information

FS Lubricants. Oil Analysis Program

FS Lubricants. Oil Analysis Program FS Lubricants Oil Analysis Program What can an oil analysis do for you? 1. Establish safe and proper drain intervals. 2. Provide a reduction in unforeseen breakdowns. 3. Reduce down time. 4. Minimize the

More information

Turbo Tech 101 ( Basic )

Turbo Tech 101 ( Basic ) Turbo Tech 101 ( Basic ) How a Turbo System Works Engine power is proportional to the amount of air and fuel that can get into the cylinders. All things being equal, larger engines flow more air and as

More information

Internal-Combustion Engines

Internal-Combustion Engines Internal-Combustion Engines Objective: To observe how air is compressed in an internal-combustion engine by making a model of a piston. Grade Level: 5-8 Subject(s): Physical Science, Mathematics Prep Time:

More information

CONVERGE Features, Capabilities and Applications

CONVERGE Features, Capabilities and Applications CONVERGE Features, Capabilities and Applications CONVERGE CONVERGE The industry leading CFD code for complex geometries with moving boundaries. Start using CONVERGE and never make a CFD mesh again. CONVERGE

More information

DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM

DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM 1 Ervin Adorean *, 1 Gheorghe-Alexandru Radu 1 Transilvania University of Brasov, Romania KEYWORDS - diesel, engine, CFD, simulation, OpenFOAM ABSTRACT

More information

The Ogunmuyiwa Engine Cycle

The Ogunmuyiwa Engine Cycle The Ogunmuyiwa Engine Cycle Dapo Ogunmuyiwa M.Sc VDI Chairman / CEO Tel: (+49) 162 961 04 50 E-mail: Dapo.Ogunmuyiwa@omttec.eu Ogunmuyiwa Motorentechnik GmbH Technologie- und Gruenderzentrum (TGZ) Am Roemerturm

More information

P = n M 9550 [kw] Variable Intake Manifold in VR Engines. Self-study programme 212. Principles and Description of Operation. Service.

P = n M 9550 [kw] Variable Intake Manifold in VR Engines. Self-study programme 212. Principles and Description of Operation. Service. Service. Self-study programme 212 Variable Intake Manifold in VR Engines Principles and Description of Operation P = n M 9550 [kw] M [Nm] P [kw] n [min -1 ] 212_020 The output and torque of an engine have

More information

Lubrication System. Lecture-10

Lubrication System. Lecture-10 Lubrication System Lecture-10 Introduction In engines, frictional losses are mainly due to sliding as well as rotating parts Engine friction is expressed in terms of frictional power f p =i p -b p Frictional

More information

Diesel Engine Combustion

Diesel Engine Combustion Diesel Engine Combustion 1. Characteristics of diesel combustion 2. Different diesel combustion systems 3. Phenomenological model of diesel combustion process 4. Movie of combustion in diesel systems 5.

More information

ENGINE CHARACTERISTICS

ENGINE CHARACTERISTICS Internal Combustion Engines ENGINE CHARACTERISTICS Prof.Dr. Cem Soruşbay Istanbul Technical University Engine performance parameters are power, torque and specific fuel consumption. Brake torque is normally

More information

Hydrogen as a fuel for internal combustion engines

Hydrogen as a fuel for internal combustion engines Hydrogen as a fuel for internal combustion engines Contents: Introduction External mixture formation for hydrogen operated engines Experimental engine for hydrogen in Stralsund Internal mixture formation

More information

Allows the precise control of charge stratification vital to ignite ultra-lean air / fuel mixtures.

Allows the precise control of charge stratification vital to ignite ultra-lean air / fuel mixtures. 1 Allows the precise control of charge stratification vital to ignite ultra-lean air / fuel mixtures. Eliminates pumping loss associated with drawing air around a conventional engine's butterfly valve.

More information

Basic principles of operation and applications of fuel injection systems in petrolpowered

Basic principles of operation and applications of fuel injection systems in petrolpowered Leaving Certificate Engineering prescribed topic: Basic principles of operation and applications of fuel injection systems in petrolpowered cars. Presented by: Niall Enright Department of Mechanical &

More information

A Study on Basic Water Cooling System of Gas Compressor Engine

A Study on Basic Water Cooling System of Gas Compressor Engine A Study on Basic Water Cooling System of Gas Compressor Engine P. Praveen Babu 1, B. Siddeswara Rao 2, S. Jaya Kishore 3 1 PG student, Thermal Engineering, Siddharth Institute of Engineering and Technology,

More information

Fluidized Coal Combustion IC Engine

Fluidized Coal Combustion IC Engine Fluidized Coal Combustion IC Engine Prof S A Shah 1, Prof. B. S. PATEL 2, Mr. Vimal Gohel 3, Mr. Ravi Javiya 1,2 Asso. Prof., 3,4 Students, B. V. M. Engineering College, V. V. Nagar (Gujarat) 1 satishshah345@yahoo.com,

More information

Sheet 8:Chapter C It is less than the thermal efficiency of a Carnot cycle.

Sheet 8:Chapter C It is less than the thermal efficiency of a Carnot cycle. Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 8:Chapter 9 9 2C How does the thermal

More information

MODULE 3: HYDROGEN USE IN INTERNAL

MODULE 3: HYDROGEN USE IN INTERNAL Hydrogen Fuel COMBUSTION ENGINES CONTENTS 3.1 HYDROGEN ENGINES... 3-1 3.2 COMBUSTIVE PROPERTIES OF HYDROGEN... 3-3 3.3 AIR/FUEL RATIO... 3-6 3.4 PRE-IGNITION PROBLEMS AND SOLUTIONS... 3-9 3.4.1 FUEL DELIVERY

More information

Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison

Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison Chapters 7 SI vs CI Performance Comparison Performance Comparison of CI and SI Engines The CI engine cycle can be carried out in either 2 or 4 strokes of the piston, with the 4-cycle CI engine being more

More information

AN EXPERIMENTAL STUDY ON THE USE OF PYROLYSIS OIL AND DERIVATIVES IN DIESEL ENGINES FOR CHP APPLICATIONS

AN EXPERIMENTAL STUDY ON THE USE OF PYROLYSIS OIL AND DERIVATIVES IN DIESEL ENGINES FOR CHP APPLICATIONS AN EXPERIMENTAL STUDY ON THE USE OF PYROLYSIS OIL AND DERIVATIVES IN DIESEL ENGINES FOR CHP APPLICATIONS Bert van de Beld, Elmar Holle, Jan Florijn BTG Biomass Technology Group BV, the Netherlands Content

More information

Elements of Physics: Energy, Work, and Power Teacher s Guide

Elements of Physics: Energy, Work, and Power Teacher s Guide : Teacher s Guide Grade Level: 9 12 Curriculum Focus: Physical Science Lesson Duration: Three class periods Program Description Much of our success as an industrialized society stems from our ability to

More information

Engine Mechanical - 4.8L, 5.3L, and 6.0L

Engine Mechanical - 4.8L, 5.3L, and 6.0L Engine Engine Mechanical - 4.8L, 5.3L, and 6.0L 6-1 Engine Mechanical - 4.8L, 5.3L, and 6.0L Specifications SIE-ID = 890258 LMD = 07-jun-2002 Fastener Tightening Specifications Specification Application

More information

DT: 29.8.13. REPORT ON IN PLANT TRAINING at GOODWIN MOTORS TOPICS: Day 1 Morning Session

DT: 29.8.13. REPORT ON IN PLANT TRAINING at GOODWIN MOTORS TOPICS: Day 1 Morning Session DT: 29.8.13 REPORT ON IN PLANT TRAINING at GOODWIN MOTORS TOPICS: Day 1 Morning Session 1. Automobile Basics 2. IC Engine Basics 3. Automotive Industry Updates 4. Passenger cars and Commercial Vehicles

More information

RESEARCH PROJECTS. For more information about our research projects please contact us at: info@naisengineering.com

RESEARCH PROJECTS. For more information about our research projects please contact us at: info@naisengineering.com RESEARCH PROJECTS For more information about our research projects please contact us at: info@naisengineering.com Or visit our web site at: www.naisengineering.com 2 Setup of 1D Model for the Simulation

More information

COMBUSTION PROCESS IN CI ENGINES

COMBUSTION PROCESS IN CI ENGINES COMBUSTION PROCESS IN CI ENGINES In SI engine, uniform A: : F mixture is supplied, but in CI engine A: : F mixture is not homogeneous and fuel remains in liquid particles, therefore quantity of air supplied

More information

INTAKE AND EXHAUST SYSTEM. 1. General EG-49 ENGINE 2AZ-FE ENGINE

INTAKE AND EXHAUST SYSTEM. 1. General EG-49 ENGINE 2AZ-FE ENGINE EG-49 INTAKE AND EXHAUST SYSTEM 1. General The two resonators, the side branch and PET* (Polyethylene Terephthalate) material have been newly adopted to air cleaner inlet and air cleaner hose. The adoption

More information

Chapter 6. General Considerations. General Considerations con t. Engine Design

Chapter 6. General Considerations. General Considerations con t. Engine Design Chapter 6 Engine Design General Considerations The first step in designing a new engine is to choose the desired rated power output and rated speed. The load factor must be considered in choosing the speed.

More information

Problems on Internal Combustion Engines Engine Fundamentals

Problems on Internal Combustion Engines Engine Fundamentals Problems on Internal Combustion Engines Engine Fundamentals 1. A four-stroke SI engine delivers a brake power of 442 kw with a mechanical efficiency of 85 %. The measured fuel consumption is 160 kg of

More information

Lecture 9, Thermal Notes, 3.054

Lecture 9, Thermal Notes, 3.054 Lecture 9, Thermal Notes, 3.054 Thermal Properties of Foams Closed cell foams widely used for thermal insulation Only materials with lower conductivity are aerogels (tend to be brittle and weak) and vacuum

More information

3.5. COMPUTATION: IMPROVING THE RADIATOR ALUMINUM MODEL CHAPTER 4: RESULTS AND DISCUSION CHAPTER 5: CONCLUSION AND

3.5. COMPUTATION: IMPROVING THE RADIATOR ALUMINUM MODEL CHAPTER 4: RESULTS AND DISCUSION CHAPTER 5: CONCLUSION AND 1 TABLE OF CONTENTS CHAPTER 1: INTRODUCTION... 1 1.1. INTERNAL COMBUSTION :... 1 1.2. AUTOMOTIVE COOLING SYSTEMS :... 2 1.3. COOLING SYSTEM FUNCTIONS :... 4 1.4. COOLING SYSTEM TYPES :... 4 1.4.1. Air

More information

GE Marine. Clean, lean marine. GE s L250 EPA Tier 3 inline diesel engine. GE imagination at work

GE Marine. Clean, lean marine. GE s L250 EPA Tier 3 inline diesel engine. GE imagination at work GE Marine Clean, lean marine GE s L250 EPA Tier 3 inline diesel engine GE imagination at work GE s marine-class engines A history of proven performance GE Transportation has been serving the transportation

More information

Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold

Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold Radiation Radiation: Heat energy transmitted by electromagnetic waves Q t = εσat 4 emissivity

More information

B Dinesh Prabhu, Asst. Professor, P E S College Engg., Mandya, KARNATAKA 1

B Dinesh Prabhu, Asst. Professor, P E S College Engg., Mandya, KARNATAKA 1 Firing Order Every engine cylinder must fire once in every cycle. This requires that for a four-stroke fourcylinder engine the ignition system must fire for every 180 degrees of crank rotation. For a sixcylinder

More information

Numerical Analysis for the Performance of a Thermoelectric Generator According to Engine Exhaust Gas Thermal Conditions

Numerical Analysis for the Performance of a Thermoelectric Generator According to Engine Exhaust Gas Thermal Conditions Numerical Analysis for the Performance of a Thermoelectric Generator According to Engine Exhaust Gas Thermal Conditions Jinkyu Park, Yungjin Kim, Byungdeok In, Sangki Park and Kihyung Lee* Abstract Internal

More information

MCQ - ENERGY and CLIMATE

MCQ - ENERGY and CLIMATE 1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

More information

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1 Fault codes DM1 Industrial engines DC09, DC13, DC16 Marine engines DI09, DI13, DI16 03:10 Issue 5.0 en-gb 1 DM1...3 Abbreviations...3 Fault type identifier...3...4 03:10 Issue 5.0 en-gb 2 DM1 DM1 Fault

More information

Experimental study of the Effect of Fuel Injector nozzle holes on Direct Injection Diesel Engine

Experimental study of the Effect of Fuel Injector nozzle holes on Direct Injection Diesel Engine IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 7, Issue 4 (Jul. - Aug. 2013), PP 67-74 Experimental study of the Effect of Fuel Injector nozzle

More information

US Heavy Duty Fleets - Fuel Economy

US Heavy Duty Fleets - Fuel Economy US Heavy Duty Fleets - Fuel Economy Feb. 22, 2006 Anthony Greszler Vice President Advanced Engineering VOLVO POWERTRAIN CORPORATION Drivers for FE in HD Diesel Pending oil shortage Rapid oil price increases

More information

STUDY OF FLOW IN AIR-INTAKE SYSTEM FOR A SINGLE-CYLINDER GO-KART ENGINE. S. A. Sulaiman, S. H. M. Murad, I. Ibrahim and Z. A.

STUDY OF FLOW IN AIR-INTAKE SYSTEM FOR A SINGLE-CYLINDER GO-KART ENGINE. S. A. Sulaiman, S. H. M. Murad, I. Ibrahim and Z. A. International Journal of Automotive and Mechanical Engineering (IJAME) ISSN: 1985-9325(Print); ISSN: 2180-1606 (Online); Volume 1, pp. 91-104, January-June 2010 Universiti Malaysia Pahang STUDY OF FLOW

More information

CHAPTER 25 IDEAL GAS LAWS

CHAPTER 25 IDEAL GAS LAWS EXERCISE 139, Page 303 CHAPTER 5 IDEAL GAS LAWS 1. The pressure of a mass of gas is increased from 150 kpa to 750 kpa at constant temperature. Determine the final volume of the gas, if its initial volume

More information

Section 11 System Diagrams

Section 11 System Diagrams Page 11-1 Section Contents Page System Diagrams Overview...11-3 Flow Diagram, Fuel System...11-4 Flow Diagram, Lubricating Oil System...11-5 Flow Diagram, Cooling System...11-9 Flow Diagram, Air Intake

More information

There is no general classification of thermodynamic cycle. The following types will be discussed as those are included in the course curriculum

There is no general classification of thermodynamic cycle. The following types will be discussed as those are included in the course curriculum THERMODYNAMIC CYCLES There is no general classification of thermodynamic cycle. The following types will be discussed as those are included in the course curriculum 1. Gas power cycles a) Carnot cycle

More information

A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior

A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior Kum-Chul, Oh 1, Sang-Woo Cha 1 and Ji-Ho Kim 1 1 R&D Center, Hyundai Motor Company

More information

Engines. Sancho McCann

Engines. Sancho McCann Engines Sancho McCann Types of Engines Inline Horizontally Opposed Radial Inline Engine Pistons all lie along the same line Small frontal area Low drag http://auto.howstuffworks.com/engine-inline.htm Horizontally

More information

Coupled CFD/1D Combustion Modeling in Two-Stroke Engines for Light Aircrafts Application: DI vs. IDI Systems

Coupled CFD/1D Combustion Modeling in Two-Stroke Engines for Light Aircrafts Application: DI vs. IDI Systems Coupled CFD/1D Combustion Modeling in Two-Stroke Engines for Light Aircrafts Application: DI vs. IDI Systems V. Golovitchev, Chalmers University of Technology, Sweden E. Mattarelli, C. Rinaldini, University

More information

Section 11 - System Diagrams

Section 11 - System Diagrams Section 11 System Diagrams Page 11-1 Section 11 - System Diagrams Section Contents Page Overview...11-3 Flow Diagram, Air Intake System...11-4 Flow Diagram, Cooling System...11-5 Flow Diagram, Exhaust

More information

Active Stirling Engine

Active Stirling Engine Active Stirling Engine Vinod Kumar Gopal Dept. of Electrical & Computer Engineering, University of Canterbury, Christchurch, New Zealand. Email: ammasvinod@gmail.com Dr. Richard Duke, Dept. of Electrical

More information

A.Pannirselvam*, M.Ramajayam, V.Gurumani, S.Arulselvan and G.Karthikeyan *(Department of Mechanical Engineering, Annamalai University)

A.Pannirselvam*, M.Ramajayam, V.Gurumani, S.Arulselvan and G.Karthikeyan *(Department of Mechanical Engineering, Annamalai University) A.Pannirselvam, M.Ramajayam, V.Gurumani, S.Arulselvan, G.Karthikeyan / International Journal of Vol. 2, Issue 2,Mar-Apr 212, pp.19-27 Experimental Studies on the Performance and Emission Characteristics

More information

Exhaust emissions of a single cylinder diesel. engine with addition of ethanol

Exhaust emissions of a single cylinder diesel. engine with addition of ethanol www.ijaser.com 2014 by the authors Licensee IJASER- Under Creative Commons License 3.0 editorial@ijaser.com Research article ISSN 2277 9442 Exhaust emissions of a single cylinder diesel engine with addition

More information