The Avogadro Constant, the Planck Constant, and the New SI (Metrological-philosophical reflections not submitted to any journal)

Size: px
Start display at page:

Download "The Avogadro Constant, the Planck Constant, and the New SI (Metrological-philosophical reflections not submitted to any journal)"

Transcription

1 The Avogadro Constant, the Planck Constant, and the New SI (Metrological-philosophical reflections not submitted to any journal) Ingvar Johansson Professor emeritus in philosophy, Umeå University, Sweden (Address: Virvelvindsvägen 4P, SE Lund, Sweden) Abstract The architects of the new SI claim to have achieved a theoretical-metrological unification of the SI system by basing all re-definitions of base units on fundamental constants of nature. This achievement is critically examined upon its merits and weaknesses. Logical and metrological arguments are put forward commensurate with the nature of the Avogadro constant and the Planck constant. As a result, competing alternative proposals for a re-definition of the mole and the kilogram are supported. 1. Introduction The development of physics and chemistry can be seen as an ongoing interplay between finding empirical (but theory-laden) diversities and unifying them by means of some explicit theory, then on this new basis finding new empirical diversities, which, in turn, become unified, and so on. From this perspective, the so-called new SI [1] is a remarkable attempt to reduce metrological diversities in the present SI system [2] by means of a unifying notion that is alternately called fundamental constant and constant of nature ; the architects of the new SI lately renamed them appropriately reference constants [3]. All three notions refer to what in present-day physics and chemistry is regarded as invariant quantities in nature. In this wide sense, constants (or constancies) in nature do not only include constants such as c, h, and k that appear in fundamental equations, but also entities that are regarded as being exactly the same, independently of place and time, such as the elementary charge e and the number of periods per unit of a specified radiation in certain atoms. In the proposed new SI, the seven base units are each defined by one or more such reference constants. Thereby, the very concept of a material prototype of unit (the kilogram) is abandoned. Another very important characteristic of the present SI is extended: it is considered allowable that definitions of base units (e.g. the metre) rely on derived quantities (e.g. velocity). For sure, the intent is good, but the proposal will not reach its unifying goal if the reference constants used differ too much in character. I will show that the Avogadro constant (usual symbol N A ), used to define the mole, is not a true constant of nature. And I will point out that another of the reference constants, the Planck constant (h), used in the proposed re-definition of the kilogram, although indeed being a constant of nature, is very special compared with other such constants. Therefore, the architects of the new SI should reduce the stress put on theoretical unification, and also should modify some of their proposals (see Section 5). My paper takes its departure from earlier discussions [4-9]. 1

2 2. The Avogadro constant/number and the mole In history the ideal gas law, pv = nrt, was first formulated without any connection to statistical thermodynamics, but a similar law involving the Boltzmann constant, pv = NkT, has been derived within statistical thermodynamics. Today, these two quantity equations cannot but be regarded as being two equivalent formulations of one and the same law. They are based on two different models of our knowledge about gases, but relate the same macroscopic quantities of pressure, volume, and temperature. Therefore, if one of them contains a constant of nature, so does the other. In the first formulation R (the gas constant) represents such a constant, and in the second k (the Boltzmann constant) does. From the stated equivalence of these two equations, it follows that nr = Nk. Since n is a variable for a quantity that has the mole as its SI unit, and N is a variable for number of molecules, the gas constant R must be regarded as being a constant (of something) per mole of an ideal gas, and the Boltzmann constant k as being a constant (of something) per molecule of an ideal gas. The so-called Avogadro constant appears to be the Avogadro number as it enters the scene as a conversion factor from the gas constant R to the Boltzmann constant k: R = N A k. In this equation, the Avogadro constant cannot possibly be regarded as a constant of nature on a par with the constancy of the velocity of light in vacuum (c, used in the definition of the metre), the constancy of the number of periods of a specified radiation of the 133 Cs atom (used in the definition of the second), and the Boltzmann constant (used in the definition of the kelvin). This is, however, how it is regarded in the new SI [1]. If the two equations pv = nrt and pv = NkT are considered not only equivalent, but also valid for all values of their variables, then the names gas constant and Boltzmann constant would be two different names of a true constant of nature. But in such a case the Avogadro constant must be an Avogadro number (symbol e.g. N avo ) as the equation R = N A k shows. A conversion factor between two representations of one fundamental constant cannot be but a number. This makes me align with some chemists concerned with metrology; I am a philosopher. Ever since the SI system in 1971 introduced the mole as a base unit for the kind-of-quantity (entry 1.2 in [10]; or dimension, section 1.3 in [2]) amount-ofsubstance, many chemists have complained and claimed that this seemingly continuous kind-of-quantity forces stoichiometry our way of thinking about number of atoms in molecules where all entities are discrete into an alien metrological form. They want to do away with the notion of a continuous amount-of-substance as well as with its presumed conventional measurement unit, the mole. Instead, they think that the Avogadro number can, and should, be regarded as a scaling factor (such as the dozen) for non-conventional elementary entities. The view that the quantity equations pv = nrt, and pv = NkT are equivalent in the practice of measurement, underpins the criticism more than it supports the architects of the new SI. Let me explain. The distinction between the Avogadro constant (N A ) and the Avogadro number (N avo ) with N A = N avo mol -1 is of utmost importance in what follows. Traditionally, i.e. since 1971, it is claimed in the SI that 1) since nr = Nk implies R = (N/n)k, and 2) since R is a constant per mole of a gas, 2

3 we must regard (N/n) as being the Avogadro constant, N A, i.e. as being the Avogadro number per unit mole of a gas (N A = N avo mol -1 ). However, there is another and simpler interpretation possible. Using the Avogadro number, one can claim that nr = Nk implies R = N avo k (not: R = N A k). But then, in the name of consistency, since k is a constant per molecule of a gas, and N avo a pure number, the mole cannot in this equation possibly be understood as being a measurement unit. In terms of the SI brochure s notion of dimension, the left-hand and the right-hand sides of the equation R = N avo k must have the same dimension, but they have not if the right hand side needs no measurement unit at all, but the mole on the left hand side is an ordinary measurement unit. However, if the mole is regarded as only a pure scaling factor (i.e. a pure number) for discrete elementary entities such as atoms, molecules, ions, and electrons, then this dimensional requirement is met! If one frees oneself from the false view that the mole must be an ordinary measurement unit for logical reasons, then all arguments go in favor of regarding it only as a scaling factor. As far as I can see, all metrologically-interested scientists, especially chemists, ought to take a step back and, without any preconception, ask themselves: is the mole an ordinary conventional measurement unit, or is the so-called Avogadro constant in fact an Avogadro number, i.e. nothing but a scaling factor in relation to naturally given discrete elementary entities? According to the view I have made mine, the mole can be regarded as being defined by the equality below, where E represents an arbitrary discrete kind of entity (compare: x dozen E x 12 E): x mol (entities E) x N avo (entities E). As all pure numbers, N avo can take on many functions. In the equation x g = x N avo Da, it functions as a conversion factor for two different conventional units of mass, namely gram and dalton; it functions here exactly the way 1.09 functions in x m = x 1.09 yd (yard), a conversion of units of length. When put down explicitly, it becomes obvious: one and the same number can function both as a scaling factor for a given natural unit, and as the number in a unit conversion formula for two conventional units (of the same kind-of-quantity). In a sense, a conversion formula is a special kind of scaling operation for a certain kindof-quantity. One can choose whether to make the gram or the dalton (or something else) the unit for the continuous quantity mass, and then use the unit conversion formula above, but one cannot choose whether the notion mole entities E or the notion entities E should be the primary notion. It must be the latter. Why? Because E designates a discrete and in itself (i.e. without the help of any conventional measurement unit) countable sort of entity. The view I have defended implies a rehabilitation of the use of the expression number of moles. On this view, it is as acceptable to use it as it is to use the phrase number of dozens. On the present SI conception of the mole, however, number of moles is quite a misnomer. (I have only discussed the Avogadro constant in relation to the gas constant and the Boltzmann constant, but it appears also in relation to the Loschmidt number/constant and the Faraday constant. I am prepared to argue, however, that even in the latter two cases only a scaling factor is needed.) 3

4 3. The Planck constant and the kilogram At present, the kilogram is defined as being the mass of the concrete platinum-iridium International Prototype Kilogram (IPK) kept at BIPM in Paris. The new SI wants this definition exchanged for a theoretical definition where both the constancy of the velocity of light in vacuum (c) and the Planck constant (h) play very central roles. Taking for granted that energy of relativity theory is the same as the energy of quantum mechanics, the equations E = mc 2 and E = hv can be combined into m = (hv)/c 2 ; thereby creating the possibility of defining what is 1 kg mass by means of stipulating that 1 kg mass corresponds to specific values for h, c, and some radiation frequency v. The new kilogram definition is not directly related to the rest mass of any particle, but to the energy of photons (hv). The constant h is used only in the definition of the kilogram, but c is re-used; it figures in the definition of the metre, too. Also, the constant radiation frequency of the 133 Cs atoms is presupposed, since the definition presupposes the definition of the second. As far as I can see, the definition put forward can, taken some of the presuppositions mentioned for granted, be phrased like this (compare: One metre is the distance travelled by light in vacuum when its speed is given the value m s -1 ): One kilogram is the (relativistic) mass of a photon whose frequency in hertz is such that the Planck constant is equal to X J s (X should be decided on later). All measurement units are units in relation to a kind-of-quantity, and the same is true of constants of nature. A constant of nature is in itself not tied to any specific measurement unit, but it is tied to a specific kind-of-quantity. The constant c, for instance, can be stated in metre/second, kilometre/hour, yard/minute, and many other such units, but all of these units have to be units for the kind-of-quantity velocity. The Planck constant is related to the kind-of-quantity action, i.e. energy times time (in SI units: joule times second, i.e. J s). Ordinary physical and chemical kinds-of-quantity can when regarded as referring to something real and not as being only simplifying mathematical tools be regarded as in a commonsensical way being simple or complex properties of particles, waves, statistical ensembles, movements, or processes. That is, as something that directly at a certain point of time is an aspect of at least one of the kinds of entity mentioned. By definition, even though action is a property in the wide sense of VIM [10], it cannot be a property in the ordinary sense just distinguished. Let us explain. Action is defined as being energy multiplied by time; which means that it cannot but be thought of as extended in time. It is as impossible to think of it as existing at a point of time, as it is impossible to think of a volume as existing in a plane, a surface existing in a line, or a line in a point. Speed is different; it can be defined as distance multiplied by reciprocal time (or divided by time). Therefore, the constancy of nature that is reflected in the notion of the Planck constant cannot possibly be regarded as the time- and place-independent constancy of an ordinary property. And this is true both before and after the constant became part of quantum mechanics. Instead, the Planck constant seems to represent (among other things) the property of some entities and/or processes to occur only in discrete quanta. This fact not discussed in the new SI ought to make metrologists cautious before they make the Planck constant central to any base unit in the SI system. A 4

5 move from the IPK and its problems to a theoretical definition that relies on a constancy of nature can be done in other ways. The kilogram can very well be defined by the mass of some atom that is known to have a constant mass. According to one such proposal (see Section 5), the kilogram should be defined as the mass of a defined number of 12 C atoms (in their nuclear ground state). This definition has a structure that is completely analogous to the definition of the second in the present SI, a definition whose essential features are retained in the new SI. As said earlier, the second is defined by means of the constant radiation frequency of 133 Cs atoms. A further oddity of the new SI definition of the kilogram might also be noted. If one calculates the definition frequency (v d ) for 1 kg using 1 = (hv d )/c 2 one obtains a frequency (rounded number: v d = 1.4 x hertz) that is much higher than any frequency that physicists today thinks any photon has. That is, the new kilogram definition is not only not directly related to any particle with rest mass, it is not related to any presently known kind of existing particle at all. 4. Metrological unifying and the constancy of constants of nature In the introduction I mentioned the importance in physics and chemistry of unifying efforts, but added that what looks like a unifying feat may not always be one. Here, I would like to add some characteristics of a goal that is specific to metrology, and in whose light I think all unifying proposals in metrology should be judged. The basic metrological unit problem is to find entities that do not change but are constant in time, be these individual property instances in concrete things or theoretically defined quantities. With respect to concrete prototypes such as the IPK, the problem implies that the prototype has to be constructed in a certain way, be stored in a certain way, be handled in a certain prescribed way, and now and then checked against copies similarly constructed and treated. As the history of the IPK shows, changes can nonetheless occur. The corresponding problem with theoretically defined units based on constancies of nature is that all such constancies are part of some empirical theory, and that no such theory is immune to revision as a matter of principle. As the history of physics and chemistry shows, now and then a seemingly well established theory has to be refined, or even replaced by a more sophisticated one. Therefore, even seemingly well established constants of nature may not forever be regarded as such. For any kind of definitions, epistemological uncertainty is part and parcel of empirical science. The upshot of these remarks is the following. If metrology faces a conflict between defining the base units (a) by means of definitions that seem to secure unit constancy over time, but are theoretically heterogeneous, and (b) by means of some theoretically homogeneous notions, but with less secured time constancy, then alternative (a) should be chosen. In metrology, demonstrated unit constancy should take precedence over theoretical unit homogeneity. Therefore, there is nothing wrong with the heterogeneous mix in the present SI of prototype definitions and theoretical definitions; nor is there anything wrong with the mix in the new SI proposal between constants of nature taken from fundamental equations and supposed constancies of nature. There is no mandatory or strict metrological need saying: the more base units based on constants from basic quantity equations, the better. 5

6 As far as I can see, there is nothing in today s physics and chemistry that makes it reasonable to think that it is less certain that each 12 C atom (in its nuclear ground state) will forever be regarded as having the same mass everywhere, than it is that c and h will forever be regarded as being fundamental constants of nature. Let me add two comments, which show that surely this is not just a fancy of mine. In July 2012, the physicist John Webb and collaborators were awarded the Australian Museum Eureka Prize in Scientific Research [11]. They received it for work that may show that the so-called fine structure constant ( ) varies across the universe. This constant is in physics regarded as a fundamental constant, and one of the equations in which it appears is = e 2 c 0 /2h. Here 0 represents the magnetic permeability of free space, which so far has been regarded as a constant, too. Now, however, if the prize winners measurements contain nothing wrong, then one of the assumed constants e, c, h, and 0 must in the future be regarded as a variable. If the new SI is accepted, then e, c, h should be regarded as constants, and 0 must be regarded as what co-varies with. I find it odd that a decision among metrologists should have such an immediate substantive implication for physics. Moreover, the same researchers claim that a variation of would show the existence of a preferred cosmological frame, which would demonstrate the incompleteness of the Einstein Equivalence Principle [12]. If this conclusion is correct, it directly undermines the kilogram definition of the new SI. As already said in Section 3, this definition has as one of its assumptions that the equations E = mc 2 (the equivalence principle) and E = hv can be combined into m = (hv)/c 2. Therefore, the new SI definition presupposes that the equivalence principle is complete, but in the paper referred to it is said to probably be incomplete. In September 2011, physicists within the so-called OPERA collaboration released results that seemed to show that neutrinos can move faster than light, but already in February 2012 they themselves contested it. Now, if nonetheless their initial claim would be repeatedly confirmed, something would have to be changed in relativity theory; qualifications of some sort would have to be introduced. However, whether or not such qualification proposals would affect the view that c is constant is a completely open question. They may and they may not. I am mentioning this neutrino case only because it illustrates the possibility that the symbol c may after all not necessarily name a real property constancy of nature. And the same possibility exists with respect to h. The move from the IPK to a definition of the kilogram by means of c and h is not a move from a precarious temporal constancy to a certain constancy. Certain, however, is that the Avogadro constant/number is not a name for a constant of nature. But it might, of course, nonetheless be given a place in an SI brochure as a scaling factor, as is done in the proposal below. For historical reasons, if no other, it would be curious now to delete it altogether. 5. Possible new definitions of the mole and the kilogram In the light of the reflections made above, and in order to prevent oddities to be built into the new SI from its inception and, of necessity, surfacing later, I connect to two quite independently of me proposed changes to the new SI. Also, by the way, these definitions are much more transparent and easier to teach [13]. There is a problem with the quantity concept of which the mole is the unit that needs to be resolved before the unit can be tackled; the concept amount-of- 6

7 substance should be replaced by number of entities (entry 1.4 Note 3 in [10]). Why? Because the former term gives the impression that the concept refers to a quantity that takes continuous values, whereas in today s physics and chemistry it refers to naturally discrete entities. That is, it refers only to entities that, without the help of any measurement unit can be counted in principle, but which often for the sake of easy communication are in need of a scaling factor. In my opinion, VIM:s definition of quantity (entry 1.1 in [2]) should be interpreted in such a way that collections of entities that are countable without a measurement unit can be called quantities. Collections of elementary entities must be reckoned quantities. In the new SI it is stated that an elementary entity may be an atom, molecule, ion, electron, any other particle or a specified group of such particles. This long and open-ended expression can just as well be exchanged for one that simply says that the entities in question must be identical and specified. The number used in the definition below could, in principle, be chosen at will. However, in order to ensure continuity of the worthiness of data measured in the past, I guess the same numerical value ought to be taken as has been obtained in the international projects on the so-called Avogadro constant (obtained in the Watt balance and Si projects); metrological compatibility of results has now been achieved in these projects. My proposed new re-definition of the mole looks like this: The mole, symbol mol, is the unit for measurements of a large number of discrete elementary entities; the entities must be identical and specified. 1 mole consists of entities. Except for the phrase a large number of, several chemists are in favor of this definition; I have added the phrase in order not to stipulate that the mole has to be used when it comes to talk about one or a few elementary entities. Probably, some of the chemists I think of have argued for their view inside CCQM (Consultative Committee for Amount of Substance). The same goes for this definition of the kg: The kilogram, symbol kg, is the unit of mass. It is the mass of x atoms of 12 C atoms in their nuclear ground state, multiplied by 1000/12. A logical consequence of the definition is that the kilogram becomes an exact number of what to my knowledge many chemists regard as a natural unit of mass: 1/12 of the mass of a 12 C atom. Another good consequence is this. In the present SI, the Dalton (Da) and the unified atomic mass unit (u) cannot be defined within the system, since their value in kg has to be determined experimentally; both units are nonetheless accepted for use with the SI. Now, if the kilogram definition is, as above, made 12 C-based, then both Da and u (1 Da = 1 u) can be defined within the SI system and be regarded as integral parts of it. According to present-day physics and chemistry, the proposed magnitude for the unit of mass is always and everywhere the same. Thus an important requirement on units being traceable to a phenomenon, stable and the same anywhere anytime is fulfilled. 7

8 References 1. BIPM (2010) Draft Chapter 2 for SI Brochure, following redefinitions of the base units. Accessed 17 October BIPM (2006) The International System of Units (SI), 8th edn. Accessed 17 October Taylor B (2011) The Current SI Seen From the Perspective of the Proposed New SI. J Res Natl Inst Stand Technol 116: Johansson I (2011) The Mole is Not an Ordinary Measurement Unit. Accred Qual Assur 16: De Bièvre P (2007) Numerosity versus mass. Accred Qual Assur 12: Johansson I (2010) Metrological thinking needs the notions of parametric quantities, units and dimensions. Metrologia 47: De Bièvre P (2011) Integer numbers and their ratios are key concepts in describing the interactions of atoms and molecules. Accred Qual Assur 16: Price G, De Bièvre P (2009) Simple principles for metrology in chemistry: identifying and counting. Accred Qual Assur 14: Cooper G, Humphry SM (2012) The ontological distinction between units and entities. Synthese 187: International Vocabulary of Metrology Basic and General Concepts and Associated Terms, VIM 3rd edition JCGM 200: Accessed 17 October King J, Webb J, et al. (2010) Possible Cosmological Spatial Variation in the Fine-structure Constant. Journal & Proceedings of the Royal Society of New South Wales 143: Hill T (2012), The Kilogram Cabal. The Chronicle of Higher Education, July

Appendix A: Science Practices for AP Physics 1 and 2

Appendix A: Science Practices for AP Physics 1 and 2 Appendix A: Science Practices for AP Physics 1 and 2 Science Practice 1: The student can use representations and models to communicate scientific phenomena and solve scientific problems. The real world

More information

Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS

Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS 1 P a g e Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS The comparison of any physical quantity with its standard unit is called measurement. Physical Quantities All the quantities in terms of

More information

Theory of electrons and positrons

Theory of electrons and positrons P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of

More information

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

More information

CLASSICAL CONCEPT REVIEW 8

CLASSICAL CONCEPT REVIEW 8 CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,

More information

Atomic structure. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Atomic structure. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Atomic structure This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

PHYSICAL QUANTITIES AND UNITS

PHYSICAL QUANTITIES AND UNITS 1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them

More information

2 The Structure of Atoms

2 The Structure of Atoms CHAPTER 4 2 The Structure of Atoms SECTION Atoms KEY IDEAS As you read this section, keep these questions in mind: What do atoms of the same element have in common? What are isotopes? How is an element

More information

Chapter Test B. Chapter: Measurements and Calculations

Chapter Test B. Chapter: Measurements and Calculations Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.

More information

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

More information

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296)

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) Name Date Class 10 CHEMICAL QUANTITIES SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) This section defines the mole and explains how the mole is used to measure matter. It also teaches

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions This chapter uses the concepts of conservation of mass to assist the student in gaining an understanding of chemical changes. Upon completion of Chapter

More information

The Mole Concept. The Mole. Masses of molecules

The Mole Concept. The Mole. Masses of molecules The Mole Concept Ron Robertson r2 c:\files\courses\1110-20\2010 final slides for web\mole concept.docx The Mole The mole is a unit of measurement equal to 6.022 x 10 23 things (to 4 sf) just like there

More information

Chapter 1: Chemistry: Measurements and Methods

Chapter 1: Chemistry: Measurements and Methods Chapter 1: Chemistry: Measurements and Methods 1.1 The Discovery Process o Chemistry - The study of matter o Matter - Anything that has mass and occupies space, the stuff that things are made of. This

More information

Matter. Atomic weight, Molecular weight and Mole

Matter. Atomic weight, Molecular weight and Mole Matter Atomic weight, Molecular weight and Mole Atomic Mass Unit Chemists of the nineteenth century realized that, in order to measure the mass of an atomic particle, it was useless to use the standard

More information

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up

More information

The Mole Notes. There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the.

The Mole Notes. There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the. The Mole Notes I. Introduction There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the. A. The Mole (mol) Recall that atoms of

More information

CHEMICAL FORMULAS AND FORMULA WEIGHT CALCULATIONS

CHEMICAL FORMULAS AND FORMULA WEIGHT CALCULATIONS CHEMICAL FORMULAS AND FORMULA WEIGHT CALCULATIONS 1. THE MEANING OF A CHEMICAL FORMULA A chemical formula is a shorthand method of representing the elements in a compound. The formula shows the formulas

More information

Calculating Atoms, Ions, or Molecules Using Moles

Calculating Atoms, Ions, or Molecules Using Moles TEKS REVIEW 8B Calculating Atoms, Ions, or Molecules Using Moles TEKS 8B READINESS Use the mole concept to calculate the number of atoms, ions, or molecules in a sample TEKS_TXT of material. Vocabulary

More information

Physical Quantities and Units

Physical Quantities and Units Physical Quantities and Units 1 Revision Objectives This chapter will explain the SI system of units used for measuring physical quantities and will distinguish between vector and scalar quantities. You

More information

AP Chemistry A. Allan Chapter 1 Notes - Chemical Foundations

AP Chemistry A. Allan Chapter 1 Notes - Chemical Foundations AP Chemistry A. Allan Chapter 1 Notes - Chemical Foundations 1.1 Chemistry: An Overview A. Reaction of hydrogen and oxygen 1. Two molecules of hydrogen react with one molecule of oxygen to form two molecules

More information

Introduction to Chemistry. Course Description

Introduction to Chemistry. Course Description CHM 1025 & CHM 1025L Introduction to Chemistry Course Description CHM 1025 Introduction to Chemistry (3) P CHM 1025L Introduction to Chemistry Laboratory (1) P This introductory course is intended to introduce

More information

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4) Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

More information

Chapter 1 Chemistry: The Study of Change

Chapter 1 Chemistry: The Study of Change Chapter 1 Chemistry: The Study of Change This introductory chapter tells the student why he/she should have interest in studying chemistry. Upon completion of this chapter, the student should be able to:

More information

Rate Equations and Detailed Balance

Rate Equations and Detailed Balance Rate Equations and Detailed Balance Initial question: Last time we mentioned astrophysical masers. Why can they exist spontaneously? Could there be astrophysical lasers, i.e., ones that emit in the optical?

More information

Cosmological Arguments for the Existence of God S. Clarke

Cosmological Arguments for the Existence of God S. Clarke Cosmological Arguments for the Existence of God S. Clarke [Modified Fall 2009] 1. Large class of arguments. Sometimes they get very complex, as in Clarke s argument, but the basic idea is simple. Lets

More information

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004 Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

More information

Remodelling the Big Bang

Remodelling the Big Bang Remodelling the Big Bang Dewey B. Larson Unquestionably, the most significant development that has taken place in cosmology in recent years is the replacement of the original Big Bang theory by a totally

More information

Jenn Maeng Lesson overview

Jenn Maeng Lesson overview Jenn Maeng Lesson overview Subject: Chemistry Grade: 10-12 Topic: Stoichiometry Concepts: Stoichiometric Conversions Essential How do we quantify changes in systems? questions: Objectives Students will

More information

Ideal Gas Law Introduction Lesson Plan Keith Newman Chemistry 511 Final Project 2006/2007

Ideal Gas Law Introduction Lesson Plan Keith Newman Chemistry 511 Final Project 2006/2007 Ideal Gas Law Introduction Lesson Plan Keith Newman Chemistry 511 Final Project 2006/2007 Objectives: Students will be able to solve ideal gas law problems using algebraic ratios. Students will be able

More information

Stoichiometry Exploring a Student-Friendly Method of Problem Solving

Stoichiometry Exploring a Student-Friendly Method of Problem Solving Stoichiometry Exploring a Student-Friendly Method of Problem Solving Stoichiometry comes in two forms: composition and reaction. If the relationship in question is between the quantities of each element

More information

1. How many hydrogen atoms are in 1.00 g of hydrogen?

1. How many hydrogen atoms are in 1.00 g of hydrogen? MOLES AND CALCULATIONS USING THE MOLE CONCEPT INTRODUCTORY TERMS A. What is an amu? 1.66 x 10-24 g B. We need a conversion to the macroscopic world. 1. How many hydrogen atoms are in 1.00 g of hydrogen?

More information

New Relationships Between Certain Physico-chemical Constants Established on the Dimensional Analysis

New Relationships Between Certain Physico-chemical Constants Established on the Dimensional Analysis New Relationships Between Certain Physico-chemical Constants Established on the Dimensional Analysis TEODOR OGNEAN* The Directorate of Chemicals at the Ministry of Environment, 12 Libertatii Blv., 040129,

More information

momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3

momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3 Kinetic Molecular Theory This explains the Ideal Gas Pressure olume and Temperature behavior It s based on following ideas:. Any ordinary sized or macroscopic sample of gas contains large number of molecules.

More information

MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It?

MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It? NAME PARTNERS SECTION DATE_ MOLES, MOLECULES, FORMULAS This activity is designed to introduce a convenient unit used by chemists and to illustrate uses of the unit. Part I: What Is a Mole And Why Are Chemists

More information

Figure 1. A typical Laboratory Thermometer graduated in C.

Figure 1. A typical Laboratory Thermometer graduated in C. SIGNIFICANT FIGURES, EXPONENTS, AND SCIENTIFIC NOTATION 2004, 1990 by David A. Katz. All rights reserved. Permission for classroom use as long as the original copyright is included. 1. SIGNIFICANT FIGURES

More information

Description of the Mole Concept:

Description of the Mole Concept: Description of the Mole Concept: Suppose you were sent into the store to buy 36 eggs. When you picked them up you would get 3 boxes, each containing 12 eggs. You just used a mathematical device, called

More information

THE IDEAL GAS LAW AND KINETIC THEORY

THE IDEAL GAS LAW AND KINETIC THEORY Chapter 14 he Ideal Gas Law and Kinetic heory Chapter 14 HE IDEAL GAS LAW AND KINEIC HEORY REIEW Kinetic molecular theory involves the study of matter, particularly gases, as very small particles in constant

More information

Getting the most from this book...4 About this book...5

Getting the most from this book...4 About this book...5 Contents Getting the most from this book...4 About this book....5 Content Guidance Topic 1 Atomic structure and the periodic table...8 Topic 2 Bonding and structure...14 Topic 2A Bonding....14 Topic 2B

More information

AAHS-CHEMISTRY FINAL EXAM PREP-REVIEW GUIDE MAY-JUNE 2014 DR. GRAY CLASS OF 2016

AAHS-CHEMISTRY FINAL EXAM PREP-REVIEW GUIDE MAY-JUNE 2014 DR. GRAY CLASS OF 2016 AAHS-CHEMISTRY FINAL EXAM PREP-REVIEW GUIDE MAY-JUNE 2014 DR. GRAY CLASS OF 2016 UNIT I: (CHAPTER 1-Zumdahl text) The Nature of Science and Chemistry 1. Explain why knowledge of chemistry is central to

More information

Chemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights.

Chemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights. 1 Introduction to Chemistry Atomic Weights (Definitions) Chemical Calculations: The Mole Concept and Chemical Formulas AW Atomic weight (mass of the atom of an element) was determined by relative weights.

More information

The Quantum Harmonic Oscillator Stephen Webb

The Quantum Harmonic Oscillator Stephen Webb The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems

More information

Chapter 2 Measurement and Problem Solving

Chapter 2 Measurement and Problem Solving Introductory Chemistry, 3 rd Edition Nivaldo Tro Measurement and Problem Solving Graph of global Temperature rise in 20 th Century. Cover page Opposite page 11. Roy Kennedy Massachusetts Bay Community

More information

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment. Chemistry UNIT I: Introduction to Chemistry The student will be able to describe what chemistry is and its scope. a. Define chemistry. b. Explain that chemistry overlaps many other areas of science. The

More information

SYMBOLS, FORMULAS AND MOLAR MASSES

SYMBOLS, FORMULAS AND MOLAR MASSES SYMBOLS, FORMULAS AND MOLAR MASSES OBJECTIVES 1. To correctly write and interpret chemical formulas 2. To calculate molecular weights from chemical formulas 3. To calculate moles from grams using chemical

More information

CHEM 101/105 Numbers and mass / Counting and weighing Lect-03

CHEM 101/105 Numbers and mass / Counting and weighing Lect-03 CHEM 101/105 Numbers and mass / Counting and weighing Lect-03 Interpretation of Elemental Chemical Symbols, Chemical Formulas, and Chemical Equations Interpretation of an element's chemical symbol depends

More information

Return to Lab Menu. Stoichiometry Exploring the Reaction between Baking Soda and Vinegar

Return to Lab Menu. Stoichiometry Exploring the Reaction between Baking Soda and Vinegar Return to Lab Menu Stoichiometry Exploring the Reaction between Baking Soda and Vinegar Objectives -to observe and measure mass loss in a gas forming reaction -to calculate CO 2 loss and correlate to a

More information

Atomic Masses. Chapter 3. Stoichiometry. Chemical Stoichiometry. Mass and Moles of a Substance. Average Atomic Mass

Atomic Masses. Chapter 3. Stoichiometry. Chemical Stoichiometry. Mass and Moles of a Substance. Average Atomic Mass Atomic Masses Chapter 3 Stoichiometry 1 atomic mass unit (amu) = 1/12 of the mass of a 12 C atom so one 12 C atom has a mass of 12 amu (exact number). From mass spectrometry: 13 C/ 12 C = 1.0836129 amu

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

Mise en pratique of the definition of the kilogram

Mise en pratique of the definition of the kilogram Mise en pratique of the definition of the kilogram Consultative Committee for Mass and Related Quantities (CCM) Working Group on the Realization of the Kilogram (WGR-kg) (Editor s note 0.1: In the following

More information

2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE

2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE 2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE In this chapter the principles and systematics of atomic and nuclear physics are summarised briefly, in order to introduce the existence and characteristics of

More information

1Physical quantities and units

1Physical quantities and units 1Physical quantities and units By the end of this chapter you should be able to: explain what is meant by a in physics; state the five fundamental quantities recognised and used in physics; explain the

More information

CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS

CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS 1 CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS The Chemical Equation A chemical equation concisely shows the initial (reactants) and final (products) results of

More information

Generally Covariant Quantum Mechanics

Generally Covariant Quantum Mechanics Chapter 15 Generally Covariant Quantum Mechanics by Myron W. Evans, Alpha Foundation s Institutute for Advance Study (AIAS). (emyrone@oal.com, www.aias.us, www.atomicprecision.com) Dedicated to the Late

More information

CHAPTER 8: CHEMICAL COMPOSITION

CHAPTER 8: CHEMICAL COMPOSITION CHAPTER 8: CHEMICAL COMPOSITION Active Learning: 1-4, 6-8, 12, 18-25; End-of-Chapter Problems: 3-4, 9-82, 84-85, 87-92, 94-104, 107-109, 111, 113, 119, 125-126 8.2 ATOMIC MASSES: COUNTING ATOMS BY WEIGHING

More information

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline Gases and Kinetic-Molecular heory: Chapter Chapter Outline Comparison of Solids, Liquids, and Gases Composition of the Atmosphere and Some Common Properties of Gases Pressure Boyle s Law: he Volume-Pressure

More information

Kinetic Theory & Ideal Gas

Kinetic Theory & Ideal Gas 1 of 6 Thermodynamics Summer 2006 Kinetic Theory & Ideal Gas The study of thermodynamics usually starts with the concepts of temperature and heat, and most people feel that the temperature of an object

More information

Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work.

Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work. Work and Energy Ch. 6 Work = Force Distance Work increases the energy of an object. Energy can be converted back to work. Therefore, energy and work have the same unit: Newton meter = Nm Energy per gram,

More information

What s in a Mole? Molar Mass

What s in a Mole? Molar Mass LESSON 10 What s in a Mole? Molar Mass OVERVIEW Key Ideas Lesson Type Lab: Groups of 4 Chemists compare moles of substances rather than masses because moles are a way of counting atoms. When considering

More information

Thermodynamics of Mixing

Thermodynamics of Mixing Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What

More information

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

More information

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1 AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three

More information

Where is Fundamental Physics Heading? Nathan Seiberg IAS Apr. 30, 2014

Where is Fundamental Physics Heading? Nathan Seiberg IAS Apr. 30, 2014 Where is Fundamental Physics Heading? Nathan Seiberg IAS Apr. 30, 2014 Disclaimer We do not know what will be discovered. This is the reason we perform experiments. This is the reason scientific research

More information

This Performance Standards include four major components. They are

This Performance Standards include four major components. They are Eighth Grade Science Curriculum Approved July 12, 2004 The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science at the eighth grade level.

More information

THE INTENTION EXPERIMENT The Roy Water Experiment: April 26, 2008

THE INTENTION EXPERIMENT The Roy Water Experiment: April 26, 2008 THE INTENTION EXPERIMENT The Roy Water Experiment: April 26, 2008 With this study we wished to delve further into water, by testing whether intention can changes the molecular structure of water. This

More information

Background Biology and Biochemistry Notes A

Background Biology and Biochemistry Notes A Background Biology and Biochemistry Notes A Vocabulary dependent variable evidence experiment hypothesis independent variable model observation prediction science scientific investigation scientific law

More information

PHY1020 BASIC CONCEPTS IN PHYSICS I

PHY1020 BASIC CONCEPTS IN PHYSICS I PHY1020 BASIC CONCEPTS IN PHYSICS I Jackson Levi Said 14 lectures/tutorials/past paper session Project on one of the interesting fields in physics (30%) Exam in January/February (70%) 1 The Course RECOMMENDED

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM

5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM 5.6 Physical Chemistry 5 Helium Atom page HELIUM ATOM Now that we have treated the Hydrogen like atoms in some detail, we now proceed to discuss the next simplest system: the Helium atom. In this situation,

More information

Time and Causation in Gödel s Universe.

Time and Causation in Gödel s Universe. Time and Causation in Gödel s Universe. John L. Bell In 1949 the great logician Kurt Gödel constructed the first mathematical models of the universe in which travel into the past is, in theory at least,

More information

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1 Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

Other Stoich Calculations A. mole mass (mass mole) calculations. GIVEN mol A x CE mol B. PT g A CE mol A MOLE MASS :

Other Stoich Calculations A. mole mass (mass mole) calculations. GIVEN mol A x CE mol B. PT g A CE mol A MOLE MASS : Chem. I Notes Ch. 12, part 2 Using Moles NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 1 MOLE = 6.02 x 10 23 representative particles (representative particles

More information

Element of same atomic number, but different atomic mass o Example: Hydrogen

Element of same atomic number, but different atomic mass o Example: Hydrogen Atomic mass: p + = protons; e - = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon-12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine-35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass

More information

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296)

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) 10 CHEMICAL QUANTITIES SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) This section defines the mole and explains how the mole is used to measure matter. It also teaches you how to calculate

More information

Chemical Composition. Introductory Chemistry: A Foundation FOURTH EDITION. Atomic Masses. Atomic Masses. Atomic Masses. Chapter 8

Chemical Composition. Introductory Chemistry: A Foundation FOURTH EDITION. Atomic Masses. Atomic Masses. Atomic Masses. Chapter 8 Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Chemical Composition Chapter 8 1 2 Atomic Masses Balanced equation tells us the relative numbers of molecules

More information

Mole Notes.notebook. October 29, 2014

Mole Notes.notebook. October 29, 2014 1 2 How do chemists count atoms/formula units/molecules? How do we go from the atomic scale to the scale of everyday measurements (macroscopic scale)? The gateway is the mole! But before we get to the

More information

Chapter 1 An Introduction to Chemistry

Chapter 1 An Introduction to Chemistry 1 Chapter 1 An Introduction to Chemistry 1.1 What Is Chemistry, and What Can Chemistry Do for You? Special Topic 1.1: Green Chemistry 1.2 Suggestions for Studying Chemistry 1.3 The Scientific Method 1.4

More information

Calculations with Chemical Formulas and Equations

Calculations with Chemical Formulas and Equations Chapter 3 Calculations with Chemical Formulas and Equations Concept Check 3.1 You have 1.5 moles of tricycles. a. How many moles of seats do you have? b. How many moles of tires do you have? c. How could

More information

Part One: Mass and Moles of Substance. Molecular Mass = sum of the Atomic Masses in a molecule

Part One: Mass and Moles of Substance. Molecular Mass = sum of the Atomic Masses in a molecule CHAPTER THREE: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS Part One: Mass and Moles of Substance A. Molecular Mass and Formula Mass. (Section 3.1) 1. Just as we can talk about mass of one atom of

More information

Science Standard Articulated by Grade Level Strand 5: Physical Science

Science Standard Articulated by Grade Level Strand 5: Physical Science Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

More information

(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed.

(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed. Gas Laws and Kinetic Molecular Theory The Gas Laws are based on experiments, and they describe how a gas behaves under certain conditions. However, Gas Laws do not attempt to explain the behavior of gases.

More information

Chapter 1: Moles and equations. Learning outcomes. you should be able to:

Chapter 1: Moles and equations. Learning outcomes. you should be able to: Chapter 1: Moles and equations 1 Learning outcomes you should be able to: define and use the terms: relative atomic mass, isotopic mass and formula mass based on the 12 C scale perform calculations, including

More information

Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6

Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6 Gases Petrucci, Harwood and Herring: Chapter 6 CHEM 1000A 3.0 Gases 1 We will be looking at Macroscopic and Microscopic properties: Macroscopic Properties of bulk gases Observable Pressure, volume, mass,

More information

Kant s Fundamental Principles of the Metaphysic of Morals

Kant s Fundamental Principles of the Metaphysic of Morals Kant s Fundamental Principles of the Metaphysic of Morals G. J. Mattey Winter, 2015/ Philosophy 1 The Division of Philosophical Labor Kant generally endorses the ancient Greek division of philosophy into

More information

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide)

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) OVERVIEW Students will measure a sound wave by placing the Ward s DataHub microphone near one tuning fork A440 (f=440hz). Then

More information

CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

More information

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion. Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

More information

How does the problem of relativity relate to Thomas Kuhn s concept of paradigm?

How does the problem of relativity relate to Thomas Kuhn s concept of paradigm? How does the problem of relativity relate to Thomas Kuhn s concept of paradigm? Eli Bjørhusdal After having published The Structure of Scientific Revolutions in 1962, Kuhn was much criticised for the use

More information

ARIZONA Science Standards High School Chemistry: Matter and Change 2005

ARIZONA Science Standards High School Chemistry: Matter and Change 2005 ARIZONA Science Standards High School Chemistry: Matter and Change 2005 OBJECTIVES Strand 1: Inquiry Process Concept 1: Observations, Questions, and Hypotheses Formulate predictions, questions, or hypotheses

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily. The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole

More information

= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

More information

CH3 Stoichiometry. The violent chemical reaction of bromine and phosphorus. P.76

CH3 Stoichiometry. The violent chemical reaction of bromine and phosphorus. P.76 CH3 Stoichiometry The violent chemical reaction of bromine and phosphorus. P.76 Contents 3.1 Counting by Weighing 3.2 Atomic Masses 3.3 The Mole 3.4 Molar Mass 3.5 Percent Composition of Compounds 3.6

More information