Acetylcholine. chapter. Palmer Taylor Joan Heller Brown

Size: px
Start display at page:

Download "Acetylcholine. chapter. Palmer Taylor Joan Heller Brown"

Transcription

1 chapter 11 Acetylcholine Palmer Taylor Joan Heller Brown CHEMITY F ACETYCHINE 186 GANIZATIN F THE CHINEGIC NEVU YTEM 186 Acetylcholine receptors have been classified into subtypes based on early studies of pharmacologic selectivity 186 The intrinsic complexity and the multiplicity of cholinergic receptors became evident upon elucidation of their primary structures 189 FUNCTINA APECT F CHINEGIC NEUTANMIIN 189 Both muscarinic and nicotinic responses are elicited in brain and spinal cord 189 Neurotransmission in autonomic ganglia is more complex than depolarization mediated by a single transmitter 190 Muscarinic receptors are widely distributed at postsynaptic parasympathetic effector sites 190 timulation of the motoneuron releases acetylcholine onto the muscle endplate and results in contraction of the muscle fiber 191 Competitive blocking agents cause muscle paralysis by preventing access of acetylcholine to its binding site on the receptor 191 YNTHEI, TAGE AND EEAE F ACETYCHINE 192 Acetylcholine formation is limited by the intracellular concentration of choline, which is determined by active transport of choline into the nerve ending 192 A second transport system concentrates acetylcholine in the synaptic vesicle 193 Choline is supplied to the neuron either from plasma or by metabolism of choline-containing compounds 193 A slow release of acetylcholine from neurons at rest probably occurs at all cholinergic synapses 194 The relationship between acetylcholine content in a vesicle and the quanta of acetylcholine released can only be estimated 194 Depolarization of the nerve terminal by an action potential increases the number of quanta released per unit time 194 All the acetylcholine contained within the cholinergic neuron does not behave as if in a single compartment 194 ACETYCHINETEAE AND THE TEMINATIN F ACETYCHINE ACTIN 195 Cholinesterases are widely distributed throughout the body in both neuronal and non-neuronal tissues 195 The primary and tertiary structures of the cholinesterases are known 195 Acetylcholinesterases exist in several molecular forms governed by alternative splicing 195 Cholinesterase catalysis and inhibition mechanisms involve formation of reversible complexes and covalent conjugates 197 Consequences of acetylcholinesterase inhibition differ with effector site 197 NICTINIC ECEPT 197 The nicotinic acetylcholine receptor (nach) was the first characterized neurotransmitter receptor 197 The nach consists of five subunits arranged around a pseudoaxis of symmetry 198 Analysis of the opening and closing events of individual channels has provided information about ligand binding and activation of the receptor 201 Continued exposure of nicotinic receptors to agonist leads to desensitization of the receptors 201 Nicotinic receptor subunits are part of a large superfamily of ligand-gated channels 202 Both nicotinic receptors and acetylcholinesterase are regulated tightly during differentiation and synapse formation 202 MUCAINIC ECEPT 203 Muscarinic receptor activation causes inhibition of adenylyl cyclase, stimulation of phospholipase C and regulation of ion channels 203 adioligand-binding studies have been used to characterize muscarinic receptors 205 The binding properties of the antagonist pirenzepine led to the initial classification of muscarinic receptors 205 Transgenic mice are being generated to assess the functions of receptor subtypes in vivo 207 Acetylcholine (ACh) and its targets of interaction have played a long-standing and critical role in the basic concepts of neurochemistry. At the turn of the last century, ACh emerged as a pivotal mediator in chemical neurotransmission and as a ligand for defining receptors. The natural alkaloids physostigmine (by inhibiting acetylcholinesterase) and nicotine and muscarine (for distinguishing Basic Neurochemistry: Molecular, Cellular and Medical Aspects X , American ociety for Neurochemistry. All rights reserved. Published by Elsevier, Inc.

2 186 PAT II Intercellular ignaling receptor subtype) were invaluable tools for identifying ACh as a transmitter and delineating its sites of action. The unusual spatial localization of nicotinic acetylcholine receptors (nach) at the neuromuscular junction endplates enabled the discoveries of quantal release of neurotransmitter, receptor desensitization and channel gating properties of individual receptor molecules through single channel and noise analysis. ACh is widely distributed in the nervous system. It subserves all motor transmission in vertebrates, is the primary transmitter for peripheral ganglia, mediates parasympathetic actions of the autonomic nervous system and is a dominant transmitter in the central nervous system. Toxins from various predatory species have evolved to block motor activity of prey; others from coral and plants use paralysis induced by cholinergic agents for protection from predation. The high affinity and selectivity of these toxins enabled the nach to emerge as the first chemically characterized neurotransmitter receptor. ther toxins from snakes and snails have proved useful to identify receptor subtypes in various tissues. In Alzheimer s dementias, ACh-containing nerve terminals are preferentially affected and therapy is directed to extending the surface area and duration of action of released ACh (Ch. 47). Cholinergic nerve terminals are also the site of action in the treatment of certain myasthenias and disorders involving compromised or excessive smooth muscle activity and exocrine secretion in the periphery. Carbamate and organophosphate pesticides act to delay the termination of action of acetylcholine by inhibiting acetylcholinesterase, and volatile organophosphates that have been used in terrorism incidents also act in this manner. ACh arrived within the evolutionary scheme long before the design of the nervous system and functional synapses. Bacteria, fungi, protozoa and plants store ACh and possess biosynthetic and degradative capacities for turnover of the molecule. Even in higher organisms, ACh distribution is far wider than the nervous system. For example, ACh is found in the cornea, certain ciliated epithelia, the spleen of ungulates and the human placenta [1]. Although definitive evidence is lacking, ACh has been proposed to play a role in development and tissue differentiation. ACh was first proposed as a mediator of cellular function by Hunt in 1907, and in 1914 Dale [2] pointed out that its action closely mimicked the response of parasympathetic nerve stimulation (see Ch. 10). oewi, in 1921, provided clear evidence for ACh release by nerve stimulation. eparate receptors that explained the variety of actions of ACh became apparent in Dale s early experiments [2]. The nicotinic ACh receptor was the first transmitter receptor to be purified and to have its primary structure determined [3, 4]. The primary structures of most subtypes of both nicotinic and muscarinic receptors, the cholin esterases (ChE), choline acetyltransferase (ChAT), the choline and ACh transporters have been ascertained. Threedimensional structures for several of these proteins or surrogates within the same protein family are also known. B A C 3 H H H + C CH 2 CH 2 N C 3 H N + N + C H H H H CHEMITY F ACETYCHINE Torsional rotation in the ACh molecule can occur around bonds τ 1, τ 2 and τ 3 (Fig. 11-1). ince the methyl groups are disposed symmetrically around τ 3 and constraints are placed on τ 1 by the planar acetoxy group, the most important torsion angle determining ACh conformation in solution is τ 2. A view from the β-methylene carbon of the molecule (Fig. 11-1B,C) shows the energy configurations around τ 2. Nuclear magnetic resonance (NM) studies indicate that the gauche conformation is predominant in solution [5, 6]. tudies of the activities of rigid analogs of ACh suggest that the trans conformation may be the active conformation at muscarinic receptors [7], while results of NM and X-ray crystallography studies suggest a change in configuration when ACh is bound to the nicotinic receptor [6, 8]. Hence the bound conformations of this flexible molecule appear to differ substantially with receptor subtype. This finding should not be a great surprise, since structural modifications of ACh that enhance or diminish activity on muscarinic receptors are very different from those modifications that influence activity on nicotinic receptors. GANIZATIN F THE CHINEGIC NEVU YTEM Acetylcholine receptors have been classified into subtypes based on early studies of pharmacologic selectivity. ong before structures were known, two crude alkaloid fractions, containing nicotine and muscarine (Fig. 11-2), were used to subclassify receptors in the cholinergic nervous system (Fig. 11-3). The greatly different C H H C FIGUE 11-1 tructure of acetylcholine. (A) The three torsion angles, τ 1, τ 2 and τ 3. (B) Newman projection of the gauche conformation. (C) Newman projection of the trans conformation. The molecule is viewed in the plane of the paper from the left side, and the bond angles around τ 2 are compared.

3 CHAPTE 11 Acetylcholine 187 Cholinergic tage 3 tage 2 tage 1 Nicotinic muscle Agonist: Phenyltrimethylammonium Antagonist: Elapid α-toxins, d-tubocurarine Nicotinic Junctional [(α1) 2 βεδ] Nicotinic Embryonic [(α1) 2 βγδ] Nicotinic Agonist: Nicotine Antagonist: d-tubocurarine Nicotinic neuronal β2 Nicotinic neuronal β3 Nicotinic neuronal β4 Nicotinic neuronal β5 Agonist: Acetylcholine Nicotinic neuronal (α+β) Agonist: Dimethylphenylpiperazinium, Cytisine Antagonist: Trimethaphan, Neuronal bungarotoxin Nicotinic neuronal α2 (α-toxin insensitive) Nicotinic neuronal α3 (α-toxin insensitive) Nicotinic neuronal α4 (α-toxin insensitive) Nicotinic neuronal α5 (non-functional without other α subunits) Nicotinic neuronal α6 (α-toxin insensitive) Nicotinic neuronal α7 (α-toxin sensitive) Muscarinic Agonist: Muscarine, Pilocarpine Antagonist: Atropine Agonist: xotremorine Antagonist: Propylbenzilylcholine mustard, Quinuclidinyl benzilate Muscarinic m 1 M 1 Antagonist: Pirenzepine Muscarinic m 2 M 2 Antagonist: Methoctramine Muscarinic m 3 M 3 Antagonist: Hexahydrosiladifenidol Muscarinic m 4 M 4 Antagonist: Himbacine Muscarinic m 5 M 5 Nicotinic neuronal α8 (α-toxin sensitive) Nicotinic neuronal α9 Nicotinic neuronal α10 FIGUE 11-2 Classification of cholinergic receptors. The diagram shows a historical classification of receptors analyzed on the basis of distinct responses with crude alkaloids (stage 1), the partial resolution of receptor subtypes with chemically synthesized agonists and antagonists (stage 2) and the distinction of primary structures of the receptors principally through cloning by recombinant DNA techniques (stage 3). activities of the antagonists atropine on muscarinic receptors and d-tubocurarine on nicotinic receptors further supported the argument that multiple classes of receptors existed for ACh. ubsequently, it was found that all nicotinic receptors are not identical. Nicotinic receptors in the neuromuscular junction, sometimes denoted as N 1 receptors, show selectivity for phenyltrimethylammonium as an agonist; elicit membrane depolarization in response to bisquaternary amines, with decamethonium being the most potent; are preferentially blocked by the competitive antagonist d-tubocurarine and are blocked irreversibly by the snake α-toxins. Nicotinic receptors in ganglia, N 2 receptors, are stimulated preferentially by 1,1-dimethyl-4-phenylpiperazinium, blocked competitively by trimethaphan, blocked noncompetitively by bisquaternary amines, with hexamethonium being the

4 188 PAT II Intercellular ignaling Nicotinic and muscarinic agonists CH H + 3 CH + 3 C CH 2 CH 2 N N CH H 3 3 C Acetylcholine (N + M) Phenyltrimethylammonium (N 1 ) CH 2 N Muscarine (M) + + N N 1,1-Dimethyl-4- phenylpiperazinium (N 2 ) C + N CH 2 C C CH 2 N xotremorine-m (M) N N Nicotine (N 1 + N 2 ) Nicotinic antagonists C CH 2 N N CH 2 ( ) 2 N + CH 2 H HC CH H 2 C HC CH + 2 H 2 C H 2 C Trimethaphan (N 2 ) H 3 C CH 2 + H N H d-tubocurarine (N 1 ) H 3 C + N (CH2)6 + N H 3 C + N (CH2)10 + N Hexamethonium (N 2 ) Decamethonium (N 1 ) Muscarinic antagonists H N C H i CH 2 CH 2 CH 2 N N N C N CH 2 N N Hexahydrosiladifenidol (M 3 ) Pirenzepine (M 1 ) Himbacine (M 4 ) N C Atropine (M) CH 2 H CH NH (CH 2 ) 6 NH (CH 2 ) 8 NH (CH 2 ) 6 NH Methoctramine (M 2 ) FIGUE 11-3 tructure of compounds important to the classification of receptor subtypes at cholinergic synapses. Compounds are subdivided as nicotinic (N) and muscarinic (M). The compounds interacting with nicotinic receptors are subdivided further according to whether they are neuromuscular (N 1 ) or ganglionic (N 2 ). Compounds with muscarinic subtype selectivity (M 1, M 2, M 3, M 4 ) are also noted.

5 CHAPTE 11 Acetylcholine 189 most potent, and show resistance to the snake α-toxins [9]. A large number of distinct neuronal nicotinic receptors are found in the CN; they are closer relatives of the nicotinic receptors in ganglia than of those in muscle. Muscarinic receptors also exhibit distinct subtypes. The antagonist pirenzepine (PZ) has the highest affinity for one subtype, M 1, which is found mainly in neuronal tissues. Another antagonist, methoctramine, has a higher affinity for M 2 receptors, which are the predominant muscarinic receptor subtype in mammalian heart. Hexahydrosiladifenidol is relatively selective for the M 3 receptors present in smooth muscle and glands, whereas himbacine exhibits high affinity for M 4 receptors. With this level of multiplicity of receptor subtypes, limitations on specificity preclude a single antagonist defining a distinct subtype. The intrinsic complexity and the multiplicity of cholinergic receptors became evident upon elucidation of their primary structures. In the CN, at least nine different sequences of α subunits and three different sequences of β subunits of the nicotinic receptor have been identified [10, 11]. Expression of the cloned genes encoding certain subunit combinations yields functional receptors with different sensitivities toward various toxins and agonists. At least five distinct muscarinic receptor genes have been cloned and sequenced. The genes are called m 1 to m 5. They correlate with the M 1 to M 5 receptors identified pharmacologically. The subtypes differ in their ability to couple to different G proteins and, hence, to elicit cellular signaling events. Thus, cholinergic receptor classification can be considered in terms of three stages of development. Initially, Dale [2] distinguished nicotinic and muscarinic receptor subtypes with crude alkaloids. Then, chemical synthesis and structure-activity relationships clearly revealed that nicotinic and muscarinic receptors were heterogeneous, but chemical selectivity could not come close to uncovering the true diversity of receptor subtypes. astly, analysis of subtypes came from molecular cloning, making possible the classification of receptors on the basis of primary structure (Fig. 11-2). FUNCTINA APECT F CHINEGIC NEUTANMIIN The individual subtypes of receptors often show discrete anatomical locations in the peripheral nervous system, and this has facilitated their classification. Nicotinic receptors are found in peripheral ganglia and skeletal muscle. Upon innervation of skeletal muscle, receptors congregate in the junctional or postsynaptic endplate area. Upon denervation or in noninnervated embryonic muscle, the receptors are distributed across the surface of the muscle, and these extrajunctional receptors are synthesized and degraded rapidly. Junctional receptors exhibit far slower rates of turnover and are distinguished by an ε subunit replacing a γ subunit in the assembled pentameric receptor. Ganglionic nicotinic receptors are found on postsynaptic neurons in both parasympathetic and sympathetic ganglia and in the adrenal gland. Ganglionic nicotinic receptors appear in tissues of neural crest embryonic origin and exhibit identical properties in sympathetic and parasympathetic ganglia. Muscarinic receptors are responsible for postganglionic parasympathetic neurotransmission and thus for control of a wide range of smooth muscle, cardiac muscle and secretory responses. ome responses originating in the sympathetic division of the autonomic nervous system, such as sweating and piloerection, also are mediated through muscarinic receptors. Both muscarinic and nicotinic responses are elicited in brain and spinal cord. A few specific central cholinergic pathways have been characterized. In higher brain centers, ACh is concentrated in interneurons and long projection neurons. In the striatum, cholinergic interneurons provide critical intercircuitry for extrapyramidal motor control and implicit memory. Four predominant nuclei in the basal forebrain send projecton neurons to the hippocampus, olfactory bulb and cerebral cortex. These include the nucleus basalis of Meynert, a region of primary degeneration in Alzheimer s disease. Four areas of the brain stem send cholinergic projections to the thalamus, interpeduncular nucleus and the superior colliculus. enshaw cells in the spinal cord play a role in modulating motoneuron activity by a feedback mechanism. timulation of enshaw cells occurs through branches of the motoneuron, and the transmitter is ACh acting on nicotinic receptors. Both nicotinic and muscarinic receptors are widespread in the CN. Muscarinic receptors with a high affinity for pirenzepine (PZ), M 1 receptors, predominate in the hippocampus and cerebral cortex, whereas M 2 receptors predominate in the cerebellum and brainstem, and M 4 receptors are most abundant in the striatum. Central muscarinic and nicotinic receptors are targets of intense pharmacological interest for their potential roles in regulating abnormal neurological signaling in Alzheimer s disease, Parkinson s disease and certain seizure disorders. Nicotinic receptors are largely localized at prejunctional sites and control the release of neuro transmitters [10, 11]. Histochemical studies using antibodies selective for receptor subtype, ChAT and presynaptic transport proteins, along with receptor autoradiography with labeled ligands, have produced detailed maps of the CN. In addition, the nerve cell bodies containing the mna encoding these proteins have been defined through in situ hybridization with a cdna or antisense mna. tudies involving iontophoretic application of transmitter, local stimulation and intracellular or cellsurface measurements of responses establish appropriate

6 190 PAT II Intercellular ignaling functional correlates. ecently, knockout mice strains, harboring deletions of M1 M5 machs and various nach subunits, have been generated, providing a direct means of determining the localization of function of these receptors [12, 13]. Neurotransmission in autonomic ganglia is more complex than depolarization mediated by a single transmitter. In autonomic ganglia, the primary electrophysiological event following preganglionic nerve stimulation is the rapid depolarization of postsynaptic sites by released ACh acting on nicotinic receptors. This activation gives rise to an initial excitatory postsynaptic potential (EPP), which is due to an inward current through a cation channel (see Chs 6 and 10). This mechanism is virtually identical to that in the neuromuscular junction, with an immediate onset of the depolarization and decay within a few milliseconds. Nicotinic antagonists such as trimethaphan competitively block ganglionic transmission, whereas agents such as hexamethonium produce blockade by occluding the channel. An action potential is generated in the postganglionic nerve when the initial EPP attains a threshold amplitude. everal secondary events amplify or suppress this signal. These include the slow EPP, the late, slow EPP and an inhibitory postsynaptic potential (IPP). The slow EPP is generated by ACh acting on muscarinic receptors and is blocked by atropine. It has a latency of approximately 1 sec and a duration of seconds. The late, slow EPP can last for several minutes and is mediated by peptides found in ganglia, including substance P, angiotensin, luteinizing-hormone-releasing hormone (HH) and the enkephalins. The slow EPP and late, slow EPP result from decreased K + conductance and are believed to regulate the sensitivity of the postsynaptic neuron to repetitive depolarization [14]. The IPP seems to be mediated by the catecholamines dopamine and/or norepinephrine and is blocked by α-adrenergic antagonists as well as by atropine. ACh released from presynaptic terminals may act on a catecholamine-containing interneuron to release dopamine and perhaps norepinephrine. imilar to the slow EPP, the IPP has a prolonged latency and duration of action. These secondary events vary with the individual ganglia and are believed to modulate the sensitivity to the primary event. Hence, drugs that selectively block the slow EPP, such as atropine, will diminish the efficiency of ganglionic transmission rather than eliminate it. imilarly, agonists such as muscarine and the ganglion-selective muscarinic agent, McN-A-343, are not thought of as primary ganglionic stimulants. ather, they enhance the initial EPP under conditions of repetitive stimulation. ince parasympathetic and sympathetic ganglia exhibit comparable sensitivities to nicotinic agonists such as nicotine and ACh in producing the initial EPP, the pharmacological effect of ganglionic stimulation depends on the profile of innervation to particular organs or tissues (Table 11-1). For example, blood vessels are innervated only by the sympathetic nervous system; thus, ganglionic stimulation should produce only vasoconstriction. imilarly, the pharmacological effects of ganglionic blockade will depend on which component of the autonomic nervous system is exerting the predominant tone at the effector organ. Muscarinic receptors are widely distributed at postsynaptic parasympathetic effector sites. The response to systemically administered ACh is characteristic of stimulation of postganglionic effector sites rather than of ganglia. This is a consequence of the greater abundance of muscarinic receptors at effector sites in innervated tissues and the limited blood flow to ganglia. Muscarinic receptors are found in visceral smooth muscle, cardiac muscle, secretory glands and endothelial cells of the vasculature. Except for endothelial cells, each of these sites receives cholinergic innervation. esponses can be excitatory or inhibitory, depending on the tissue. Even within a single tissue the responses may vary. For example, muscarinic stimulation causes gastrointestinal smooth muscle to depolarize and contract, except at sphincters, where hyperpolarization and relaxation are seen (Table 11-2). In most tissues innervated by the cholinergic nervous system, smooth muscle exhibits intrinsic electrical and/or mechanical activity. This activity is modulated rather than initiated by cholinergic nerve stimulation. Cardiac muscle and smooth muscle exhibit spikes of electrical activity that are propagated between cells. These spikes are initiated by rhythmic fluctuations in resting membrane potential. In intestinal smooth muscle, cholinergic stimulation TABE 11-1 Predominance of sympathetic or parasympathetic tone at effector sites: effects of autonomic ganglionic blockade ite Predominant tone Primary effects of ganglionic blockade Arterioles ympathetic (adrenergic) Vasodilation, increased peripheral blood flow, hypotension Veins ympathetic (adrenergic) Dilation, pooling of blood, decreased venous return, decreased cardiac output Heart Parasympathetic (cholinergic) Tachycardia Iris Parasympathetic (cholinergic) Mydriasis Ciliary muscle Parasympathetic (cholinergic) Cycloplegia (focus to far vision) Gastrointestinal tract Parasympathetic (cholinergic) educed tone and motility of smooth muscle, constipation, decreased gastric and pancreatic secretions Urinary bladder Parasympathetic (cholinergic) Urinary retention alivary glands Parasympathetic (cholinergic) Xerostomia weat glands ympathetic (cholinergic) Anhidrosis

7 CHAPTE 11 Acetylcholine 191 TABE 11-2 Effects of acetylcholine (ACh) stimulation on peripheral tissues Tissue Effects of ACh Vasculature (endothelial cells) elease of endothelium-derived relaxing factor (nitric oxide) and vasodilation Eye iris (pupillae sphincter muscle) Contraction and miosis Ciliary muscle Contraction and accommodation of lens to near vision alivary glands and lacrimal glands ecretion thin and watery Bronchi Constriction, increased secretions Heart Bradycardia, decreased conduction (atrioventricular block at high doses), small negative inotropic action Gastrointestinal tract Increased tone, increased gastrointestinal secretions, relaxation at sphincters Urinary bladder Contraction of detrusor muscle, relaxation of the sphincter weat glands Diaphoresis eproductive tract, male Erection Uterus Variable, dependent on hormonal influence will cause a partial depolarization and increase the frequency of spike production. In contrast, cholinergic stimulation of atria will decrease the generation of spikes through hyperpolarization of the membrane. Membrane depolarization typically results from an increase in Na + conductance. In addition, mobilization of intracellular Ca 2+ from the endoplasmic or sarcoplasmic reticulum and the influx of extracellular Ca 2+ appear to be elicited by ACh acting on muscarinic receptors (see Ch. 22). The resulting increase in intracellular free Ca 2+ is involved in activation of contractile, metabolic and secretory events. timulation of muscarinic receptors has been linked to changes in cyclic nucleotide concentrations. eductions in camp concentrations and increases in cgmp concentrations are typical responses (see Ch. 21). These cyclic nucleotides may facilitate contraction or relaxation, depending on the particular tissue. Inhibitory responses also are associated with membrane hyperpolarization, and this is a consequence of an increased K + conductance. Increases in K + conductance may be mediated by a direct receptor linkage to a K + channel or by increases in intracellular Ca 2+, which in turn activate K + channels. Mechanisms by which muscarinic receptors couple to multiple cellular responses are considered later. timulation of the motoneuron releases acetylcholine onto the muscle endplate and results in contraction of the muscle fiber. Contraction and associated electrical events can be produced by intra-arterial injection of ACh close to the muscle. ince skeletal muscle does not possess inherent myogenic tone, the tone of apparently resting muscle is maintained by spontaneous and intermittent release of ACh. The consequences of spontaneous release at the motor endplate of skeletal muscle are small depolarizations from the quantized release of ACh, termed miniature endplate potentials (MEPPs) [15] (see Ch. 10). Decay times for the MEPPs range between 1 and 2 ms, a duration similar to the mean channel open time seen with ACh stimulation of individual receptor molecules. timulation of the motoneuron results in the release of several hundred quanta of ACh. The summation of MEPPs gives rise to a postsynaptic excitatory potential (PEP), also termed motor endplate potential. A sufficiently large and abrupt potential change at the endplate will elicit an action potential by activating voltage-sensitive Na + channels. The action potential propagates in two-dimensional space across the surface of the muscle to release Ca 2+ and elicit contraction. Therefore, the PEP may be thought of as a generator potential, found only in junctional regions and arising from the opening of multiple receptor channels. Normal resting potentials in endplates are about 70 mv. The PEP causes the endplate to depolarize partially to about 55 mv. It is the rapid and transient changes from 70 to 55 mv in localized areas of the endplate that trigger action potential generation [9, 15]. Competitive blocking agents cause muscle paralysis by preventing access of acetylcholine to its binding site on the receptor. Competitive blockade with agents such as d-tubocurarine result in maintenance of the endplate potential at 70 mv. Without frequent PEPs, action potentials are not triggered and flaccid paralysis of the muscle results. The actions of competitive blocking agents can be surmounted by excess ACh. Depolarizing neuromuscular blocking agents, such as decamethonium and succinylcholine, produce depolarization of the endplate such that the endplate potential is 55 mv. The high concentrations of depolarizing agent that are maintained in this synapse do not allow regions of the endplate to repolarize, as would occur with a labile transmitter such as ACh. ince it is the transition in membrane potential between 70 and 55 mv that triggers the action potential, flaccid paralysis also will occur with a depolarizing block [9]. Excess ACh will not reverse the paralysis by depolarizing blocking agents. As might be expected if depolarization occurs in a non-uniform manner in microscopic areas within individual endplates and in individual motor units, the onset of depolarization blockade is characterized by muscle twitching and fasciculations that are not evident in competitive block. nce paralysis occurs, the overall pharmacological actions of competitive and depolarizing blocking agents are similar, yet intracellular measurements of endplate potential can distinguish these two classes of agent.

8 192 PAT II Intercellular ignaling YNTHEI, TAGE AND EEAE F ACETYCHINE The biosynthesis and storage of ACh can be divided into three processes that allow for recovery of hydrolyzed transmitter by choline transport back into the nerve ending, conversion by acetylation to active transmitter and then storage in a vesicle for subsequent release [16 21] (Fig. 11-4). The synthesis reaction is a single step catalyzed by the enzyme choline acetyl transferase (ChAT): Choline + Acetyl coenzyme A a Acetylcholine + Coenzyme A. ChAT, first assayed in a cell-free preparation in 1943, has subsequently been purified and cloned from several sources [16]. The purification of ChAT has allowed ACh ACh ACh AcCoA ChAT Choline = VAChT = ChT AChE Choline + Ac ACh FIGUE 11-4 Transport, synthesis and degradative processes in a cholinergic presynaptic nerve terminal and synapse. The choline transport protein (ChT) functions at the nerve ending membrane to transport choline into the cytoplasm, where its acetylation by acetyl CoA is catalyzed by choline acetyltransferase (ChAT) to generate acetylcholine (ACh) in the vicinity of the synaptic vesicle. The vesicular acetylcholine transporter (VAChT) concentrates acetylcholine in the vesicle. ChT is also found on the vesicle but in a functionally inactive state. Upon nerve stimulation, depolarization and Ca 2+ entry, ACh-containing vesicles fuse with the membrane and release their contents. The fusion of the membrane results in more ChT being exposed to the synaptic gap, where it becomes active. ACh is hydrolyzed to acetate and choline catalyzed by acetylcholinesterase (AChE), allowing for recapture of much of the choline by ChT. Because of the differing ionic compositions in the extracellular milieu and within the cell, ChT is thought to be active only when situated on the nerve cell membrane. imilarly, the VAChT may only be active when encapsulated in the synaptic vesicle [19]. production of specific antibodies. Whereas acetylcholinesterase (AChE), the enzyme responsible for degradation of ACh, is produced by cells containing cholinoreceptive sites as well as in cholinergic neurons, ChAT is found in the nervous system specifically at sites where ACh synthesis takes place. Within cholinergic neurons, ChAT is concentrated in nerve terminals, although it is also present in axons, where it is transported from its site of synthesis in the soma. When subcellular fractionation studies are carried out, ChAT is recovered in the synaptosomal fraction, and within synaptosomes it is primarily cytoplasmic. It has been suggested that ChAT also binds to the outside of the storage vesicle under physiological conditions and that ACh synthesized in that location may be situated favorably to enter the vesicle. Brain ChAT has a K D for choline of approximately 1 mmol/l and for acetyl coenzyme A (CoA) of approximately 10 µmol/l. The activity of the isolated enzyme, assayed in the presence of optimal concentrations of cofactors and substrates, appears far greater than the rate at which choline is converted to ACh in vivo. This suggests that the activity of ChAT is repressed in vivo. urprisingly, inhibitors of ChAT do not decrease ACh synthesis when used in vivo; this may reflect a failure to achieve a sufficient local concentration of inhibitor, but also suggests that this step is not rate-limiting in the synthesis of ACh [18 20]. The acetyl CoA used for ACh synthesis in mammalian brain comes from pyruvate formed from glucose. It is unclear how the acetyl CoA, generally thought to be formed at the inner membrane of the mitochondria, accesses the cytoplasmic ChAT. This may also be a regulated, rate-limiting step. Acetylcholine formation is limited by the intracellular concentration of choline, which is determined by active transport of choline into the nerve ending. Choline is present in the plasma at a concentration of about 10 µmol/l. A low-affinity choline uptake system with a K m of µmol/l is present in all tissues, but cholinergic neurons also have a Na + -dependent high-affinity choline uptake system, with a K m for choline of 1 5 µmol/l [17 20]. The high-affinity uptake mechanisms should be saturated at 10 µmol/l choline, so the plasma choline concentration is probably adequate for sustained ACh synthesis even under conditions of high demand, as observed in ganglia. ince the plasma concentration of choline is above the K m of the high-affinity choline-transport system, it is not expected that choline concentrations in the nerve ending would be increased by increasing the plasma concentration of choline or by changing the K m of the uptake system. However, neuronal choline content can be influenced by altering the capacity of the high-affinity choline-uptake mechanism, i.e. by changing the maximum velocity (V max ) for transport. The cloning of the high affinity choline transporter has provided considerable insight into the mechanisms by which events associated with neuronal

9 CHAPTE 11 Acetylcholine N H N H Vesamicol H H 3 C H 3 C Hemicholinium (HC-3) FIGUE 11-5 tructures of hemicholinium (HC-3) and vesamicol. activity enhance choline entry into neurons [17, 19]. If the K m of ChAT for choline in vivo is as high as that seen with the purified enzyme, one would expect ACh synthesis to increase in proportion to the greater availability of choline. Conversely, ACh synthesis should be diminished when high-affinity choline uptake is blocked. Hemicholinium-3 is a potent inhibitor of the highaffinity choline-uptake system, with a K i in the submicromolar range (Fig. 11-5). Indeed, treatment with this drug decreases ACh synthesis and leads to a reduction in ACh release during prolonged stimulation; these findings lend support to the notion that choline uptake is the ratelimiting factor in the biosynthesis of ACh [18]. Characterization and regulation of the high affinity choline transporter. The successful cloning of the high affinity choline transporter [17], now referred to as the CHT, was spurred by the discovery of a Caenorhabditis elegans transporter exhibiting cholinergic neuron specificity. The homologous rat CHT cdna conferred high affinity Na + and Cl dependent choline transport when expressed in Xenopus oocytes, and subsequently homologous cdnas were cloned from numerous species including mice and humans [19]. The gene structure is highly conserved amongst the species, and the encoded protein is a member of a family of Na + -dependent transporters. The structure reveals 13 transmembrane spans, glycosylation sites on the extracellular surface and several potential sites for phosphorylation on intracellular loops and at the C- terminus. The development of antibodies to CHT revealed the anticipated localization of CHT at presynaptic sites and exclusively in cholinergic neurons. urprisingly, however, much of the CHT immunoreactivity was found associated with intracellular vesicles rather than at the presynaptic plasma membrane. These vesicles appear to be those involved in ACh synthesis (and its subsequent + N storage and release) as CHT is co-localized with the vesicular ACh transporter (VAChT) described below. Interestingly, blocking endocytosis leads to CHT accumulation at the plasma membrane and an enhanced capacity for choline uptake [19]. Thus, it appears that the transporter is normally removed from the plasma membrane and recycled. Conversely, stimuli that trigger ACh release have been shown to increase CHT density at the plasma membrane, providing a mechanism by which uptake can be tightly coupled to the rate of ACh release. It is likely that post-translational modification, e.g. phosphorylation, also serves to regulate the transporter in response to altered synaptic activity. Whether this occurs via activation of a resident plasma membrane pool of CHT or alterations in activity or recycling of the vesicular CHT pool remains to be determined. The transporter precursor progresses down the axons by axoplasmic transport and is localized to the vesicular environment by poorly understood mechanisms. A second transport system concentrates acetylcholine in the synaptic vesicle. The vesicular ACh transporter (VAChT) also has been cloned and expressed (see also Ch. 5). Its sequence places it in the 12-membranespanning family characteristic of the other biogenic amine transporters found in adrenergic nerve endings [18, 20, 21]. Interestingly, the gene encoding the transporter is located within an intron of the ChAT gene, suggesting a mechanism for coregulation of gene expression for ChAT and VAChT [20]. ACh uptake into the vesicle is driven by a proton-pumping ATPase. Coupled countertransport of H + and ACh allows the vesicle to remain isoosmotic and electroneutral [18]. A selective inhibitor of ACh transport, vesamicol (Fig. 11-5), inhibits vesicular ACh uptake with an IC 50 of 40 nnol/l [16 18]. Inhibition appears noncompetitive, suggesting that this inhibitor acts on a site other than the ACh-binding site on the transporter. Vesamicol blocks the evoked release of newly synthesized ACh without significantly affecting high-affinity choline uptake, ACh synthesis or Ca 2+ influx. The fact that ACh release is lost secondary to the blockade of uptake by the vesicle supports the concept that the vesicle is the site of ACh release. The activity of the recombinant transporter also is inhibited by vesamicol [19, 20]. Choline is supplied to the neuron either from plasma or by metabolism of choline-containing compounds. The majority of the choline used in ACh synthesis is thought to come directly from recycling of released ACh, hydrolyzed to choline by acetylcholinesterase (Fig. 11-4). Presumably, uptake of this neurotransmitter-derived choline occurs rapidly, before the choline diffuses away from the synaptic cleft. Another source of choline is the breakdown of phosphatidylcholine, which may be stimulated by locally released ACh. Choline derived from these two sources is then subject to high-affinity uptake into the

10 194 PAT II Intercellular ignaling nerve ending. In the CN, these metabolic sources of choline appear to be particularly important because choline in the plasma cannot readily pass the blood brain barrier. Thus, the high-affinity uptake of choline into cholinergic neurons in the CN might not always be saturated, and ACh synthesis could be limited by the supply of choline, at least during sustained activity. This would be consistent with the finding that ACh stores in the brain are subject to variation, whereas ACh stores in ganglia and muscles remain relatively constant. A slow release of acetylcholine from neurons at rest probably occurs at all cholinergic synapses. Quantized ACh release was described first by Fatt and Katz, who recorded small, spontaneous depolarizations at frog neuromuscular junctions that were subthreshold for triggering action potentials. These MEPPs were shown to be due to the release of ACh. When the nerve was stimulated and endplate potentials recorded and analyzed, the magnitude of these potentials always was found to be some multiple of the magnitude of the individual MEPPs. It was suggested that each MEPP resulted from a finite quantity or quantum of released ACh and that the endplate potentials resulted from release of greater numbers of quanta during nerve stimulation (see Ch. 10). A possible structural basis for these discrete units of transmitter was discovered shortly thereafter when independent electron microscopic and subcellular fractionation studies by de obertis and Whittaker revealed the presence of vesicles in cholinergic nerve endings. These investigators defined procedures for subcellular fractionation of mammalian brain and Torpedo electric organs that yield resealed nerve endings, or synaptosomes, that can be lysed to release a fraction enriched in vesicles. More than half of the ACh in the synaptosome is associated with particles that look like the vesicles seen under an electron microscope. Therefore, it is clear that ACh is associated with a vesicle fraction, and it is likely that it is contained within the vesicle. The origin of the free ACh within the synaptosome is less clear. It may be ACh that is normally in the cytosol of the nerve ending, or it may be an artifact of release from the vesicles during their preparation (see Ch. 10). The relationship between acetylcholine content in a vesicle and the quanta of acetylcholine released can only be estimated. Estimates of the amount of ACh contained within cholinergic vesicles vary considerably [22]. Whittaker estimated that there are about 2,000 molecules of ACh in a cholinergic vesicle from the CN. A similar estimate of about 1,600 molecules of ACh per vesicle was made using sympathetic ganglia. The most abundant source of cholinergic synaptic vesicles is the electric organ of Torpedo. Vesicles from Torpedo are far larger than those from mammalian species and are estimated to contain up to 100 times more ACh per vesicle. The Torpedo vesicle also contains ATP and, in its core, a proteoglycan of the heparin sulfate type. Both of these constituents may serve as counter-ions for ACh, which otherwise would be at a hyperosmotic concentration. The amount of ACh in a quantum has been estimated by comparing the potential changes associated with MEPPs to those obtained by iontophoresis of known quantities of ACh. Based on such analysis, the amount of ACh per quantum at the snake neuromuscular junction was estimated to be something less than 10,000 molecules [22]. ince this compares with estimates of vesicle content, quanta are likely defined by the amount of releasable ACh in the vesicle. An alternative favored by some investigators is that ACh is released directly from the cytoplasm. In this model, definable quanta are evident because channels in the membrane are open for finite periods of time when Ca 2+ is elevated. A presynaptic membrane protein suggested to mediate Ca 2+ -dependent translocation of ACh has been isolated [21]. Although some arguments support this model, most investigators favor the notion that the vesicle serves not only as a unit of storage but also as a unit of release. The vesicle hypothesis and release of neurotransmitters are discussed also in Chapter 10. Depolarization of the nerve terminal by an action potential increases the number of quanta released per unit time. elease of ACh requires the presence of extracellular Ca 2+, which enters the neuron when it is depolarized. Most investigators are of the opinion that a voltage-dependent Ca 2+ current is the initial event responsible for transmitter release, which occurs about 200 µs later. The mechanism through which elevated Ca 2+ increases the probability of ACh release is not yet known; presumably activation of proteins in the synaptic vesicle membrane fusion complex causes the vesicle to fuse with the neuronal membrane. Dependence on Ca 2+ is a common feature of all exocytotic release mechanisms and it is likely that exocytosis is a conserved mechanism for transmitter release. There is good evidence that adrenergic vesicles empty their contents into the synaptic cleft because norepinephrine and epinephrine are released along with other contents of the storage vesicle. Although less rigorous data are available for cholinergic systems, cholinergic vesicles contain ATP, and release of ATP has been shown to accompany ACh secretion from these vesicles. Furthermore, Heuser and eese demonstrated, in electron microscopic studies at frog nerve terminals, that vesicles fuse with the nerve membrane and that vesicular contents appear to be released by exocytosis; it has been difficult to ascertain, however, whether the fusions are sufficiently frequent to account for release on stimulation. The nerve ending also appears to endocytose the outer vesicle membrane to form vesicles that subsequently are refilled with ACh [19, 23]. All the acetylcholine contained within the cholinergic neuron does not behave as if in a single compartment. esults of a variety of neurophysiological and biochemical experiments suggest the presence of two distinguishable

11 CHAPTE 11 Acetylcholine 195 pools of ACh, only one of which is readily available for release. These have been referred to as the readily available or depot pool and the reserve or stationary pool. The reserve pool refills the readily available pool as it is utilized. Unless the rate of mobilization of ACh into the readily available pool is adequate, the amount of ACh that can be released may be limited. It is also likely that newly synthesized ACh is used to fill the readily available pool of ACh because it is the newly synthesized ACh that is released preferentially during nerve stimulation. The precise relationship between these functionally defined pools and ACh storage vesicles is not known. It is possible that the readily available pool resides in vesicles poised for release near the nerve ending membrane, whereas the reserve pool is in more distant vesicles. ACETYCHINETEAE AND THE TEMINATIN F ACETYCHINE ACTIN Cholinesterases are widely distributed throughout the body in both neuronal and non-neuronal tissues. Based largely on substrate specificity, the cholinesterases are subdivided into the acetylcholinesterases (AChEs) (EC ) and the butyrylcholinesterase (BuChE) (EC ) [24 26]. Choline esters with acyl groups of the size of butyric acid or larger are hydrolyzed very slowly by AChE; selective inhibitors for each enzyme have been identified. AChE and BuChE are encoded by single but distinct genes. BuChE is synthesized primarily in the liver and appears in plasma; however, it is highly unlikely that appreciable concentrations of ACh diffuse from the locality of the synapse and elicit a systemic response. That the population distribution of BuChE mutations correlates with resistance of the enzyme to naturally occurring inhibitors suggests that this enzyme hydrolyzes dietary esters of potential toxicity. Although BuChE is localized in the nervous system during development, the existence of nonexpressing mutations in the BuChE gene within the human population also demonstrates that this enzyme is not essential for nervous system function. In general, AChE distribution correlates with innervation and development in the nervous system. The AChEs also exhibit synaptic localization upon synapse formation. Total knock out of the AChE gene in mice gives rise to an animal with continuous tremors, stunted growth and deficits in neurologic function [27]. The primary and tertiary structures of the cholinesterases are known. The primary structures of the cholinesterases initially defined a large and functionally eclectic superfamily of proteins, the α,β hydrolase fold family, that function not only catalytically as hydrolases but also as surface adhesion molecules forming heterologous cell contacts, as seen in the structurally related proteins neuroligin and the tactins. A sequence homologous to the cholinesterases and a presumed common structural matrix are found in thyroglobulin, in which tyrosine residues become iodinated and conjugated to form thyroid hormone [24, 25]. The initial solution of the crystal structure of the Torpedo enzyme [28], followed by the mammalian AChE structure [29], revealed that the active center serine lies at the base of a rather narrow gorge that is lined heavily with aromatic residues (Fig. 11-6). The enzyme carries a net negative charge, and an electrostatic dipole is oriented on the enzyme to facilitate diffusional entry of cationic ligands. Crystal structures of several inhibitors in a complex with AChE also have been elucidated [25]. Acetylcholinesterases exist in several molecular forms governed by alternative splicing. The open reading frame in mammalian AChE genes is encoded by three invariant exons (exons 2, 3 and 4) followed by three splicing alternatives. Continuation through exon 4 gives rise to a monomeric species. plicing to exon 5 gives rise to the carboxyl-terminal sequence signal for addition of glycophospholipid, while splicing to exon 6 encodes a sequence containing a cysteine that links to other catalytic or structural subunits. These species of AChE differ only in the last 40 residues in their C-termini. FIGUE 11-6 View of the active center gorge of mammalian acetylcholinesterase looking into the gorge cavity. The gorge is Å in depth in a molecule of 40 Å diameter and is heavily lined with aromatic amino acid side chains. ide chains from several sets of critical residues are shown emanating from the α carbon of the α carbon-amide backbone: (a) A catalytic triad between Glu 334, His 447 and er 203 is shown by dotted lines to denote the hydrogen-bonding pattern. This renders er 203 more nucleophilic to attack the carbon of acetylcholine (shown in white with the van der Waals surface). This leads to formation of an acetyl enzyme, which is deacetylated rapidly. (b) The acyl pocket outline by Phe 295 and 297 is of restricted size in acetylcholinesterase. In butyrylcholinesterase, these side chains are aliphatic, increasing the size and flexibility in the acyl pocket. (c) The choline subsite lined by the aromatic residues Trp 86, Tyr 337 and Tyr 449 and the anionic residue Glu 202. (d) A peripheral site which resides at the rim of the gorge encompasses Trp 286, Tyr 72, Tyr 124 and Asp 74. This site modulates catalysis by binding inhibitors or, at high concentrations, a second substrate molecule.

12 196 PAT II Intercellular ignaling 1α Cap TGA pa 6 pa Cap ATG TGA pa pa 5 TGA pa pa Transcriptional regulation Constant regioncatalytic core Membrane attachment mna stability Heteromeric Exon 6 Homomeric Exon 6 Exon 5 C G 1 (exon 4) ( H ( n G 1 C C ( ( n ( ( n G 2 ipid-linked (G 4 ) C C G 2 Asymmetric A 12 C C G 4 Hydrophilic (G 1,2,4 ) Glycophospholipidlinked (G 1,2,4 ) FIGUE 11-7 Gene structure of AChE. Alternative cap sites in the 5 end of the gene allow for alternative promoter usage in different tissues. keletal-muscle-specific regulation is controlled by the intron region between Exons 1 and 2. Exons 2, 3 and 4 encode an invariant core of the molecule that contains the essential catalytic residues. Just prior to the stop codon, three splicing alternatives are evident: 1, a continuation of exon 4; 2, the 4 5 splice; and 3, the 4 6 splice. The catalytic subunits produced differ only in their carboxy-termini and are shown in the lower panel. (Modified with permission from reference [24].) These AChE forms differ in solubility and mode of membrane attachment rather than in catalytic activity. ne class of molecular forms exists as homomeric assemblies of catalytic subunits that appear as monomers, dimers or tetramers (Fig. 11-7). These forms also differ in hydrophobicity, and their amphiphilic character arises from either exposure of an amphipathic helix or posttranslational addition of a glycophospholipid on the carboxyl-terminal amino acid. The glycophospholipid allows the enzyme to be tethered on the external surface of the cell membrane. The second class of AChEs exists as heteromeric assemblies of catalytic and structural subunits. ne form consists of up to 12 catalytic subunits linked by disulfide bonds to filamentous, collagen-containing structural subunits. These forms are often termed asymmetric, since the tail unit imparts substantial dimensional asymmetry to the molecule. The collagenous tail unit links by disulfide bonding at its proline rich N-terminus through a coiled coil arrangement to the C-terminus of two of the catalytic subunits [30]. The tail unit associates with the basal lamina of the synapse rather than the plasma membrane.

13 CHAPTE 11 Acetylcholine 197 Asymmetric forms are present in high density at the neuromuscular junction. A second type of structural subunit, found primarily in the CN, has a similar proline-rich attachment domain but contains covalently attached lipid, enabling this form of the enzyme to associate with cell membranes. The different C-termini and attachment modes lead to distinctive extracellular localizations of AChE but do not affect the intrinsic catalytic activities of the individual forms. Cholinesterase catalysis and inhibition mechanisms involve formation of reversible complexes and covalent conjugates. In ester catalysis, an initial acylation step proceeds through the formation of a tetrahedral transition state; acylation is rapidly followed by deacylation. Alkylphosphate inhibitors are tetrahedral in configuration and their geometric resemblance to the transition state in part accounts for their effectiveness as inhibitors of AChE. Acylation occurs on the active-site er 202, which is rendered nucleophilic by proton withdrawal by Glu 334 through His 447. The acetyl enzyme that is formed is short-lived, lasting approximately 10 µs; this accounts for the high catalytic efficiency of the enzyme (Fig. 11-6). The availability of a crystal structure of AChE has enabled investigators to assign residues and domains in the cholinesterase responsible for catalysis and inhibitor specificity [26, 28, 29]. everal AChE inhibitors are used therapeutically in glaucoma, myasthenia gravis and smooth muscle atony, whereas others have proved useful as insecticides. till others have been produced for more insidious uses in terrorism and chemical warfare. Inhibitors such as edrophonium bind reversibly to the active center of AChE at the base of the gorge (Fig. 11-6). ther reversible inhibitors, such as gallamine, propidium and the three-fingered peptide from snake venom, fasciculin, bind to a peripheral site located at the gorge rim. The carbamoylating agents, such as neostigmine and physostigmine, form a carbamoyl enzyme by reacting with the active-site serine. The carbamoyl enzymes are more stable than the acetyl enzyme; their decarbamoylation occurs over several minutes. ince the carbamoyl enzyme will not hydrolyze ACh, the carbamoylating agents are alternative substrates that are effective inhibitors of ACh hydrolysis. The alkylphosphates, such as diisopropylfluorophosphate or echothiophate, act in a similar manner; however, the alkyl phosphorates and alkylphosphonates form extremely stable bonds with the active-site serine on the enzyme. The time required for their hydrolysis often exceeds that for biosynthesis and turnover of the enzyme. Accordingly, inhibition with the alkylphosphates is effectively irreversible. Consequences of acetylcholinesterase inhibition differ with effector site. At postganglionic parasympathetic effector sites, AChE inhibition enhances or potentiates the action of administered ACh or ACh released by nerve activity. In part, this is a consequence of diffusion of transmitter and stimulation of receptors extending over a larger area from the point of transmitter release. imilarly, ganglionic transmission is enhanced by cholinesterase inhibitors. ince atropine and other muscarinic antagonists are effective antidotes of AChE inhibitor toxicity, some CN manifestations result largely from excessive muscarinic stimulation. By prolonging the residence time of ACh in the synapse, AChE inhibition in the neuromuscular junction promotes a persistent depolarization of the motor endplate. The decay of endplate currents or potentials resulting from spontaneous release of ACh is prolonged from 1 2 ms to 5 30 ms. This indicates that the transmitter activates multiple receptors before diffusing from the synapse. Excessive depolarization of the endplate, resulting from slower rates of decay of endplate currents, leads to a diminished capacity to initiate coordinated action potentials. In a fashion similar to depolarizing blocking agents, fasciculations and muscle twitching are observed initially with AChE inhibition, followed by flaccid paralysis. NICTINIC ECEPT The nicotinic acetylcholine receptor (nach) was the first characterized neurotransmitter receptor. The nach was purified a decade earlier than other neurotransmitter receptors. The electric organ of Torpedo, consisting of stacks of electrocytes, tissue of common embryonic origin to skeletal muscle, is a rich source of nicotinic receptors. Upon differentiation, the electrogenic bud in the electrocyte proliferates but the contractile elements are not expressed. The excitable membrane encompasses the entire ventral surface of the electrocyte rather than being localized to focal junctional areas covering 0.1% of the cell surface as found in skeletal muscle. The electrical discharge in Torpedo relies solely on a PEP resulting from depolarization of the postsynaptic membrane, rather than propagation from an action potential. The density of receptors in the Torpedo electric organ approaches 100 pmol/mg protein, which may be compared with 0.1 pmol/mg protein in skeletal muscle. In the early 1960s, it was established that snake α-toxins, such as α-bungarotoxin, irreversibly inactivate receptor function in intact skeletal muscle, and this finding led directly to the identification and subsequent isolation of the nicotinic ACh receptor from Torpedo [3]. By virtue of their high affinity and very slow rates of dissociation, labeled α-toxins serve as markers of the receptor during solubilization and purification. ufficient amino acid sequence of the receptor was obtained to permit the cloning and sequencing of the genes encoding the individual subunits of the receptor, first in Torpedo and then in other species [4]. As a consequence of the high density of nicotinic ACh receptors in the postsynaptic membranes of Torpedo, sufficient order of the receptor molecules is achieved in isolated membrane fragments such that image

14 198 PAT II Intercellular ignaling reconstructions from electron microscopy have allowed a more detailed analysis of structure [31]. abeling of functional sites, determination of subunit composition and structure modification through mutagenesis contributed to our understanding of the structure of nicotinic receptors [32]. ecently, a soluble acetylcholine binding protein (AChBP) from mollusks was purified and its three dimensional structure determined (Fig. 11-8) [33]). Not only are these pentameric proteins structural surrogates of the extracellular domain of the nach [33] but, when appropriately linked to the transmembrane spans of nach family, they gate ions in response to agonists and are blocked by antagonists [34]. The nach consists of five subunits arranged around a pseudoaxis of symmetry. The subunits display homologous amino acid sequences with 30 40% identity of amino acid residues [4, 11, 32]. In muscle, one subunit, designated α, is expressed in two copies; the other three, β, γ and δ, are present as single copies (Fig. 11-9). Thus, the receptor is a pentamer of molecular mass of approximately 280 kda. tructural studies show the subunits to be arranged around a central cavity, with the largest portion of the protein exposed toward the extracellular surface. The central cavity is believed to lead to the ion channel, which in the resting state is impermeable to ions; upon activation, however, it opens to a diameter of 6.5 Å. The open channel is selective for cations. The two α subunits and the opposing face of the γ and δ subunits form the two sites for binding of agonists and competitive antagonists and provide the primary surfaces with which the larger snake α-toxins associate. A similar pentameric ring of subunits is found for AChBP [8, 33, 34] with the binding sites located at the five interfaces between the identical subunits of this homomeric pentamer (Fig. 11-8). The sites for ligand binding are localized toward the external perimeter of each of the ligand binding subunit interfaces; occupation of multiple sites on the pentamer is necessary for receptor activation. Electrophysiological and ligand-binding measurements together with analysis of the functional states of the receptor indicate positive cooperativity in the association of agonists; Hill coefficients greater than unity have been described for agonist-elicited channel opening, agonist binding and agonist-induced desensitization of the receptor [3, 32]. Noncompetitive inhibitor sites within various depths of the internal channel also have been defined and are the sites of local anesthetic inhibition of receptor function. equence identity among the subunits appears to be greatest in the hydrophobic regions. Various models for the disposition of the peptide chains and subunit assembly have been proposed on the basis of hydropathy plots, electron microscopic reconstruction analysis of Torpedo receptor membranes and the AChBP crystal structure [30, 33] (Figs 11-8, 11-9). Homology among the four subunits strongly suggests that the same folding pattern is found in all subunits. A disulfide loop between Cys 128 and 142 in the α subunit is conserved in the entire receptor channel family (Fig. 11-8). A second disulfide is found in the α subunits between vicinal Cys 192 and 193, and this structural feature is also found in AChBP. Early studies showed that reduction of the Cys bond allowed for labeling by the site-directed sulfhydryl-reactive agonist and antagonist, respectively, bromoacetylcholine and m-maleimidobenzyl trimethylammonium [32]. ubsequent studies involving photolytic labeling, labeling by the natural coral toxin, lophotoxin, and site-specific mutagenesis identified the region between residues 185 and 200 in the α subunit as being important for forming part of the agonist- and FIGUE 11-8 Features of the sequence of the acetylcholine receptor. (A) chematic drawing of the sequence showing candidate regions for spanning the membrane. The region M 2 is believed to be an α helical segment and lines the internal pore of the receptor. M 1, M 3 and M 4 contain hydrophobic sequences but it is not certain whether they traverse the membrane as full α helices. The nicotinic β, γ and δ subunits contain homologous M 1 through M 4 hydrophobic domains at similar positions in the linear sequence. Two disulfide loops, and , in the α subunits are shown. While the other subunits contain the larger disulfide loop, they lack cysteines 192 and 193 and tyrosine 190. equence features of other homologous subunits in ligand-gated channel (5-hydroxytryptamine [5-HT 3 ], GABA and glycine) receptors are shown. The amino-terminal portion is found on the extracellular (synaptic) surface. The soluble ACh binding proteins characterized from ymnaea and Aplysia have truncated sequences ending at residue and an absence of hydrophobic domains designed to interact with sequences that span the membrane or interact with membrane lipids. (B) tructure of the acetylcholine binding protein from ymnaea as a model of the extracellular domain of the nicotinic acetylcholine receptor. tructures are developed from the crystallographic coordinates of ixma and colleagues [33]. B-1. View of the pentameric protein from the apical surface. The protein is a pentamer of five identical subunits surrounding a central cavity, which in the receptor is the vestibule to the ion channel pore. Although the subunits are identical, they are distinguished by color. B-2. View of subunit interfaces from the outer perimeter. The C loop, containing the second disulfide bond with vicinal cysteines, overlaps the complementary face on the adjacent subunit. The subunit interfaces (shown in gray, orange and blue and located apical to the C loop) contain binding locations of nicotine and α-neurotoxin (ribbon diagram, shown in red and largely on the membrane side of the C loop) [33]. B-3. Interface of the binding protein to the transmembrane spans of the ion channel. Modification of selected residues allowed the acetylcholine binding protein, when linked to the transmembrane spans of the channel, to become a functional ligand-gated ion channel with the expected ligand specificity and channel gating kinetics. Top (a): chematic diagram of a chimaeric subunit composed of AChBP and 5-HT 3A sequences. The amino terminus contains AChBP (white bars and black font) and 5-HT 3A sequences (loop β1-β2, orange; Cys loop, green; β8-β9 loop, magenta). The 5-HT 3A pore domain follows, with transmembrane helices M1-M4 (red) and the M2-M3 linker (blue). ed font indicates the start of the M1 domain. Middle (b): Homology model of the chimaeric receptor with key regions of one subunit colour-coded as in Top figure. Bottom (c): View of the coupling zone from the pore showing the network of binding and pore domain loops. (With permission from reference [34].)

15 CHAPTE 11 Acetylcholine 199 A eceptor Nicotinic (α 1 -subunit) Nicotinic (non α 1 -subunits) 5-HT 3 GABA A (α 1 -subunit) Glycine (α 1 -subunit) Acetylcholine binding protein H 2 N H 2 N H 2 N H 2 N H 2 N H 2 N CH CH CH CH CH CH M1 M2 M3 M4 B-1 B-3 (a) (b) B-2 (c)

16 200 PAT II Intercellular ignaling α β δ α ynaptic face Cytoplasmic face A B C FIGUE 11-9 (A) ongitudinal view of the muscle nicotinic acetylcholine receptor with the γ subunit removed. The remaining subunits, two copies of α, one of β and one of δ, surround an internal channel with outer vestibule and its constriction or gating locus deep within the membrane bilayer region. pans of α helices with bowed structures from the M 2 region of the sequence form the perimeter of the channel (see C). Acetylcholinebinding sites, denoted by arrows, are found at the αγ- and αδ (not visible)-subunit interfaces. (C shows the data on which this structure is based.) (Adapted with permission from references [25, 59, 60].) (B) Image reconstruction of electron micrographs yielding a structure at 9 Å resolution. hown are side and synaptic views. (Adapted with permission from reference [25, 59, 60].) (C) ongitudinal view of the electron density of the receptor. The transmembrane area is shown between the dots. The visible transmembrane-spanning helixes are shown by the V-shaped solid lines. This helix is believed to be the M 2 region, the sequence of which is shown. The area inside the rectangle is the transmembrane-spanning region. The X denotes the conserved leucine. The additional density in the cytoplasmic region arises from an associated 43 kda protein, rapsyn. The shaded area to the right indicates the zone of narrowest constriction.

17 CHAPTE 11 Acetylcholine 201 antagonist-binding surface. The loop containing the vicinal cysteines overlaps with the neighboring subunit at the outer perimeter of the receptor, and internal to this loop is nested the ligand-binding site. Two other segments of sequence in the α subunit and four discrete segments on the opposing face of the γ and δ subunits also have been identified as forming regions that contribute to the binding surfaces at the αγ and αδ interfaces [34], findings that have now been confirmed from the AChBP ligand complexes. Four candidate membrane-spanning regions are found after residue 210 with a large cytoplasmic loop between membrane spans 3 and 4 (Figs 11-8, 11-9). Based on labeling experiments and site-specific mutagenesis, membrane span 2 was found to be proximal to the ion channel. This span, when constructed as an α helix, is amphipathic, with an abundance of serine and threonine residues pointed toward the channel lumen. Positions corresponding to α-thr 244, α-eu 251, α-val 255 and α-glu 262 in this transmembrane span have been labeled with the noncompetitive, channel-blocking inhibitors chlorpromazine and tetraphenyl phosphonium [3, 32]. Mutation of several of the hydroxyl groups on residues at these positions affects channel kinetics. The channel gate, or constriction, is thought to lie deep within the channel or even close to the cytoplasmic side. The ion selectivity of the channels appears to be controlled in part by rings of charges formed by all five subunits at the extracellular surface of the channel corresponding to α-glu 262 and at the cytoplasmic surface corresponding to α-glu241. Exposed amide backbone hydrogens and carbonyl groups and a ring of hydroxylated amino acids corresponding to α-thr 244 also contribute to ion selectivity and permeation [11, 32, 35]. Analysis of the opening and closing events of individual channels has provided information about ligand binding and activation of the receptor. Electrophysiological studies use high-resistance patch electrodes of 1 2 µm diameter, which form tight seals on the membrane surface [36]. They have the capacity to record conductance changes of individual channels within the lumen of the electrode (see Ch. 10). The patch of membrane affixed to the electrode may be excised, inverted or studied on the intact cell. The individual opening events for ACh achieve a conductance of 25 p across the membrane and have an opening duration that is distributed exponentially around a value of about 1 ms. The duration of channel opening is dependent on the particular agonist, whereas the conductance of the open-channel state is usually agonistindependent. Analyses of the frequencies of opening events have permitted an estimation of the kinetic constants for channel opening and ligand binding, and these numbers are in reasonable agreement with estimates of ligand binding and activation from rapid kinetic, or stopped-flow, studies. verall, activation events for the muscle receptor may be described by scheme 1 [3, 11, 36]: 2k+1 k k-1 2k-1 2 k-2 2 * (Closed) (Closed) (Closed) (pen) cheme 1 Two ligands () associate with the receptor () prior to the isomerization step to form the open-channel state 2 *. For ACh, the forward rate constant for binding, k +1, is mol 1 l 1 s 1 ; k +2 and k 2, forward and reverse rate constants for isomerization, yield rates of isomerization consistent with opening events in the millisecond time frame. ince k +2 and k 2 are greater than k 1, the rate constant for ligand dissociation, several opening and closing events with the fully liganded receptor occur prior to dissociation of the first ligand. Binding of the first and second ligands appears not to be identical, even allowing for the statistical differences arising from the two sites. uch a conclusion is consistent with receptor structure since different subunits, such as the γ and δ subunits in muscle, are adjacent to the same face of the α subunits in the muscle receptor pentamer. Continued exposure of nicotinic receptors to agonist leads to desensitization of the receptors. This diminution of the response occurs even though the concentration of agonist available to the receptor has not changed. Katz and Thesleff examined the kinetics of desensitization with microelectrodes and found that a cyclic scheme in which the receptor existed in two states, and, prior to exposure to the ligand best described the process. To achieve receptor desensitization and activation by ligand, multiple conformational states of the receptor are required. The binding steps represented in horizontal equilibria are rapid; vertical steps reflect the slow, unimolecular isomerizations involved in desensitization (scheme 2). apid isomerization to the open channel state (scheme 1) should be added. To accommodate the additional complexities of the observed fast and slow steps of desensitization, additional states have to be included. A simplified scheme, in which only one desensitized and one open-channel state of the receptor exist, is represented in scheme 2, where is the resting (activatable) state, * the active (open channel) state and the desensitized state of the receptor; M is an allosteric constant defined by /, and K and K are equilibrium dissociation constants for the ligand. 2 + M 2 + k/2 k /2 2k 2k cheme k-2 2 *

18 202 PAT II Intercellular ignaling In this scheme, M <1 and K <K. Addition of ligand eventually will result in an increased fraction of species because of the values dictated by the equilibrium constants. Direct binding experiments have confirmed the generality of this scheme for nicotinic receptors. Thus, distinct conformational states govern the different temporal responses that ensue upon addition of a ligand to the nicotinic receptor. No direct energy input or covalent modification of the receptor channel is required. Nicotinic receptor subunits are part of a large superfamily of ligand-gated channels. Nicotinic receptors on neurons, such as those originating in the CN or neural crest, show ligand specificities distinct from the nicotinic receptor in the neuromuscular junction. ne of the most remarkable differences is the resistance of most nicotinic neuronal receptors containing α2 α6 subunits to α- bungarotoxin and related snake α-toxins. This fact and the lack of an abundant source of neuronal CN receptors limited initial progress in their isolation and characterization. However, low-stringency hybridization with cdnas encoding the subunits of electric organ and muscle receptors provided a means to clone neuronal nicotinic receptor genes. Isolation of the candidate cdna clones, their expression in cell systems to yield functional receptors and the discrete regional localizations of the endogenous mnas encoding these receptor subunits revealed that the nicotinic receptor subunits are part of a large and widely distributed gene family. They are related in structure and sequence to receptors for inhibitory amino acids (GABA and glycine), to 5-hydroxytryptamine type 3 (5HT 3 ) receptors and, somewhat more distantly, to glutamate receptors (32). At least 12 distinct genes encoding neuronal nicotinic receptor subunits α2 α10 and β2 β4 have been identified in the central and peripheral nervous systems (Fig. 11-2). The α subunits are similar in sequence to the muscle α1 subunit and contribute to the ligand-binding interface. The β subunits fulfill the role of β1, γ and δ subunits in the muscle receptor. When certain pairs or triplets of cdnas encoding neuronal α and β subunits are cotransfected into cells or their corresponding mnas are injected into oocytes, characteristic ACh-gated channel function can be achieved. The α3 subunit is prevalent in peripheral ganglia, usually with β2, β4, and α5 subunits. The α4β2 subunit combination predominates in the CN, yet its elimination in knockout studies causes surprisingly limited changes in function. The α5 subunit appears unique in that it will not contribute to function in the absence of other α subunits; its global sequence features are more similar to those of the β subunits. Four permutations of subunits containing α4, α5, α6, β2 and β3 subunits are found in the striatum that mediate dopamine release [36]. The α7 and α8 subunits display function as homologous pentamers. eceptors containing α7 subunits have a high Ca 2+ permeability, and Ca 2+ entry may be integral to their function in vivo. These receptors also show characteristically rapid rates of desensitization and a high sensitivity to choline as antagonist. α9 and α10 subtypes function in vestibular and cochlear mechanosensory hair cells [37]. While not all combinations of α and β mnas lead to the expression of functional receptors on the cell surface, the number of permutations is large [11]. A future challenge is the assignment of pharmacological and biophysical signatures to all of the subunit combinations found in vivo. ubstantial evidence points to nicotinic receptors in the CN functioning at presynaptic locations to regulate release of several CN transmitters [10]. Electrophysiological and microdialysis studies provide evidence that glutamatergic, dopaminergic, serotonergic, peptidergic and cholinergic pathways are under the control of presynaptic nicotinic receptors. Hence, nicotinic receptors appear to play an important amplification and modulatory role in the CN. A prime example is the influence of presynaptic nicotinic receptors influencing the release of dopamine that appears to underlie the addictive actions of nicotine [10, 40]. ee also Ch. 56. Both nicotinic receptors and acetylcholinesterase are regulated tightly during differentiation and synapse formation. At present, we understand more about tissuespecific gene expression in muscle than in nerve [41 45]. Both the above proteins show enhanced expression during myogenesis upon differentiating from a mononucleated myoblast to a multinucleated myotube. Curiously, enhanced receptor expression occurs largely by transcriptional activation, while the increase in cholinesterase expression arises to a large extent from stabilization of the mna. The receptor appears to cluster spontaneously, which involves a protein on the cytoplasmic side of the membrane, termed 43K or rapsyn (see in Ch. 43) [43, 44]. This protein links the receptor to cytoskeletal elements and restricts its diffusional mobility. Following innervation and synaptic activity, expression of the receptor and AChE persists in endplate, or junctional, regions and disappears in extrajunctional regions. The collagen-tailcontaining species of AChE is localized to the basal lamina in the neuromuscular synapse; it links at its distal end to the proteoglycan perlecan [45]. With innervation and the development of electrically excitable synapses, the γ subunit of the receptor is replaced by an ε subunit; small changes in the biophysical properties of the receptor occur concomitantly. Upon denervation, many of the developmental changes associated with innervation are reversed and there is again an increase in expression of extrajunctional receptors containing the γ subunit. In multinucleated muscle cells, particular subsynaptic nuclei drive the expression of these synapsespecific proteins. The factors controlling these regulatory events are incompletely understood, but calcitonin gene-related peptide (CGP) and the protein ACh receptor-inducing activity (AIA) may be extracellular mediators of expression. In addition, intracellular Ca 2+,

19 CHAPTE 11 Acetylcholine 203 membrane depolarization and protein kinase C play distinct roles in maintaining junctional expression of synapse-localized proteins [42 44]. A neurally derived signaling protein, agrin, acts through a receptor tyrosine kinase, MuK, in the formation of the specialized postsynaptic endplate by interaction with rapsyn. Thus, MuK rapsyn interactions are critical in forming the local scaffold for postsynaptic components in the motor endplate [43, 44]. An extensive variety of neuromuscular diseases have been uncovered as congenital conditions involving not only the nach and AChE but also proteins that control their expression and synaptic localization. These are discussed in Ch. 43. tudy of the underlying genotype or sequence differences has also proved helpful in unraveling the involvement of various amino acid residue determinants in function [41]. MUCAINIC ECEPT Muscarinic and nicotinic receptors are related more closely to other receptors in their respective families than to one another, both structurally and functionally. The nicotinic receptor is far more similar to other ligandgated ion channels than to the muscarinic receptor. The muscarinic receptor in turn belongs to a group of seven transmembrane-spanning receptors [46], which transduce their signals across membranes by interacting with GTP-binding proteins (see Ch. 19). everal macromolecular interactions are involved in the responses triggered by activation of the muscarinic receptor. These associations contribute to the ms latency characteristic of muscarinic responses, which are slow compared with those mediated by nicotinic receptors. Muscarinic receptor activation causes inhibition of adenylyl cyclase, stimulation of phospholipase C and regulation of ion channels. Many types of neuron and effector cell respond to muscarinic receptor stimulation. Despite the diversity of responses that ensue, the initial event that follows ligand binding to the muscarinic receptor is, in all cases, the interaction of the receptor with a G protein. Depending on the nature of the G protein and the available effectors, the receptor G-protein interaction can initiate any of several early biochemical events. Common responses elicited by muscarinic receptor occupation are inhibition of adenylyl cyclase, stimulation of phosphoinositide hydrolysis and regulation of potassium or other ion channels [47] (Fig ). The particular receptor subtypes eliciting those responses are discussed below. (ee also Chs 20 and 21.) Inhibition of adenylyl cyclase by mach activation results in decreased camp formation. A decrease in camp is most apparent when adenylyl cyclase is stimulated, for example, by activation of adrenergic receptors with catecholamines or by forskolin. imultaneous addition of cholinergic agonists decreases the amount of camp formed in response to the catecholamine, in some tissues almost completely. The result is diminished activation of camp-dependent protein kinase (PKA) and decreased substrate phosphorylation catalyzed by this kinase. The mechanism by which the muscarinic receptor inhibits adenylyl cyclase is through activation of an inhibitory GTP-binding protein, G i. The α subunit of G i competes with the α subunit of the G protein activated by stimulatory agonists (G ) for regulation of adenylyl cyclase (see Chs 19, 21). Although muscarinic receptors do not interact with G s, increases in camp formation are seen in response to mach stimulation under some circumstances. These may result from stimulatory effects of βγ subunits released from G i proteins or from elevated intracellular Ca 2+ on specific isoforms of adenylyl cyclase or phosphodiesterase. Activation of phosphoinositide-specific phospholipase C by muscarinic agonists elicits phosphatidylinositol 4,5- bisphosphate stimulates phosphoinositide hydrolysis. The β 1 isoform of phosphoinositide-specific phospholipase C (PI-PC) is activated by its interaction with the α subunit of a GTP-binding protein, G q/11 [48]. This is the primary mechanism by which muscarinic receptors regulate this enzyme. However, some PC isoforms, most clearly β 2, also are activated by βγ subunits. This probably accounts for the pertussis-toxin-sensitive, G i /G o -mediated activation of PI-PC seen when high levels of mach subtypes that normally couple to G i (see below) are expressed in heterologous cell lines. The hydrolysis of phosphatidylinositol 4,5-bisphosphate yields two potential second messengers, inositol 1,4,5-trisphosphate (IP 3 ) and diacylglycerol (DAG) (see Ch. 20). DAG increases the activity of the Ca 2+ and phospholipid-dependent protein kinase (PKC). IP 3 mobilizes Ca 2+ from intracellular stores in the endoplasmic reticulum and thereby elevates cytosolic free Ca 2+. ubsequent responses are triggered by direct effects of Ca 2+ on Ca 2+ -regulated proteins and by phosphorylation mediated through Ca 2+ /calmodulindependent kinases and PKC. timulation of a phospholipase D, which hydrolyzes phosphatidylcholine, also occurs in response to muscarinic receptor activation. This appears to be secondary to activation of PKC and contributes to a secondary rise in DAG. egulation of K + channels. Muscarinic agonists cause rapid activation of G-protein-coupled, inwardly rectifying potassium channels (GIKs). This muscarinic effect can be mimicked by GTP analogs in whole-cell clamp experiments, and the response is sensitive to pertussis toxin, which ribosylates and inactivates G i and a related protein, G o (see Ch. 19). It is now generally agreed that GIK1 and GIK2 are activated directly by binding βγ subunits released from G i or G o. This is a primary mechanism by which muscarinic agonists cause hyperpolarization of

20 204 PAT II Intercellular ignaling Primary biochemical responses mediated by muscarinic acetylcholine receptors NE ACh Inhibition of adenylyl cyclase β-adr AC M 2 /M 4 mach γ γ β α αi β GTP ATP GTP camp ACh timulation of phospholipase C Protein kinase C γ M (1,3,5) mach PI-PC β PIP 2 PIP PI β α q/11 GTP Ca 2 + Diacylglycerol IP 3 ACh egulation of K + channels M 2 /M 4 mach α i/o β γ GTP K + FIGUE Acetylcholine (ACh) interacts with a muscarinic receptor of the subtypes indicated to induce various responses. The M 2 and M 4 muscarinic acetylcholine receptors (mach) interact with the α subunit of GTP-binding protein, G i. When ACh binds, Gα i dissociates from βγ and inhibits adenylyl cyclase (AC). The M 1, M 3 and M 5 machs interact with GTP-binding proteins in the G q and G 11 family. The Gα q and α 11 subunits activate phosphoinositide-specific phospholipase C (PI-PC). The M 2 and M 4 machs regulate inwardly rectifying K + channels through the βγ subunit of G i or G o. Diffusible second messengers formed within the cell include camp, inositol trisphosphate (IP 3 ) and diacylglycerol (DAG). IP 3 is generated from phosphatidylinositol bisphosphate (PIP 2 ). NE, norepinephrine; β-adr, β-adrenergic receptor; PI, phosphatidylinositol; PIP, phosphatidylinositol-4-phosphate; PIP 2, phosphatidylinositol-4,5-bisphosphate.

D.U.C. Assist. Lec. Faculty of Dentistry General Physiology Ihsan Dhari. The Autonomic Nervous System

D.U.C. Assist. Lec. Faculty of Dentistry General Physiology Ihsan Dhari. The Autonomic Nervous System The Autonomic Nervous System The portion of the nervous system that controls most visceral functions of the body is called the autonomic nervous system. This system helps to control arterial pressure,

More information

PHC 313 The 7 th. Lecture. Adrenergic Agents

PHC 313 The 7 th. Lecture. Adrenergic Agents PHC 313 The 7 th. Lecture Adrenergic Agents Introduction Introduction Adrenergic agents are a broad class of agents employed in the treatment of many disorders. They are those chemical agents that exert

More information

Chapter 15. Neurotransmitters of the ANS

Chapter 15. Neurotransmitters of the ANS Chapter 15 Neurotransmitters of the ANS Neurotransmitters and Receptors How can the same ANS neurons create different effects on different target tissue? Variety of neurotransmitters Secondly, different

More information

Autonomic Receptor Functions

Autonomic Receptor Functions Part II Autonomic Receptor Functions Summary of ANS overview Pharmacological classification of ANS is based on neurotransmitters: cholinergic, adrenergic, and dopaminergic. Major sites for pharmacological

More information

Hormones & Chemical Signaling

Hormones & Chemical Signaling Hormones & Chemical Signaling Part 2 modulation of signal pathways and hormone classification & function How are these pathways controlled? Receptors are proteins! Subject to Specificity of binding Competition

More information

Autonomic Nervous System Dr. Ali Ebneshahidi

Autonomic Nervous System Dr. Ali Ebneshahidi Autonomic Nervous System Dr. Ali Ebneshahidi Nervous System Divisions of the nervous system The human nervous system consists of the central nervous System (CNS) and the Peripheral Nervous System (PNS).

More information

Mammalian Physiology. Autonomic Nervous System UNLV. PHYSIOLOGY, Chapter 11 Berne, Levy, Koeppen, Stanton UNIVERSITY OF NEVADA LAS VEGAS

Mammalian Physiology. Autonomic Nervous System UNLV. PHYSIOLOGY, Chapter 11 Berne, Levy, Koeppen, Stanton UNIVERSITY OF NEVADA LAS VEGAS Mammalian Physiology Autonomic Nervous System UNLV 1 UNIVERSITY OF NEVADA LAS VEGAS PHYSIOLOGY, Chapter 11 Berne, Levy, Koeppen, Stanton Objectives Describe the organization of the autonomic nervous system

More information

Chapter 15. The Autonomic Nervous. The Autonomic Nervous System. Autonomic Motor Pathways. ANS vs. SNS

Chapter 15. The Autonomic Nervous. The Autonomic Nervous System. Autonomic Motor Pathways. ANS vs. SNS The Autonomic Nervous System Chapter 15 The subconscious involuntary nervous system Regulates activity of smooth muscle, cardiac muscle & certain glands The Autonomic Nervous System 1 2 ANS vs. SNS Somatic

More information

Neurophysiology. 2.1 Equilibrium Potential

Neurophysiology. 2.1 Equilibrium Potential 2 Neurophysiology 2.1 Equilibrium Potential An understanding of the concepts of electrical and chemical forces that act on ions, electrochemical equilibrium, and equilibrium potential is a powerful tool

More information

Chapter 15. Autonomic Nervous System (ANS) and Visceral Reflexes. general properties Anatomy. Autonomic effects on target organs

Chapter 15. Autonomic Nervous System (ANS) and Visceral Reflexes. general properties Anatomy. Autonomic effects on target organs Chapter 15 Autonomic Nervous System (ANS) and Visceral Reflexes general properties Anatomy Autonomic effects on target organs Central control of autonomic function 15-1 Copyright (c) The McGraw-Hill Companies,

More information

Autonomic (ANS) Pharmacology. Sympathetic Nervous System

Autonomic (ANS) Pharmacology. Sympathetic Nervous System Autonomic (ANS) Pharmacology Sympathetic Nervous System Autonomic and Somatic Innervation Skeletal muscle is innervated by somatic nerves, controlling voluntary actions All other innervated structures

More information

Nerves and Nerve Impulse

Nerves and Nerve Impulse Nerves and Nerve Impulse Terms Absolute refractory period: Period following stimulation during which no additional action potential can be evoked. Acetylcholine: Chemical transmitter substance released

More information

Chapter 7: The Nervous System

Chapter 7: The Nervous System Chapter 7: The Nervous System Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways involved in a withdraw reflex Define

More information

AP Biology I. Nervous System Notes

AP Biology I. Nervous System Notes AP Biology I. Nervous System Notes 1. General information: passage of information occurs in two ways: Nerves - process and send information fast (eg. stepping on a tack) Hormones - process and send information

More information

Resting membrane potential ~ -70mV - Membrane is polarized

Resting membrane potential ~ -70mV - Membrane is polarized Resting membrane potential ~ -70mV - Membrane is polarized (ie) Electrical charge on the outside of the membrane is positive while the electrical charge on the inside of the membrane is negative Changes

More information

The Autonomic Nervous System Physiology Study Guide, Chapter 9

The Autonomic Nervous System Physiology Study Guide, Chapter 9 Name: The Autonomic Nervous System Physiology Study Guide, Chapter 9 Lab Time: 1 Part I. Clinical Applications and Short Essay 1. After surgery, patients are often temporarily unable to urinate, and bowel

More information

Bi 360: Midterm Review

Bi 360: Midterm Review Bi 360: Midterm Review Basic Neurobiology 1) Many axons are surrounded by a fatty insulating sheath called myelin, which is interrupted at regular intervals at the Nodes of Ranvier, where the action potential

More information

Chapter 15 Anatomy and Physiology Lecture

Chapter 15 Anatomy and Physiology Lecture 1 THE AUTONOMIC NERVOUS SYSTEM Chapter 15 Anatomy and Physiology Lecture 2 THE AUTONOMIC NERVOUS SYSTEM Autonomic Nervous System (ANS) regulates the activity of smooth muscles, cardiac muscles, and certain

More information

The Neuron and the Synapse. The Neuron. Parts of the Neuron. Functions of the neuron:

The Neuron and the Synapse. The Neuron. Parts of the Neuron. Functions of the neuron: The Neuron and the Synapse The Neuron Functions of the neuron: Transmit information from one point in the body to another. Process the information in various ways (that is, compute). The neuron has a specialized

More information

AUTONOMIC NERVOUS SYSTEM

AUTONOMIC NERVOUS SYSTEM AUTONOMIC NERVOUS SYSTEM Somatic efferent and ANS Somatic Efferent Control is over skeletal muscles. External environment This division of the PNS responds to some change in the external environment. single

More information

PART I: Neurons and the Nerve Impulse

PART I: Neurons and the Nerve Impulse PART I: Neurons and the Nerve Impulse Identify each of the labeled structures of the neuron below. A. B. C. D. E. F. G. Identify each of the labeled structures of the neuron below. A. dendrites B. nucleus

More information

ANIMATED NEUROSCIENCE

ANIMATED NEUROSCIENCE ANIMATED NEUROSCIENCE and the Action of Nicotine, Cocaine, and Marijuana in the Brain Te a c h e r s G u i d e Films for the Humanities & Sciences Background Information This program, made entirely of

More information

12. Nervous System: Nervous Tissue

12. Nervous System: Nervous Tissue 12. Nervous System: Nervous Tissue I. Introduction to the Nervous System General functions of the nervous system The nervous system has three basic functions: 1. Gather sensory input from the environment

More information

Key Points. Autonomic Nervous System Drugs. Autonomic effects Sympathetic. Drugs can modify ANS activity by: Autonomic Nervous System

Key Points. Autonomic Nervous System Drugs. Autonomic effects Sympathetic. Drugs can modify ANS activity by: Autonomic Nervous System Key Points Autonomic Nervous System Drugs Autonomic drugs work at the synapses, Drugs either suppress or magnify the sympathetic or parasympathetic effect, Drugs don t work on a single target organ so

More information

Dr. RAJENDRAN S INSTITUTE OF MEDICAL EDUCATION

Dr. RAJENDRAN S INSTITUTE OF MEDICAL EDUCATION Page 1 of 7 Dr. RAJENDRAN S INSTITUTE OF MEDICAL EDUCATION AIIMS NOVEMBER 2012 - QUESTIONS AND ANSWERS PHYSIOLOGY This contains only 3 out of 7 questions. For complete questions with explanatory answers,

More information

Chapter 15: The Autonomic Nervous System

Chapter 15: The Autonomic Nervous System Chapter 15: The Autonomic Nervous System Chapter Objectives COMPARISON OF SOMATIC AND AUTONOMIC NERVOUS SYSTEMS 1. List the structural and functional characteristics of the autonomic nervous system. 2.

More information

ADRENERGIC RECEPTOR AGONIST,CLASSIFICATION AND MECHANISM OF ACTION.

ADRENERGIC RECEPTOR AGONIST,CLASSIFICATION AND MECHANISM OF ACTION. ADRENERGIC RECEPTOR AGONIST,CLASSIFICATION AND MECHANISM OF ACTION. LEARNING OBJECTIVES At the end of lecture students should be able to know, Adrenergic receptor agonist, Classification and mechanism

More information

Name: Teacher: Olsen Hour:

Name: Teacher: Olsen Hour: Name: Teacher: Olsen Hour: The Nervous System: Part 1 Textbook p216-225 41 In all exercises, quizzes and tests in this class, always answer in your own words. That is the only way that you can show that

More information

U N IT 10 NE RVOUS SYS TE M REVIEW 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B.

U N IT 10 NE RVOUS SYS TE M REVIEW 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B. U N IT 10 NE RVOUS SYS TE M REVIEW 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B. contraction of skeletal muscles C. increased blood flow to muscle tissue

More information

The somatic nervous system regulates conscious movements via efferent nerves exit from the CNS to skeletal muscles.

The somatic nervous system regulates conscious movements via efferent nerves exit from the CNS to skeletal muscles. Lecture 1 Nervous system The nervous system is divided into the central nervous system (CNS; brain and spinal cord) and peripheral nervous system (somatic and autonomic nervous systems; comprised of nerves

More information

Case 1: Anticholinesterase

Case 1: Anticholinesterase Harvard-MIT Division of Health Sciences and Technology HST.151: Principles of Pharmocology Instructor: Dr. Carl Rosow, Dr. David Standaert and Prof. Gary Strichartz Case 1: Anticholinesterase February

More information

CHAPTER 5 SIGNALLING IN NEURONS

CHAPTER 5 SIGNALLING IN NEURONS 5.1. SYNAPTIC TRANSMISSION CHAPTER 5 SIGNALLING IN NEURONS One of the main functions of neurons is to communicate with other neurons. An individual neuron may receive information from many different sources.

More information

Overactive bladder is a common condition thought to. women, and is a serious condition that can lead to. significant lifestyle changes.

Overactive bladder is a common condition thought to. women, and is a serious condition that can lead to. significant lifestyle changes. Overactive bladder is a common condition thought to FADE UP TO WIDE SHOT OF FEMALE MODEL WITH TRANSPARENT SKIN. URINARY BLADDER VISIBLE IN PELVIC REGION affect over 16 percent of adults. It affects men

More information

Chapter 9 Nervous System

Chapter 9 Nervous System Chapter 9 Nervous System Nervous System function: The nervous system is composed of neurons and neuroglia. at the ends of peripheral nerves gather information and convert it into nerve impulses. When sensory

More information

Please read chapter 15, The Autonomic Nervous System, complete this study guide, and study this material BEFORE coming to the first class.

Please read chapter 15, The Autonomic Nervous System, complete this study guide, and study this material BEFORE coming to the first class. Please read chapter 15,, complete this study guide, and study this material BEFORE coming to the first class. I. Introduction to the autonomic nervous system: Briefly describe the autonomic nervous system.

More information

Parts of the Nerve Cell and Their Functions

Parts of the Nerve Cell and Their Functions Parts of the Nerve Cell and Their Functions Silvia Helena Cardoso, PhD [ 1. Cell body] [2. Neuronal membrane] [3. Dendrites] [4. Axon] [5. Nerve ending] 1. Cell body The cell body (soma) is the factory

More information

Questions on The Nervous System and Gas Exchange

Questions on The Nervous System and Gas Exchange Name: Questions on The Nervous System and Gas Exchange Directions: The following questions are taken from previous IB Final Papers on Topics 6.4 (Gas Exchange) and 6.5 (Nerves, hormones and homeostasis).

More information

Norepinephrine Effects On the System

Norepinephrine Effects On the System Norepinephrine Effects On the System NE Conversion to Epinephrine in the Circulation Under stress, the increased norepinephrine produced is transmitted throughout the system. This increased level represents

More information

CHAPTER 16: THE AUTONOMIC NERVOUS SYSTEM

CHAPTER 16: THE AUTONOMIC NERVOUS SYSTEM Unit 4: The Autonomic Nervous System 254 CHAPTER 16: THE AUTONOMIC NERVOUS SYSTEM Read: Chapter 16, pages 517-534. Read only the topics covered in lecture. We will not cover this chapter in detail. Complete

More information

Chapter-21b: Hormones and Receptors

Chapter-21b: Hormones and Receptors 1 hapter-21b: Hormones and Receptors Hormone classes Hormones are classified according to the distance over which they act. 1. Autocrine hormones --- act on the same cell that released them. Interleukin-2

More information

NERVOUS SYSTEM B 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B. contraction of skeletal muscles C.

NERVOUS SYSTEM B 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B. contraction of skeletal muscles C. NERVOUS SYSTEM B 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B. contraction of skeletal muscles C. increased blood flow to muscle tissue D. movement of food

More information

Muscle Tissue. Muscle Physiology. Skeletal Muscle. Types of Muscle. Skeletal Muscle Organization. Myofibril Structure

Muscle Tissue. Muscle Physiology. Skeletal Muscle. Types of Muscle. Skeletal Muscle Organization. Myofibril Structure Muscle Tissue Muscle Physiology Chapter 12 Specially designed to contract Generates mechanical force Functions locomotion and external movements internal movement (circulation, digestion) heat generation

More information

CHAPTER- 6. Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats. 1. Introduction. 2. Methods

CHAPTER- 6. Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats. 1. Introduction. 2. Methods CHAPTER- 6 Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats 1. Introduction Neurodegenerative disorders, such as AD are often characterized by the degeneration of the

More information

Actions of Hormones on Target Cells Page 1. Actions of Hormones on Target Cells Page 2. Goals/ What You Need to Know Goals What You Need to Know

Actions of Hormones on Target Cells Page 1. Actions of Hormones on Target Cells Page 2. Goals/ What You Need to Know Goals What You Need to Know Actions of Hormones on Target Cells Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Actions of Hormones on Target Cells Hormones

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Overview: The Energy of Life The living cell is a miniature chemical factory where thousands of reactions occur The cell extracts energy and applies energy to perform

More information

CELLS IN THE NERVOUS SYSTEM

CELLS IN THE NERVOUS SYSTEM NEURONS AND GLIA CELLS IN THE NERVOUS SYSTEM Glia Insulates, supports, and nourishes neurons Neurons Process information Sense environmental changes Communicate changes to other neurons Command body response

More information

Integration and Coordination of the Human Body. Nervous System

Integration and Coordination of the Human Body. Nervous System I. General Info Integration and Coordination of the Human Body A. Both the and system are responsible for maintaining 1. Homeostasis is the process by which organisms keep internal conditions despite changes

More information

Mechanisms of Hormonal Action Bryant Miles

Mechanisms of Hormonal Action Bryant Miles Mechanisms of ormonal Action Bryant Miles Multicellular organisms need to coordinate metabolic activities. Complex signaling systems have evolved using chemicals called hormones to regulate cellular activities.

More information

CONTROL OF BLOOD FLOW AND BLOOD PRESSURE (Lectures 3b and 4)

CONTROL OF BLOOD FLOW AND BLOOD PRESSURE (Lectures 3b and 4) CONTROL OF BLOOD FLOW AND BLOOD PRESSURE (Lectures 3b and 4) 63 CONTROL OF BLOOD FLOW 1) REASON: Body needs different levels of nutrient delivery and metabolic removal for differing levels of activities

More information

Regulation of enzyme activity

Regulation of enzyme activity 1 Regulation of enzyme activity Regulation of enzyme activity is important to coordinate the different metabolic processes. It is also important for homeostasis i.e. to maintain the internal environment

More information

2007 7.013 Problem Set 1 KEY

2007 7.013 Problem Set 1 KEY 2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you

More information

Alzheimer Disease (AD)

Alzheimer Disease (AD) 1 Alzheimer Disease (AD) 2 Alzheimer's disease is a progressive degenerative disease that attacks the brain and results in impaired memory, thinking and behavior. It was first described by Dr. Alois Alzheimer

More information

2006 7.012 Problem Set 6 KEY

2006 7.012 Problem Set 6 KEY 2006 7.012 Problem Set 6 KEY ** Due before 5 PM on WEDNESDAY, November 22, 2006. ** Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. You create an artificial

More information

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm.

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein Trafficking/Targeting (8.1) Lecture 8 Protein Trafficking/Targeting Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein targeting is more complex

More information

Describe how these hormones exert control quickly by changes in phosphorylation state of enzyme, and more slowly by changes of gene expression

Describe how these hormones exert control quickly by changes in phosphorylation state of enzyme, and more slowly by changes of gene expression Section VIII. Section VIII. Tissue metabolism Many tissues carry out specialized functions: Ch. 43 look at different hormones affect metabolism of fuels, especially counter-insulin Ch. 44 Proteins and

More information

Biology Slide 1 of 38

Biology Slide 1 of 38 Biology 1 of 38 2 of 38 35-2 The Nervous System What are the functions of the nervous system? 3 of 38 35-2 The Nervous System 1. Nervous system: a. controls and coordinates functions throughout the body

More information

Slide 1: Introduction Introduce the purpose of your presentation. Indicate that you will explain how the brain basically works and how and where

Slide 1: Introduction Introduce the purpose of your presentation. Indicate that you will explain how the brain basically works and how and where Slide 1: Introduction Introduce the purpose of your presentation. Indicate that you will explain how the brain basically works and how and where drugs such as heroin and cocaine work in the brain. Tell

More information

FUNCTIONS OF THE NERVOUS SYSTEM 1. Sensory input. Sensory receptors detects external and internal stimuli.

FUNCTIONS OF THE NERVOUS SYSTEM 1. Sensory input. Sensory receptors detects external and internal stimuli. FUNCTIONS OF THE NERVOUS SYSTEM 1. Sensory input. Sensory receptors detects external and internal stimuli. 2. Integration. The brain and spinal cord process sensory input and produce responses. 3. Homeostasis.

More information

Autonomic Nervous System

Autonomic Nervous System MOST FREQUENTLY USED DRUG CATEGORIES FOR AUTONOMIC SYSTEM THERAPY Beta 1 Adrenergic Blockers (Anatgonists) - Work on the Heart Beta 1 Adrenergic receptors are typically found on the heart and is a means

More information

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY BMLS II / B Pharm II / BDS II VJ Temple

More information

Chetek-Weyerhaeuser High School

Chetek-Weyerhaeuser High School Chetek-Weyerhaeuser High School Anatomy and Physiology Units and Anatomy and Physiology A Unit 1 Introduction to Human Anatomy and Physiology (6 days) Essential Question: How do the systems of the human

More information

Adrenergic receptors lec 9, part 2. 16/10/2014 Dr. Laila M. Matalqah Rama Kamal Ali Treany

Adrenergic receptors lec 9, part 2. 16/10/2014 Dr. Laila M. Matalqah Rama Kamal Ali Treany Adrenergic receptors lec 9, part 2 16/10/2014 Dr. Laila M. Matalqah Rama Kamal Ali Treany Pharmacology of ANS Adrenergic Agonists Adrenergic receptors:- - It is a receptor which is located in the peripheral

More information

Ch. 8 Enzymes as catalysts

Ch. 8 Enzymes as catalysts Chapt. 8 Enzymes as catalysts Ch. 8 Enzymes as catalysts Student Learning Outcomes: Explain general features of enzymes as catalysts: Substrate -> Product Describe nature of catalytic sites general mechanisms

More information

Copyright 2000-2003 Mark Brandt, Ph.D. 54

Copyright 2000-2003 Mark Brandt, Ph.D. 54 Pyruvate Oxidation Overview of pyruvate metabolism Pyruvate can be produced in a variety of ways. It is an end product of glycolysis, and can be derived from lactate taken up from the environment (or,

More information

Absorption of Drugs. Transport of a drug from the GI tract

Absorption of Drugs. Transport of a drug from the GI tract Absorption of Drugs Absorption is the transfer of a drug from its site of administration to the bloodstream. The rate and efficiency of absorption depend on the route of administration. For IV delivery,

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

Chapter 4. The Adrenal Medulla

Chapter 4. The Adrenal Medulla Chapter 4 The Adrenal Medulla Introduction Induction of cortisol production requires several minutes, and full elaboration of cortisol action requires several hours. In contrast, the adrenal medullary

More information

AP BIOLOGY 2008 SCORING GUIDELINES

AP BIOLOGY 2008 SCORING GUIDELINES AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins.

More information

The Lipid Bilayer Is a Two-Dimensional Fluid

The Lipid Bilayer Is a Two-Dimensional Fluid The Lipid Bilayer Is a Two-Dimensional Fluid The aqueous environment inside and outside a cell prevents membrane lipids from escaping from bilayer, but nothing stops these molecules from moving about and

More information

Smooth Muscle. Learning Objectives.

Smooth Muscle. Learning Objectives. Smooth Muscle. Learning Objectives. At the end of this course, you should be able to : 1. describe the structure of smooth muscle 2. describe where smooth muscle occurs within the body 3. discuss the structural

More information

Slide 4: Forebrain Structures. Slide 5: 4 Lobes of the Cerebral Cortex. Slide 6: The Cerebral Hemispheres (L & R)

Slide 4: Forebrain Structures. Slide 5: 4 Lobes of the Cerebral Cortex. Slide 6: The Cerebral Hemispheres (L & R) Slide 1: [Film Clip: The Brain #2- Phineas Gage] Integrated Bodily Communications Within Brain (Hemispheres and structures) The remaining Nervous System Endocrine System (Hormonal communication) Our bodies-

More information

Introduction to Psychology, 7th Edition, Rod Plotnik Module 3: Brain s Building Blocks. Module 3. Brain s Building Blocks

Introduction to Psychology, 7th Edition, Rod Plotnik Module 3: Brain s Building Blocks. Module 3. Brain s Building Blocks Module 3 Brain s Building Blocks Structure of the Brain Genes chains of chemicals that are arranged like rungs on a twisting ladder there are about 100,000 genes that contain chemical instructions that

More information

Pharmacology - Problem Drill 06: Autonomic Pharmacology - Adrenergic System

Pharmacology - Problem Drill 06: Autonomic Pharmacology - Adrenergic System Pharmacology - Problem Drill 06: Autonomic Pharmacology - Adrenergic System Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully, (2) Work the problems on paper as 1. What

More information

CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer.

CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer. CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY Ms. K. GOWRI. M.Pharm., Lecturer. Types of Muscle Tissue Classified by location, appearance, and by the type of nervous system control or innervation. Skeletal

More information

Chapter 11: Functional Organization of Nervous Tissue

Chapter 11: Functional Organization of Nervous Tissue Chapter 11: Functional Organization of Nervous Tissue Multiple Choice 1. The nervous system A) monitors internal and external stimuli. B) transmits information in the form of action potentials. C) interprets

More information

Anaerobic and Aerobic Training Adaptations. Chapters 5 & 6

Anaerobic and Aerobic Training Adaptations. Chapters 5 & 6 Anaerobic and Aerobic Training Adaptations Chapters 5 & 6 Adaptations to Training Chronic exercise provides stimulus for the systems of the body to change Systems will adapt according to level, intensity,

More information

QUANTAL ANALYSIS AT THE NEUROMUSCULAR JUNCTION

QUANTAL ANALYSIS AT THE NEUROMUSCULAR JUNCTION Hons Neuroscience Professor R.R. Ribchester QUANTAL ANALYSIS AT THE NEUROMUSCULAR JUNCTION Our present understanding of the fundamental physiological mechanism of transmitter release at synapses is mainly

More information

Chapter 13. Sympathetic Nervous System. Basic Functions of the Nervous System. Divisions of the Peripheral Nervous System

Chapter 13. Sympathetic Nervous System. Basic Functions of the Nervous System. Divisions of the Peripheral Nervous System Chapter 13 Drugs Affecting the Autonomic Basic Functions of the Recognizing changes in Internal environment External environment Processing and integrating changes Reacting to changes Upper Saddle River,

More information

Biology/ANNB 261 Exam 1 Spring, 2006

Biology/ANNB 261 Exam 1 Spring, 2006 Biology/ANNB 261 Exam 1 Spring, 2006 Name * = correct answer Multiple Choice: 1. Axons and dendrites are two types of a) Neurites * b) Organelles c) Synapses d) Receptors e) Golgi cell components 2. The

More information

Muscles How muscles contract - The Sliding Filament Theory

Muscles How muscles contract - The Sliding Filament Theory Muscles How muscles contract - The Sliding Filament Theory A muscle contains many muscle fibers A muscle fiber is a series of fused cells Each fiber contains a bundle of 4-20 myofibrils Myofibrils are

More information

Barbara St. Marie, PhD Candidate Nurse Practitioner Supervisor Pain and Palliative Care Fairview Ridges Hospital Minneapolis, MN

Barbara St. Marie, PhD Candidate Nurse Practitioner Supervisor Pain and Palliative Care Fairview Ridges Hospital Minneapolis, MN Barbara St. Marie, PhD Candidate Nurse Practitioner Supervisor Pain and Palliative Care Fairview Ridges Hospital Minneapolis, MN Pain Physiology Objectives: Explain how pain is transmitted through the

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

INTRODUCTION TO HORMONES

INTRODUCTION TO HORMONES INTRODUCTION TO HORMONES UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL MBBS II SEMINAR VJ Temple What are hormones? Cells in multi-cellular

More information

Nervous System: PNS and CNS

Nervous System: PNS and CNS Nervous System: PNS and CNS Biology 105 Lecture 10 Chapter 8 Outline I. Central Nervous System vs Peripheral Nervous System II. Peripheral Nervous System A. Somatic Nervous System B. Autonomic Nervous

More information

Biology 224 Human Anatomy and Physiology II Week 8; Lecture 1; Monday Dr. Stuart S. Sumida. Excretory Physiology

Biology 224 Human Anatomy and Physiology II Week 8; Lecture 1; Monday Dr. Stuart S. Sumida. Excretory Physiology Biology 224 Human Anatomy and Physiology II Week 8; Lecture 1; Monday Dr. Stuart S. Sumida Excretory Physiology The following ELEVEN slides are review. They will not be covered in lecture, but will be

More information

1. Give the name and functions of the structure labeled A on the diagram. 2. Give the name and functions of the structure labeled B on the diagram.

1. Give the name and functions of the structure labeled A on the diagram. 2. Give the name and functions of the structure labeled B on the diagram. 2013 ANATOMY & PHYSIOLOGY Sample Tournament Station A: Use the diagram in answering Questions 1-5. 1. Give the name and functions of the structure labeled A on the diagram. 2. Give the name and functions

More information

Unit 2 Metabolism and Survival Summary

Unit 2 Metabolism and Survival Summary Unit 2 Metabolism and Survival Summary 1 Metabolism pathways and their control (a) Introduction to metabolic pathways This involves integrated and controlled pathways of enzymecatalysed reactions within

More information

Hormones: Classification. Hormones: Classification. Peptide Hormone Synthesis, Packaging, and Release

Hormones: Classification. Hormones: Classification. Peptide Hormone Synthesis, Packaging, and Release Hormones: Classification Hormones: Classification Be able to give types and example. Compare synthesis, half-life and location of receptor 1. Peptide or protein hormones Insulin from amino acids 2. Steroid

More information

Epithelial Tissue. Characteristics Functions Recognizing Epithelia Cell-to-cell junctions

Epithelial Tissue. Characteristics Functions Recognizing Epithelia Cell-to-cell junctions Epithelial Tissue Characteristics Functions Recognizing Epithelia Cell-to-cell junctions 4 Types of Tissue Epithelial Connective Muscle Neural Think of 2-3 basic functions for each. Characteristics of

More information

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+ 1. Membrane transport. A. (4 pts) What ion couples primary and secondary active transport in animal cells? What ion serves the same function in plant cells? Na+, H+ 2. (4 pts) What is the terminal electron

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Smooth Muscle. Smooth Muscle Structure

Smooth Muscle. Smooth Muscle Structure Smooth Muscle Spindle-shaped Small (2-5 um wide, 50-300 um long) 1 centrally placed nucleus per cell Usually organized in small to moderate sized clusters of cells Lack sarcomeres No T-tubules or terminal

More information

Blood Pressure Regulation

Blood Pressure Regulation Blood Pressure Regulation Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction There are two basic mechanisms for regulating

More information

Brain & Mind. Bicester Community College Science Department

Brain & Mind. Bicester Community College Science Department B6 Brain & Mind B6 Key Questions How do animals respond to changes in their environment? How is information passed through the nervous system? What can we learn through conditioning? How do humans develop

More information

Cells Need to Exchange Materials with the Extracellular Fluid. Membrane Transport. Plasma Membrane. Cells Must Control Movements of Materials

Cells Need to Exchange Materials with the Extracellular Fluid. Membrane Transport. Plasma Membrane. Cells Must Control Movements of Materials Membrane Transport Chapter 6 Cells Need to Exchange Materials with the Extracellular Fluid Take in nutrients O 2 energy substrates building materials cofactors Dispose of wastes CO 2 Urea Cells Must Control

More information

BSC 2010 - Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II.

BSC 2010 - Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II. BSC 2010 - Exam I Lectures and Text Pages I. Intro to Biology (2-29) II. Chemistry of Life Chemistry review (30-46) Water (47-57) Carbon (58-67) Macromolecules (68-91) III. Cells and Membranes Cell structure

More information

Stress & Catecholamines - Overview

Stress & Catecholamines - Overview Stress & Catecholamines - Overview UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY PBL MBBS YEAR II SEMINAR VJ Temple Stress can due to: What is

More information

Drugs, The Brain, and Behavior

Drugs, The Brain, and Behavior Drugs, The Brain, and Behavior John Nyby Department of Biological Sciences Lehigh University What is a drug? Difficult to define Know it when you see it Neuroactive vs Non-Neuroactive drugs Two major categories

More information

Control of Gene Expression

Control of Gene Expression Home Gene Regulation Is Necessary? Control of Gene Expression By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection favoring

More information

William Shaw, Ph.D. The Great Plains Laboratory, Inc., Lenexa, Kansas, USA

William Shaw, Ph.D. The Great Plains Laboratory, Inc., Lenexa, Kansas, USA Inhibition of dopamine conversion to norepinephrine by Clostridia metabolites appears to be a (the) major cause of autism, schizophrenia, and other neuropsychiatric disorders. All these factors can now

More information