Slippery Slopes and Vagueness

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Slippery Slopes and Vagueness

2 Slippery slope reasoning, typically taken as a fallacy. But what goes wrong? Is it always bad reasoning? How should we respond to a slippery slope argument and/or guard against it leading us astray?

3 2 types of slippery slope arguments: Causal Claim that one thing will lead to another, and so on down the slope, to a (typically repugnant) endpoint. E.g. from voluntary euthanasia. to involuntary euthanasia Can question the causal claim will conclusion really follow? Or can question whether the endpoint is really unacceptable. Semantic There s no significant difference between one thing and the next in the chain, leading right through to the (perhaps absurd) conclusion. No non-arbitrary divisions E.g. abortion right before birth is wrong; one day earlier is still wrong. so abortion is wrong at any point after conception.

4 Causal slippery slopes can be based on semantic ones. E.g. the thought that because there s no non-arbitrary cutoff, one stage will lead to the next. We ll focus on semantic slippery slopes. They are examples of the Sorites Paradox. The denial of a non-arbitrary division is due to the vagueness of the ideas involved.

5 Consider a heap of sand. If you take one grain away, you still have a heap. Indeed, whenever you take just one grain away from a heap of sand, you re left with a heap. But, then, if you remove grains one by one this implies, absurdly, that the solitary last grain is a heap. Sorites Paradox for heap. Soros = heap.

6 Sorites paradox for tall : (1) 7 foot man is tall (2) A hundredth of an inch cannot make a difference to whether or not a man counts as tall So (3) a 5 foot man is tall Compare slippery slope arguments: E.g. for (2): if abortion is wrong n days after conception, then it s wrong n-1 days after conception. Same form of reasoning as mathematical induction: True for 0, if true for k then true for k+1; so true for n. The form of reasoning isn t a logical fallacy like If p, then q, q so p.

7 A paradox: compelling premises, intuitively valid reasoning but an apparently false conclusion. Paradox due to the vagueness of the central term. Because heap is vague, the removal of a single grain can t make all the difference to whether something counts as a heap; if it did heap would not be vague. Vague predicates: have borderline cases lack sharp boundaries Sorites paradoxes for all vague predicates, e.g. bald, child, red (Solutions within theories of vagueness)

8 Four types of solution: (a) deny the validity of the argument, refusing to grant that the conclusion follows from the given premises; or (b) Reject premise (2) (the inductive premise); or (c) contest the supposed truth of premise (1); or (d) contest the supposed falsity of the conclusion (3) The argument has the same form as mathematical induction and other reasonable arguments without vague terms, so (a) looks unappealing. (c) and (d) come together as a pair.

9 (c) contest the supposed truth of premise (1); or (d) contest the supposed falsity of the conclusion (3) Can run either way down a sorites series: (H+) one grain of sand is not a heap adding a single grain to a non-heap will not turn it into a heap; so, ten thousand grains do not form a heap. (H ) ten thousand grains make a heap removing one grain from a heap still leaves a heap; so, a single grain of sand is a heap. Accept the premises and the validity of (H+): it follows that we will never get a heap, no matter how many grains are piled up So there are no heaps (Accepting the conclusion)

10 With (H ) reject first premise. (H ) ten thousand grains make a heap removing one grain from a heap still leaves a heap; so, a single grain of sand is a heap. Sorites paradox for tall shows no-one is tall, Sorites paradox for bald shows there are no bald people, Sorites paradox for table shows there are no tables. Unger: There are no ordinary things. Not promising as a treatment for all sorites argument [But in some instances of slippery slope arguments, (c) or (d) might be the right response.]

11 (b) (2) is not true. (2) A hundredth of an inch cannot make a difference to whether or not a man counts as tall (2) If you take one grain away from a heap of sand, you still have a heap (2) If abortion is wrong n days after conception, then it s wrong n-1 days after conception. If each of these is false, we have x is tall and y is not tall, though y is only one hundredth of an inch shorter than x. Some particular grain turns the heap into a non-heap Abortion is wrong k days after conception but not wrong the previous day So vague predicates have sharp boundaries after all?

12 Vague predicates have sharp boundaries after all? Epistemic View vague predicates have sharp boundaries but we do not know where those boundaries lie. (Williamson) There s a single correct stopping point on the slippery slope, though we can t know where that is. Implausible??

13 Stipulation can provide sharp boundaries. Common for legal purposes. But often no stipulation actually has been made. And many different options would be OK if stipulation were required. So, appeal to stipulations doesn t give grounds for the Epistemic View or solve the sorites paradox. May be useful to consider all the sensible stipulations in a particular case. Supervaluationist Theory of Vagueness

14 Supervaluationism Borderline cases are neither true nor false the meaning of the predicate isn t determinate enough to settle them either way. Consider the various different ways of making tall precise: our language doesn t settle that any one of these gives the meaning of tall. We can still call any sentence true (or false) if it would be true (or false) on all ways of making its components precise. A borderline case sentence e.g. Tek is tall is true on some ways and not on others, so counts as neither true nor false.

15 Does the removal of a grain turn a heap into a nonheap? There is no particular grain for which is it true (on all ways of making heap precise) that it makes all the difference to whether you have a heap (hence heap lacks sharp boundaries). But since some grain makes the difference for each way of making heap precise, some grain makes the difference is true. Premise (2) is false. (2) A hundredth of an inch cannot make a difference to whether or not a man counts as tall

16 Using Supervaluationism to deal with a slippery slope argument: Ask: would you reject the premise however you make your notions precise? If so, then reject it. Doesn t mean that there is a non-arbitrary cut-off. The typical behaviour of vague terms is to allow a chain of insignificant differences to add up to a significant difference. We need to be wary of arguments that trade on this. Thinking about how vague expressions work can help with that.

A Short Course in Logic Zeno s Paradox

1 Grappling with Good Arguments A Short Course in Logic Zeno s Paradox We ve seen that if we decide that an argument is good then we should be inclined to believe that the ultimate conclusion is true.

Vagueness at the interface between logic, philosophy, and linguistics

LoMoReVI Cejkovice, September 17 Vagueness at the interface between logic, philosophy, and linguistics Pleasures and pitfalls of interdisciplinarity Chris Fermüller Vienna University of Technology Theory

Beyond Propositional Logic Lukasiewicz s System

Beyond Propositional Logic Lukasiewicz s System Consider the following set of truth tables: 1 0 0 1 # # 1 0 # 1 1 0 # 0 0 0 0 # # 0 # 1 0 # 1 1 1 1 0 1 0 # # 1 # # 1 0 # 1 1 0 # 0 1 1 1 # 1 # 1 Brandon

A. Arguments are made up of statements, which can be either true or false. Which of the following are statements?

Critical Thinking University of St Andrews March 2007 Bullet point material is not on the students copies. Feel free to use the material as you see fit, depending on timing, ability, enthusiasm etc. Good

A. Schedule: Reading, problem set #2, midterm. B. Problem set #1: Aim to have this for you by Thursday (but it could be Tuesday)

Lecture 5: Fallacies of Clarity Vagueness and Ambiguity Philosophy 130 September 23, 25 & 30, 2014 O Rourke I. Administrative A. Schedule: Reading, problem set #2, midterm B. Problem set #1: Aim to have

Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets.

Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets. Logic is the study of reasoning. A language of propositions is fundamental to this study as well as true

Descartes rationalism

Michael Lacewing Descartes rationalism Descartes Meditations provide an extended study in establishing knowledge through rational intuition and deduction. We focus in this handout on three central claims:

Expensive, not expensive or cheap?

Expensive, not expensive or cheap? An experimental investigation of vague predicates Stephanie Solt & Nicole Gotzner Zentrum für Allgemeine Sprachwissenschaft 11 th Szklarska Poreba Workshop March 11-15,

Critical Study David Benatar. Better Never To Have Been: The Harm of Coming into Existence (Oxford: Oxford University Press, 2006)

NOÛS 43:4 (2009) 776 785 Critical Study David Benatar. Better Never To Have Been: The Harm of Coming into Existence (Oxford: Oxford University Press, 2006) ELIZABETH HARMAN Princeton University In this

General Philosophy. Dr Peter Millican, Hertford College. Lecture 3: Induction

General Philosophy Dr Peter Millican, Hertford College Lecture 3: Induction Hume s s Fork 2 Enquiry IV starts with a vital distinction between types of proposition: Relations of ideas can be known a priori

On Cuneo s defence of the parity premise

1 On Cuneo s defence of the parity premise G.J.E. Rutten 1. Introduction In his book The Normative Web Terence Cuneo provides a core argument for his moral realism of a paradigmatic sort. Paradigmatic

Omnipotence & prayer

Omnipotence & prayer Today, we ll be discussing two theological paradoxes: paradoxes arising from the idea of an omnipotent being, and paradoxes arising from the religious practice of prayer. So far, in

Lewis on Scorekeeping

Lewis on Scorekeeping Ted Sider Phil Language 1. Baseball and conversations Baseball score: a specification of the state of the game at some time (not just the runs) Conversational score: specification

The Meta-Problem of Change

NOÛS 43:2 (2009) 286 314 The Meta-Problem of Change THOMAS HOFWEBER University of North Carolina at Chapel Hill 1. Introduction One of the central problems in metaphysics over the last so many centuries

One natural response would be to cite evidence of past mornings, and give something like the following argument:

Hume on induction Suppose you were asked to give your reasons for believing that the sun will come up tomorrow, in the form of an argument for the claim that the sun will come up tomorrow. One natural

Lecture 8 The Subjective Theory of Betting on Theories

Lecture 8 The Subjective Theory of Betting on Theories Patrick Maher Philosophy 517 Spring 2007 Introduction The subjective theory of probability holds that the laws of probability are laws that rational

Invalidity in Predicate Logic

Invalidity in Predicate Logic So far we ve got a method for establishing that a predicate logic argument is valid: do a derivation. But we ve got no method for establishing invalidity. In propositional

The Refutation of Relativism

The Refutation of Relativism There are many different versions of relativism: ethical relativism conceptual relativism, and epistemic relativism are three. In this paper, I will be concerned with only

MATH 55: HOMEWORK #2 SOLUTIONS

MATH 55: HOMEWORK # SOLUTIONS ERIC PETERSON * 1. SECTION 1.5: NESTED QUANTIFIERS 1.1. Problem 1.5.8. Determine the truth value of each of these statements if the domain of each variable consists of all

A Short Course in Logic Example 8

A Short ourse in Logic xample 8 I) Recognizing Arguments III) valuating Arguments II) Analyzing Arguments valuating Arguments with More than one Line of Reasoning valuating If then Premises Independent

Study questions Give a short answer to the following questions:

Chapter 9 The Morality of Abortion 9.1 Homework Readings DW 15-17 Study questions Give a short answer to the following questions: 1. What are the two conflicting values in the abortion debate? 2. Explain

3. Mathematical Induction

3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

13 Infinite Sets. 13.1 Injections, Surjections, and Bijections. mcs-ftl 2010/9/8 0:40 page 379 #385

mcs-ftl 2010/9/8 0:40 page 379 #385 13 Infinite Sets So you might be wondering how much is there to say about an infinite set other than, well, it has an infinite number of elements. Of course, an infinite

Formal Logic Lecture 2

Faculty of Philosophy Formal Logic Lecture 2 Peter Smith Peter Smith: Formal Logic, Lecture 2 1 Outline Validity again Systematicity and formality Modality and the invalidity principle The counterexample

Definition 10. A proposition is a statement either true or false, but not both.

Chapter 2 Propositional Logic Contrariwise, continued Tweedledee, if it was so, it might be; and if it were so, it would be; but as it isn t, it ain t. That s logic. (Lewis Carroll, Alice s Adventures

Anselm s Ontological Argument for the Existence of God

Anselm s Ontological Argument for the Existence of God Anselm s argument is an a priori argument; that is, it is an argument that is independent of experience and based solely on concepts and logical relations,

P1. All of the students will understand validity P2. You are one of the students -------------------- C. You will understand validity

Validity Philosophy 130 O Rourke I. The Data A. Here are examples of arguments that are valid: P1. If I am in my office, my lights are on P2. I am in my office C. My lights are on P1. He is either in class

Vague, So Untrue. David Braun and Theodore Sider Noûs 41 (2007): 133 156

Vague, So Untrue David Braun and Theodore Sider Noûs 41 (2007): 133 156 According to an old and attractive view, vagueness must be eliminated before semantic notions (truth, implication, and so on) may

Quine on truth by convention

Quine on truth by convention March 8, 2005 1 Linguistic explanations of necessity and the a priori.............. 1 2 Relative and absolute truth by definition.................... 2 3 Is logic true by convention?...........................

Handout #1: Mathematical Reasoning

Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

Vagueness and Comparison

Vagueness and Comparison Chris Kennedy University of Chicago 7 April, 2008 Vagueness and Language Use Vagueness and comparison A building with a height of 525 meters is tall. Vagueness and comparison A

On the Paradox of the Question

On the Paradox of the Question Theodore Sider Analysis 57 (1997): 97 101 Ned Markosian (1997) tells a story in which philosophers have an opportunity to ask an angel a single question. In order to circumvent

22C:19 Discrete Math. So. What is it? Why discrete math? Fall 2009 Hantao Zhang

22C:19 Discrete Math Fall 2009 Hantao Zhang So. What is it? Discrete mathematics is the study of mathematical structures that are fundamentally discrete, in the sense of not supporting or requiring the

Section 1. Statements and Truth Tables. Definition 1.1: A mathematical statement is a declarative sentence that is true or false, but not both.

M3210 Supplemental Notes: Basic Logic Concepts In this course we will examine statements about mathematical concepts and relationships between these concepts (definitions, theorems). We will also consider

Reviewfrom Last Class

Reviewfrom Last Class The most used fallacy on Earth! Ad Hominem Several Types of Ad Hominem Fallacies 1. Personal Attack Ad Hominem 2. Inconsistency Ad Hominem 3. Circumstantial Ad Hominem 4. Poisoning

If it is raining, then it is cloudy. If an integer (whole number) n is greater than 4.5, then n is greater than 4.

47 Lesson 3: The Converse of the Pythagorean Theorem, Pythagorean Triples and the 3-Dimensional Pythagorean Theorem Recall that the Pythagorean Theorem tells us how to calculate the length of one side

Could I Have Been a Turnip? A Very Short Introduction to the Philosophy of Modality

Could I Have Been a Turnip? A Very Short Introduction to the Philosophy of Modality Modality If something is possible, it could have happened. If something is necessary, it had to happen. If something

Sorensen on Unknowable Obligations

Sorensen on Unknowable Obligations Theodore Sider Utilitas 7 (1995): 273 9 1. Access principles Vagueness in the phrase can know aside, the principle of Access An act is obligatory only if its agent can

CHAPTER 7 ARGUMENTS WITH DEFIITIONAL AND MISSING PREMISES

CHAPTER 7 ARGUMENTS WITH DEFIITIONAL AND MISSING PREMISES What You ll Learn in this Chapter In Chapters -5, we developed a skill set that s sufficient for the recognition, analysis, evaluation and construction

1/10. Descartes 2: The Cogito and the Mind

1/10 Descartes 2: The Cogito and the Mind Recap: last week we undertook to follow Descartes path of radical doubt in order to attempt to discover what, if anything, can be known for certain. This path

Absolute Value of Reasoning

About Illustrations: Illustrations of the Standards for Mathematical Practice (SMP) consist of several pieces, including a mathematics task, student dialogue, mathematical overview, teacher reflection

Objective. Materials. TI-73 Calculator

0. Objective To explore subtraction of integers using a number line. Activity 2 To develop strategies for subtracting integers. Materials TI-73 Calculator Integer Subtraction What s the Difference? Teacher

Propositional Logic. Definition: A proposition or statement is a sentence which is either true or false.

Propositional Logic Definition: A proposition or statement is a sentence which is either true or false. Definition:If a proposition is true, then we say its truth value is true, and if a proposition is

Validity and Conditionals

Validity and Conditionals case 1 case 2 case 3 case 4 &I. valid* 47 We know that cases 1 through 4 constitute all the ways in which any of the sentences in the argument may turn out to be true or false.

Last time we had arrived at the following provisional interpretation of Aquinas second way:

Aquinas Third Way Last time we had arrived at the following provisional interpretation of Aquinas second way: 1. 2. 3. 4. At least one thing has an efficient cause. Every causal chain must either be circular,

A Few Basics of Probability

A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 4. Stable Marriage - An Application of Proof Techniques to Algorithmic

CS 70-2 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 4 Stable Marriage - An Application of Proof Techniques to Algorithmic Analysis Consider a dating agency that must

Critical Thinking. First Year Seminar Learning Outcomes

Critical Thinking Dona Warren www.drddwarren.org www.uwsp.edu/special/wact/index.htm First Year Seminar Learning Outcomes A First Year Seminar is designed to introduce skills Upon completing this requirement,

Tastes and Indifference Curves

C H A P T E R 4 Tastes and Indifference Curves This chapter begins a 2-chapter treatment of tastes or what we also call preferences. In the first of these chapters, we simply investigate the basic logic

PHI 201, Introductory Logic p. 1/16

PHI 201, Introductory Logic p. 1/16 In order to make an argument, you have to make a claim (the conclusion) and you have to give some evidence for the claim (the premises). Bush tried to justify the war

But Then They Are Told. Michael Gorman School of Philosophy The Catholic University of America Washington, D.C. 20064 gorman@cua.

1 But Then They Are Told Michael Gorman School of Philosophy The Catholic University of America Washington, D.C. 20064 gorman@cua.edu The argument I want to discuss appears at the very end of the passage,

Descartes Fourth Meditation On human error

Descartes Fourth Meditation On human error Descartes begins the fourth Meditation with a review of what he has learned so far. He began his search for certainty by questioning the veracity of his own senses.

SCIENCE AND SEMANTICS: THE CASE OF VAGUENESS AND SUPERVALUATION*

Blackwell Oxford, PAPQ Pacific 0279-0750 XXX Original PACIFIC 2007 Philosophical University UK Articles PHILOSOPHICAL Publishing of Quarterly Southern Ltd QUARTERLY California and Blackwell Publishing

Perfect being theology and modal truth

Perfect being theology and modal truth Jeff Speaks February 9, 2016 Perfect being theology is the attempt to use the principle that God is the greatest possible being to derive claims about the divine

Phil 420: Metaphysics Spring 2008. [Handout 4] Hilary Putnam: Why There Isn t A Ready-Made World

1 Putnam s Main Theses: 1. There is no ready-made world. Phil 420: Metaphysics Spring 2008 [Handout 4] Hilary Putnam: Why There Isn t A Ready-Made World * [A ready-made world]: The world itself has to

A common form of argument in bioethics is the slippery slope argument. I will here spell out one version of it, and one of the most popular.

The Slippery Slope Argument A common form of argument in bioethics is the slippery slope argument. I will here spell out one version of it, and one of the most popular. _Causal Slippery Slope Argument

Cosmological Arguments for the Existence of God S. Clarke

Cosmological Arguments for the Existence of God S. Clarke [Modified Fall 2009] 1. Large class of arguments. Sometimes they get very complex, as in Clarke s argument, but the basic idea is simple. Lets

Kant s deontological ethics

Michael Lacewing Kant s deontological ethics DEONTOLOGY Deontologists believe that morality is a matter of duty. We have moral duties to do things which it is right to do and moral duties not to do things

LP 12A cog dis 1 03/23/09

LP 12A cog dis 1 Attitudes An attitude is a relatively stable evaluation of a person, object, situation or issue. This evaluation can be positive, negative, or ambivalent. Most attitudes have three s:

Basic Set Theory. 1. Motivation. Fido Sue. Fred Aristotle Bob. LX 502 - Semantics I September 11, 2008

Basic Set Theory LX 502 - Semantics I September 11, 2008 1. Motivation When you start reading these notes, the first thing you should be asking yourselves is What is Set Theory and why is it relevant?

Philosophy of Language: Preliminaries

Philosophy of Language: Preliminaries OVERVIEW Philosophy of language is concerned with a cluster of problems involving the relationships among these three elements: 1. Language 2. Language users (speakers,

5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1

MATH 13150: Freshman Seminar Unit 8 1. Prime numbers 1.1. Primes. A number bigger than 1 is called prime if its only divisors are 1 and itself. For example, 3 is prime because the only numbers dividing

Handout #1: Introduction to Bioethics

Handout #1: Introduction to Bioethics 1. Ethics: A Preliminary Definition Ethics is a branch of philosophy that inquires into standards of right (morally good) and wrong (morally bad) conduct. Ethics as

WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.

Section 1.5 Methods of Proof 1.5.1 1.5 METHODS OF PROOF Some forms of argument ( valid ) never lead from correct statements to an incorrect. Some other forms of argument ( fallacies ) can lead from true

1/9. Locke 1: Critique of Innate Ideas

1/9 Locke 1: Critique of Innate Ideas This week we are going to begin looking at a new area by turning our attention to the work of John Locke, who is probably the most famous English philosopher of all

DEDUCTIVE & INDUCTIVE REASONING

DEDUCTIVE & INDUCTIVE REASONING Expectations 1. Take notes on inductive and deductive reasoning. 2. This is an information based presentation -- I simply want you to be able to apply this information to

WHAT IS PHILOSOPHY? ARGUMENTATIO N. Intro to Philosophy, Summer 2011 Benjamin Visscher Hole IV

WHAT IS PHILOSOPHY? ARGUMENTATIO N Intro to Philosophy, Summer 2011 Benjamin Visscher Hole IV PHILOSOPHY CONSISTS IN CRITICAL ENGAGEMENT The philosophers we re reading have developed arguments to try to

AI Principles, Semester 2, Week 2, Lecture 4 Introduction to Logic Thinking, reasoning and deductive logic Validity of arguments, Soundness of

AI Principles, Semester 2, Week 2, Lecture 4 Introduction to Logic Thinking, reasoning and deductive logic Validity of arguments, Soundness of arguments Formal systems Axioms, Inference, and Proof Propositional

What Is Circular Reasoning?

What Is Circular Reasoning? Logical fallacies are a type of error in reasoning, errors which may be recognized and corrected by observant thinkers. There are a large number of informal fallacies that are

June 12, 2013 Latest revision: June 2014 BOOK CHAPTER DRAFT Vagueness, Degrees, and Gradable Predicates Marcin Morzycki Michigan State University This is a draft of a chapter for a book, Modification,

Modality & Other Matters: An Interview with Timothy Williamson

Perspectives: International Postgraduate Journal of Philosophy Modality & Other Matters: An Interview with Timothy Williamson Timothy Williamson (TW) has been the Wykeham Professor of Logic at Oxford since

How should we think about the testimony of others? Is it reducible to other kinds of evidence?

Subject: Title: Word count: Epistemology How should we think about the testimony of others? Is it reducible to other kinds of evidence? 2,707 1 How should we think about the testimony of others? Is it

Chapter 5: Fallacies. 23 February 2015

Chapter 5: Fallacies 23 February 2015 Plan for today Talk a bit more about arguments notice that the function of arguments explains why there are lots of bad arguments Turn to the concept of fallacy and

COMP 250 Fall Mathematical induction Sept. 26, (n 1) + n = n + (n 1)

COMP 50 Fall 016 9 - Mathematical induction Sept 6, 016 You will see many examples in this course and upcoming courses of algorithms for solving various problems It many cases, it will be obvious that

EXTREME POSITION MEAN POSITION EXTREME POSITION Save all of your money the rest.

CRITICAL THINKING HANDOUT 14 THE GOLDEN MEAN FALLACY The fact that one is confronted with an individual who strongly argues that slavery is wrong and another who argues equally strongly that slavery is

DIVINE CONTINGENCY Einar Duenger Bohn IFIKK, University of Oslo

DIVINE CONTINGENCY Einar Duenger Bohn IFIKK, University of Oslo Brian Leftow s God and Necessity is interesting, full of details, bold and ambitious. Roughly, the main question at hand is: assuming there

Arguments and Methodology INTRODUCTION

chapter 1 Arguments and Methodology INTRODUCTION We should accept philosophical views in general, and moral views in particular, on the basis of the arguments offered in their support. It is therefore

Chapter 1 LOGIC AND PROOF

Chapter 1 LOGIC AND PROOF To be able to understand mathematics and mathematical arguments, it is necessary to have a solid understanding of logic and the way in which known facts can be combined to prove

The Foundations: Logic and Proofs. Chapter 1, Part III: Proofs

The Foundations: Logic and Proofs Chapter 1, Part III: Proofs Rules of Inference Section 1.6 Section Summary Valid Arguments Inference Rules for Propositional Logic Using Rules of Inference to Build Arguments

Writing Thesis Defense Papers

Writing Thesis Defense Papers The point of these papers is for you to explain and defend a thesis of your own critically analyzing the reasoning offered in support of a claim made by one of the philosophers

Descartes Handout #2. Meditation II and III

Descartes Handout #2 Meditation II and III I. Meditation II: The Cogito and Certainty A. I think, therefore I am cogito ergo sum In Meditation II Descartes proposes a truth that cannot be undermined by

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

u4arg1 side b (Some arguments to analyze) Philosophy and Logic Unit 4 Handout #1

u4arg1 side b (Some arguments to analyze) Philosophy and Logic Unit 4 Handout #1 Jean Jacques Rousseau, Social Contract, I, chap IV. Any limitation of freedom of choice of children by their father must

Truth Conditional Meaning of Sentences. Ling324 Reading: Meaning and Grammar, pg

Truth Conditional Meaning of Sentences Ling324 Reading: Meaning and Grammar, pg. 69-87 Meaning of Sentences A sentence can be true or false in a given situation or circumstance. (1) The pope talked to

Philosophical argument

Michael Lacewing Philosophical argument At the heart of philosophy is philosophical argument. Arguments are different from assertions. Assertions are simply stated; arguments always involve giving reasons.

CHAPTER 2. Logic. 1. Logic Definitions. Notation: Variables are used to represent propositions. The most common variables used are p, q, and r.

CHAPTER 2 Logic 1. Logic Definitions 1.1. Propositions. Definition 1.1.1. A proposition is a declarative sentence that is either true (denoted either T or 1) or false (denoted either F or 0). Notation:

Kant on Time. Diana Mertz Hsieh (diana@dianahsieh.com) Kant (Phil 5010, Hanna) 28 September 2004

Kant on Time Diana Mertz Hsieh (diana@dianahsieh.com) Kant (Phil 5010, Hanna) 28 September 2004 In the Transcendental Aesthetic of his Critique of Pure Reason, Immanuel Kant offers a series of dense arguments

We would like to state the following system of natural deduction rules preserving falsity:

A Natural Deduction System Preserving Falsity 1 Wagner de Campos Sanz Dept. of Philosophy/UFG/Brazil sanz@fchf.ufg.br Abstract This paper presents a natural deduction system preserving falsity. This new

What We Can Learn From The Skeptical Puzzle. Tim Black

What We Can Learn From The Skeptical Puzzle Tim Black In Iris: European Journal of Philosophy and Public Debate 1 (2009): 439-447 (This version might be different in certain respects from the published

Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

Why There Are No People

Why There Are No People PETER UNGER I magine, if you will, a somewhat uncommonly shaped object, one whose shape is not very irregular or bizarre, perhaps, but which is at least sufficiently so that we

Must Philosophers Rely on Intuitions? Avner Baz. For several decades now philosophers in the mainstream of analytic philosophy, in their

Must Philosophers Rely on Intuitions? Avner Baz For several decades now philosophers in the mainstream of analytic philosophy, in their pursuit of a theory of x (knowledge, necessary truth, causation,

2 The Euclidean algorithm

2 The Euclidean algorithm Do you understand the number 5? 6? 7? At some point our level of comfort with individual numbers goes down as the numbers get large For some it may be at 43, for others, 4 In

Excerpts from Debating 101 Logic Fallacies

Excerpts from Debating 101 Logic Fallacies The following definition of a fallacy and all the other materials in this document are excerpts from the notes for a course entitled Debating 101 Logic Fallacies.

Monopolistic Competition, Oligopoly, and maybe some Game Theory

Monopolistic Competition, Oligopoly, and maybe some Game Theory Now that we have considered the extremes in market structure in the form of perfect competition and monopoly, we turn to market structures

Things a Millian can say about empty names

Things a Millian can say about empty names phil 93914 Jeff Speaks February 6, 2008 A Millian can, but need not, say the same thing about each of the different types of apparently empty names. The best