Challenges and applications

Size: px
Start display at page:

Download "Bigdata@BTH Challenges and applications"

Transcription

1 Challenges and applications Håkan Grahn, Blekinge Institute of Technology Parisa Yousefi, Ericsson and Blekinge Institute of Technology Research profile financed by the Knowledge foundation 36 msek (KKS) + 15 msek (BTH) + >40 msek (companies) Sep to Dec companies 4 departments at BTH Focus on machine learning and data mining, and efficient implementation of such algorithms on multicore and cloud system 1

2 Research focus How shall we design future scalable systems for big data analytics in order to achieve a good balance between performance and resource efficiency as well as business value? Research themes - Core academic competence in all themes Theme A: Big data analytics for decision support - Business intelligence - Multi-criteria decision-making - Descriptive/predictive big data analytics Theme B: Big data analytics for image processing - Image classification - Image restoration - Pattern recognition Theme C: Core technologies - Data mining and knowledge discovery - Discovery science - Machine learning - Real-time analytics Theme D: Foundations and enabling technologies - Multicore and cloud - Data communication and networks - Heterogeneous systems - Real-time and scheduling - Storage systems - Software architecture and implementation 2

3 Balanced mix of industry partners Theme A: Big data analytics for decision support - Business intelligence - Multi-criteria decision-making - Descriptive/predictive big data analytics Indigo IPEX MMI Scorett Footware Contribe Telenor Ericsson Noda Intelligent Systems Wireless Maingate Nordic Theme B: Big data analytics for image processing - Image classification - Image restoration - Pattern recognition Theme C: Core technologies - Data mining and knowledge discovery - Discovery science - Machine learning - Real-time analytics Theme D: Foundations and enabling technologies - Multicore and cloud - Data communication and networks - Heterogeneous systems - Real-time and scheduling - Storage systems - Software architecture and implementation Compuverde Sony Arkiv Digital AD Uniqueness and competitive edge Theme A: Big data analytics for decision support - Business intelligence - Multi-criteria decision-making - Descriptive/predictive big data analytics Health care domain Large distributed systems Telecommunication systems Concrete challenges!! Theme B: Big data analytics for image processing - Image classification - Image restoration - Pattern recognition Theme C: Core technologies - Data mining and knowledge discovery - Discovery science - Machine learning - Real-time analytics Unique combination!! Theme D: Foundations and enabling technologies - Multicore and cloud - Data communication and networks - Heterogeneous systems - Real-time and scheduling - Storage systems - Software architecture and implementation Camera devices Large-scale image processing and classification 3

4 Industrial challenges Results, knowledge, products, Concrete projects Industrial challenges drive the research agenda IC1: Real-time and large-scale quality assessment of images IC2: Demand-based hospital staff planning IC3: Customer profiling for personalized strategies & marketing IC4: Fraud and anomaly detection in large-scale data sets IC5: Automation and orchestration of cloud-based test environments IC6: Collection and selection of data for real-time analysis 4

5 Industrial challenges Results, knowledge, products, Concrete projects IC1 IC2 IC3 IC4 IC5 IC6 P1, Theme A X X P2, Theme A X X X P3, Theme B X X P4, Theme C X X X X X P5, Theme C X X X P6, Theme D X X X P7, Theme D X X IC1: Real-time and large-scale quality assessment of images IC1 IC2 IC3 IC4 IC5 IC6 P1, Theme A X X P2, Theme A X X X P3, Theme B X X P4, Theme C X X X X X P5, Theme C X X X P6, Theme D X X X P7, Theme D X X 5

6 IC1: Real-time and large-scale quality assessment of images IC1 IC2 IC3 IC4 IC5 IC6 P1, Theme A X X P2, Theme A X X X P3, Theme B X X P4, Theme C X X X X X P5, Theme C X X X P6, Theme D X X X P7, Theme D X X P3 (B): Efficient media analysis and processing P4 (C): Efficient ensemble methods for challenging domains Subprojects Addressing the challenges P1 (A): Decision support systems for resource estimation and allocation P2 (A): Decision support systems for anomaly detection and visualization P3 (B): Efficient media analysis and processing P4 (C): Efficient ensemble methods for challenging domains P5 (C): Classification and regression in large data streams P6 (D): Data collection and selection in large distributed environments P7 (D): Resource-efficient automatic orchestration of resources in cloud systems for big data analytics 6

7 Possible applications in transport and logistics Distributed data collection, filtering, and storage, e.g., traffic information Planning and scheduling, e.g., resource planning, train schedules, maintenance FLOAT - FLexibel Omplanering Av Tåglägen i drift KAJT Kapacitet i JärnvägsTrafiken Anomaly detection, e.g., strange or unusual behavior Revenue management, e.g., revenue leakage, run-away costs 7

Augmented Search for IT Data Analytics. New frontier in big log data analysis and application intelligence

Augmented Search for IT Data Analytics. New frontier in big log data analysis and application intelligence Augmented Search for IT Data Analytics New frontier in big log data analysis and application intelligence Business white paper May 2015 IT data is a general name to log data, IT metrics, application data,

More information

Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence

Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence Augmented Search for Web Applications New frontier in big log data analysis and application intelligence Business white paper May 2015 Web applications are the most common business applications today.

More information

Augmented Search for Software Testing

Augmented Search for Software Testing Augmented Search for Software Testing For Testers, Developers, and QA Managers New frontier in big log data analysis and application intelligence Business white paper May 2015 During software testing cycles,

More information

Big Data Analytics. An Introduction. Oliver Fuchsberger University of Paderborn 2014

Big Data Analytics. An Introduction. Oliver Fuchsberger University of Paderborn 2014 Big Data Analytics An Introduction Oliver Fuchsberger University of Paderborn 2014 Table of Contents I. Introduction & Motivation What is Big Data Analytics? Why is it so important? II. Techniques & Solutions

More information

Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov

Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov Search and Data Mining: Techniques Applications Anya Yarygina Boris Novikov Introduction Data mining applications Data mining system products and research prototypes Additional themes on data mining Social

More information

3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India

3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India 3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India Call for Papers Cloud computing has emerged as a de facto computing

More information

Accenture Cyber Security Transformation. October 2015

Accenture Cyber Security Transformation. October 2015 Accenture Cyber Security Transformation October 2015 Today s Presenter Antti Ropponen, Nordic Cyber Defense Domain Lead Accenture Nordics Antti is a leading consultant in Accenture's security consulting

More information

Big Data Use Cases Update

Big Data Use Cases Update Big Data Use Cases Update Sanat Joshi Industry Solutions Manufacturing Industries Business Unit 1 Data Explosion Web & social networks experienced it first Infographic by Go-gulf.com 2 Number Of Connected

More information

1 st Symposium on Colossal Data and Networking (CDAN-2016) March 18-19, 2016 Medicaps Group of Institutions, Indore, India

1 st Symposium on Colossal Data and Networking (CDAN-2016) March 18-19, 2016 Medicaps Group of Institutions, Indore, India 1 st Symposium on Colossal Data and Networking (CDAN-2016) March 18-19, 2016 Medicaps Group of Institutions, Indore, India Call for Papers Colossal Data Analysis and Networking has emerged as a de facto

More information

Data Mining + Business Intelligence. Integration, Design and Implementation

Data Mining + Business Intelligence. Integration, Design and Implementation Data Mining + Business Intelligence Integration, Design and Implementation ABOUT ME Vijay Kotu Data, Business, Technology, Statistics BUSINESS INTELLIGENCE - Result Making data accessible Wider distribution

More information

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition

More information

ANALYTICS STRATEGY: creating a roadmap for success

ANALYTICS STRATEGY: creating a roadmap for success ANALYTICS STRATEGY: creating a roadmap for success Companies in the capital and commodity markets are looking at analytics for opportunities to improve revenue and cost savings. Yet, many firms are struggling

More information

IBM SPSS Modeler Professional

IBM SPSS Modeler Professional IBM SPSS Modeler Professional Make better decisions through predictive intelligence Highlights Create more effective strategies by evaluating trends and likely outcomes. Easily access, prepare and model

More information

The Analytics Value Chain Key to Delivering Value in IoT

The Analytics Value Chain Key to Delivering Value in IoT Vitria Operational Intelligence The Value Chain Key to Delivering Value in IoT Dr. Dale Skeen CTO and Co-Founder Internet of Things Value Potential $20 Trillion by 2025 40% 2015 Vitria Technology, Inc.

More information

Knowledge Discovery from Data Bases Proposal for a MAP-I UC

Knowledge Discovery from Data Bases Proposal for a MAP-I UC Knowledge Discovery from Data Bases Proposal for a MAP-I UC João Gama (jgama@fep.up.pt) Universidade do Porto 1 Knowledge Discovery from Data Bases We are deluged by data: scientific data, medical data,

More information

Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010

Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010 Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010 Ernst van Waning Senior Sales Engineer May 28, 2010 Agenda SPSS, an IBM Company SPSS Statistics User-driven product

More information

Towards a Thriving Data Economy: Open Data, Big Data, and Data Ecosystems

Towards a Thriving Data Economy: Open Data, Big Data, and Data Ecosystems Towards a Thriving Data Economy: Open Data, Big Data, and Data Ecosystems Volker Markl volker.markl@tu-berlin.de dima.tu-berlin.de dfki.de/web/research/iam/ bbdc.berlin Based on my 2014 Vision Paper On

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:

More information

Consulting and Systems Integration (1) Networks & Cloud Integration Engineer

Consulting and Systems Integration (1) Networks & Cloud Integration Engineer Ericsson is a world-leading provider of telecommunications equipment & services to mobile & fixed network operators. Over 1,000 networks in more than 180 countries use Ericsson equipment, & more than 40

More information

Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Combining the benefits of RDBMS and NoSQL database systems

Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Combining the benefits of RDBMS and NoSQL database systems DATA WAREHOUSING RESEARCH TRENDS Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Data source heterogeneity and incongruence Filtering out uncorrelated data Strongly unstructured

More information

INTERNATIONAL MASTER IN BUSINESS ANALYTICS AND BIG DATA

INTERNATIONAL MASTER IN BUSINESS ANALYTICS AND BIG DATA POLITECNICO DI MILANO GRADUATE SCHOOL OF BUSINESS BABD INTERNATIONAL MASTER IN BUSINESS ANALYTICS AND BIG DATA Courses Description A JOINT PROGRAM WITH POLITECNICO DI MILANO SCHOOL OF MANAGEMENT PRE-COURSES

More information

The Purview Solution Integration With Splunk

The Purview Solution Integration With Splunk The Purview Solution Integration With Splunk Integrating Application Management and Business Analytics With Other IT Management Systems A SOLUTION WHITE PAPER WHITE PAPER Introduction Purview Integration

More information

Vortex White Paper. Simplifying Real-time Information Integration in Industrial Internet of Things (IIoT) Control Systems

Vortex White Paper. Simplifying Real-time Information Integration in Industrial Internet of Things (IIoT) Control Systems Vortex White Paper Simplifying Real-time Information Integration in Industrial Internet of Things (IIoT) Control Systems Version 1.0 February 2015 Andrew Foster, Product Marketing Manager, PrismTech Vortex

More information

Profit from Big Data flow. Hospital Revenue Leakage: Minimizing missing charges in hospital systems

Profit from Big Data flow. Hospital Revenue Leakage: Minimizing missing charges in hospital systems Profit from Big Data flow Hospital Revenue Leakage: Minimizing missing charges in hospital systems Hospital Revenue Leakage White Paper 2 Tapping the hidden assets in hospitals data Missed charges on patient

More information

locuz.com Big Data Services

locuz.com Big Data Services locuz.com Big Data Services Big Data At Locuz, we help the enterprise move from being a data-limited to a data-driven one, thereby enabling smarter, faster decisions that result in better business outcome.

More information

How does Big Data disrupt the technology ecosystem of the public cloud?

How does Big Data disrupt the technology ecosystem of the public cloud? How does Big Data disrupt the technology ecosystem of the public cloud? Copyright 2012 IDC. Reproduction is forbidden unless authorized. All rights reserved. Agenda Market trends 2020 Vision Introduce

More information

Tax Fraud in Increasing

Tax Fraud in Increasing Preventing Fraud with Through Analytics Satya Bhamidipati Data Scientist Business Analytics Product Group Copyright 2014 Oracle and/or its affiliates. All rights reserved. 2 Tax Fraud in Increasing 27%

More information

EVERYTHING THAT MATTERS IN ADVANCED ANALYTICS

EVERYTHING THAT MATTERS IN ADVANCED ANALYTICS EVERYTHING THAT MATTERS IN ADVANCED ANALYTICS Marcia Kaufman, Principal Analyst, Hurwitz & Associates Dan Kirsch, Senior Analyst, Hurwitz & Associates Steve Stover, Sr. Director, Product Management, Predixion

More information

IBM's Fraud and Abuse, Analytics and Management Solution

IBM's Fraud and Abuse, Analytics and Management Solution Government Efficiency through Innovative Reform IBM's Fraud and Abuse, Analytics and Management Solution Service Definition Copyright IBM Corporation 2014 Table of Contents Overview... 1 Major differentiators...

More information

Predictive Analytics for IT Giving Organizations an Edge in a Rapidly Changing World

Predictive Analytics for IT Giving Organizations an Edge in a Rapidly Changing World Predictive Analytics for IT Giving Organizations an Edge in a Rapidly Changing World EXECUTIVE SUMMARY By Dan Kusnetzky, Distinguished Analyst Organizations find themselves facing a complex mix of applications

More information

M.Tech. Software Systems

M.Tech. Software Systems M.Tech. Software Systems Input Requirements Employed professionals holding an Integrated First Degree of BITS or its equivalent in relevant disciplines, with minimum one year work experience in relevant

More information

Bringing Big Analytics to the Masses Neal Leavitt

Bringing Big Analytics to the Masses Neal Leavitt Bringing Big Analytics to the Masses Neal Leavitt CS846 short paper presentation Song Wang 1 2015/9/29 Motivation Agenda Issues for Small Business Analytics for all Drawbacks Summary 2 2015/9/29 Motivation

More information

Big Data in Customer Relationship Management (CRM)

Big Data in Customer Relationship Management (CRM) Brochure More information from http://www.researchandmarkets.com/reports/2623207/ Big Data in Customer Relationship Management (CRM) Description: Customer Relationship Management (CRM) is a model of managing

More information

Video Analytics and Security

Video Analytics and Security Video Analytics and Security Video Analytics and Security Using video data to improve both safety and ROI TABLE OF CONTENTS I. Executive Summary... 1 II. Captured on Video. Now What?... 2 III. Start Where

More information

A New Era Of Analytic

A New Era Of Analytic Penang egovernment Seminar 2014 A New Era Of Analytic Megat Anuar Idris Head, Project Delivery, Business Analytics & Big Data Agenda Overview of Big Data Case Studies on Big Data Big Data Technology Readiness

More information

Big Data: Image & Video Analytics

Big Data: Image & Video Analytics Big Data: Image & Video Analytics How it could support Archiving & Indexing & Searching Dieter Haas, IBM Deutschland GmbH The Big Data Wave 60% of internet traffic is multimedia content (images and videos)

More information

The Big Data methodology in computer vision systems

The Big Data methodology in computer vision systems The Big Data methodology in computer vision systems Popov S.B. Samara State Aerospace University, Image Processing Systems Institute, Russian Academy of Sciences Abstract. I consider the advantages of

More information

TEXT ANALYTICS INTEGRATION

TEXT ANALYTICS INTEGRATION TEXT ANALYTICS INTEGRATION A TELECOMMUNICATIONS BEST PRACTICES CASE STUDY VISION COMMON ANALYTICAL ENVIRONMENT Structured Unstructured Analytical Mining Text Discovery Text Categorization Text Sentiment

More information

Integrate Big Data into Business Processes and Enterprise Systems. solution white paper

Integrate Big Data into Business Processes and Enterprise Systems. solution white paper Integrate Big Data into Business Processes and Enterprise Systems solution white paper THOUGHT LEADERSHIP FROM BMC TO HELP YOU: Understand what Big Data means Effectively implement your company s Big Data

More information

Integrating Big Data into Business Processes and Enterprise Systems

Integrating Big Data into Business Processes and Enterprise Systems Integrating Big Data into Business Processes and Enterprise Systems THOUGHT LEADERSHIP FROM BMC TO HELP YOU: Understand what Big Data means Effectively implement your company s Big Data strategy Get business

More information

BIG DATA STRATEGY. Rama Kattunga Chair at American institute of Big Data Professionals. Building Big Data Strategy For Your Organization

BIG DATA STRATEGY. Rama Kattunga Chair at American institute of Big Data Professionals. Building Big Data Strategy For Your Organization BIG DATA STRATEGY Rama Kattunga Chair at American institute of Big Data Professionals Building Big Data Strategy For Your Organization In this session What is Big Data? Prepare your organization Building

More information

Predictive Analytics Techniques: What to Use For Your Big Data. March 26, 2014 Fern Halper, PhD

Predictive Analytics Techniques: What to Use For Your Big Data. March 26, 2014 Fern Halper, PhD Predictive Analytics Techniques: What to Use For Your Big Data March 26, 2014 Fern Halper, PhD Presenter Proven Performance Since 1995 TDWI helps business and IT professionals gain insight about data warehousing,

More information

Big data platform for IoT Cloud Analytics. Chen Admati, Advanced Analytics, Intel

Big data platform for IoT Cloud Analytics. Chen Admati, Advanced Analytics, Intel Big data platform for IoT Cloud Analytics Chen Admati, Advanced Analytics, Intel Agenda IoT @ Intel End-to-End offering Analytics vision Big data platform for IoT Cloud Analytics Platform Capabilities

More information

Solve Your Toughest Challenges with Data Mining

Solve Your Toughest Challenges with Data Mining IBM Software Business Analytics IBM SPSS Modeler Solve Your Toughest Challenges with Data Mining Use predictive intelligence to make good decisions faster Solve Your Toughest Challenges with Data Mining

More information

Data Analytics as a Service

Data Analytics as a Service Data Analytics as a Service unleashing the power of Cloud and Big Data 05-06-2014 Big Data in a Cloud DAaaS: Data Analytics as a Service DAaaS: Data Analytics as a Service Introducing Data Analytics as

More information

Intelligent Business Operations

Intelligent Business Operations Intelligent Business Operations Echtzeit-Datenanalyse und Aktionen im Zusammenspiel Dr. Jürgen Krämer VP Product Strategy IBO & Product Management Apama 23.06.2014 Helping Organizations Transform into

More information

The 2012 Data Informed Analytics and Data Survey

The 2012 Data Informed Analytics and Data Survey The 2012 Data Informed Analytics and Data Survey Table of Contents Page 2: Page 2: Page 4: Page 21: Page 36: Page 39 Introduction Who Responded? What They Want to Know What They Don t Understand Managing

More information

Software AG Fast Big Data Solutions. Come la gestione realtime dei dati abilita nuovi scenari di business per le Banche

Software AG Fast Big Data Solutions. Come la gestione realtime dei dati abilita nuovi scenari di business per le Banche Software AG Fast Big Data Solutions Come la gestione realtime dei dati abilita nuovi scenari di business per le Banche Software AG Fast Big Data Solutions Get there faster Vittorio Carosone Regional Sales

More information

Predictive Analytics: Too Important to Ignore The six secrets to success with predictive analytics

Predictive Analytics: Too Important to Ignore The six secrets to success with predictive analytics Predictive Analytics: Too Important to Ignore The six secrets to success with predictive analytics Webinar December 18, 2013 Sponsored by: Tony Cosentino VP & Research Director, Business Analytics Ventana

More information

Solve your toughest challenges with data mining

Solve your toughest challenges with data mining IBM Software IBM SPSS Modeler Solve your toughest challenges with data mining Use predictive intelligence to make good decisions faster Solve your toughest challenges with data mining Imagine if you could

More information

Big Data and Complex Networks Analytics. Timos Sellis, CSIT Kathy Horadam, MGS

Big Data and Complex Networks Analytics. Timos Sellis, CSIT Kathy Horadam, MGS Big Data and Complex Networks Analytics Timos Sellis, CSIT Kathy Horadam, MGS Big Data What is it? Most commonly accepted definition, by Gartner (the 3 Vs) Big data is high-volume, high-velocity and high-variety

More information

Search and Data Mining: Techniques. Introduction Anna Yarygina Boris Novikov

Search and Data Mining: Techniques. Introduction Anna Yarygina Boris Novikov Search and Data Mining: Techniques Introduction Anna Yarygina Boris Novikov Data Analytics: Conference Sections Fundamentals for data analytics Mechanisms and features Big Data Huge data Target analytics

More information

IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper

IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper CAST-2015 provides an opportunity for researchers, academicians, scientists and

More information

NetView 360 Product Description

NetView 360 Product Description NetView 360 Product Description Heterogeneous network (HetNet) planning is a specialized process that should not be thought of as adaptation of the traditional macro cell planning process. The new approach

More information

Predictive Analytics. Noam Zeigerson, CTO

Predictive Analytics. Noam Zeigerson, CTO Predictive Analytics Noam Zeigerson, CTO Agenda The Predictive Analytics Need Innovative Technologies Business Solutions The problem: Inconsistent stream of revenue Available Data Sources ERP data Web

More information

Data-Driven Decisions: Role of Operations Research in Business Analytics

Data-Driven Decisions: Role of Operations Research in Business Analytics Data-Driven Decisions: Role of Operations Research in Business Analytics Dr. Radhika Kulkarni Vice President, Advanced Analytics R&D SAS Institute April 11, 2011 Welcome to the World of Analytics! Lessons

More information

High-Performance Analytics

High-Performance Analytics High-Performance Analytics David Pope January 2012 Principal Solutions Architect High Performance Analytics Practice Saturday, April 21, 2012 Agenda Who Is SAS / SAS Technology Evolution Current Trends

More information

REAL-TIME OPERATIONAL INTELLIGENCE. Competitive advantage from unstructured, high-velocity log and machine Big Data

REAL-TIME OPERATIONAL INTELLIGENCE. Competitive advantage from unstructured, high-velocity log and machine Big Data REAL-TIME OPERATIONAL INTELLIGENCE Competitive advantage from unstructured, high-velocity log and machine Big Data 2 SQLstream: Our s-streaming products unlock the value of high-velocity unstructured log

More information

Is a Data Scientist the New Quant? Stuart Kozola MathWorks

Is a Data Scientist the New Quant? Stuart Kozola MathWorks Is a Data Scientist the New Quant? Stuart Kozola MathWorks 2015 The MathWorks, Inc. 1 Facts or information used usually to calculate, analyze, or plan something Information that is produced or stored by

More information

Dan French Founder & CEO, Consider Solutions

Dan French Founder & CEO, Consider Solutions Dan French Founder & CEO, Consider Solutions CONSIDER SOLUTIONS Mission Solutions for World Class Finance Footprint Financial Control & Compliance Risk Assurance Process Optimization CLIENTS CONTEXT The

More information

Technology Enablement

Technology Enablement SOLUTION OVERVIEW 1 ABOUT TECHMILEAGE Founded in 2008 / Tempe, Arizona Over 100 engagements Full range of business & technology services Software Development, Big Data, Cloud/AWS, BI, Advanced Analytics

More information

Industrial Roadmap for Connected Machines. Sal Spada Research Director ARC Advisory Group sspada@arcweb.com

Industrial Roadmap for Connected Machines. Sal Spada Research Director ARC Advisory Group sspada@arcweb.com Industrial Roadmap for Connected Machines Sal Spada Research Director ARC Advisory Group sspada@arcweb.com Industrial Internet of Things (IoT) Based upon enhanced connectivity of this stuff Connecting

More information

Beginning the journey to smart water companies starting with water networks

Beginning the journey to smart water companies starting with water networks Beginning the journey to smart water companies starting with water networks Paul Rutter, Water Innovation Manager, Thames Water Joby Boxall, Professor of Water Infrastructure Engineering, The University

More information

A Professional Big Data Master s Program to train Computational Specialists

A Professional Big Data Master s Program to train Computational Specialists A Professional Big Data Master s Program to train Computational Specialists Anoop Sarkar, Fred Popowich, Alexandra Fedorova! School of Computing Science! Education for Employable Graduates: Critical Questions

More information

Big Data Driven Knowledge Discovery for Autonomic Future Internet

Big Data Driven Knowledge Discovery for Autonomic Future Internet Big Data Driven Knowledge Discovery for Autonomic Future Internet Professor Geyong Min Chair in High Performance Computing and Networking Department of Mathematics and Computer Science College of Engineering,

More information

Information Technology Policy

Information Technology Policy Information Technology Policy Security Information and Event Management Policy ITP Number Effective Date ITP-SEC021 October 10, 2006 Category Supersedes Recommended Policy Contact Scheduled Review RA-ITCentral@pa.gov

More information

This Symposium brought to you by www.ttcus.com

This Symposium brought to you by www.ttcus.com This Symposium brought to you by www.ttcus.com Linkedin/Group: Technology Training Corporation @Techtrain Technology Training Corporation www.ttcus.com Big Data Analytics as a Service (BDAaaS) Big Data

More information

DATA MANAGEMENT FOR THE INTERNET OF THINGS

DATA MANAGEMENT FOR THE INTERNET OF THINGS DATA MANAGEMENT FOR THE INTERNET OF THINGS February, 2015 Peter Krensky, Research Analyst, Analytics & Business Intelligence Report Highlights p2 p4 p6 p7 Data challenges Managing data at the edge Time

More information

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing

More information

INTERNET OF THINGS IN STEEL MANUFACTURING

INTERNET OF THINGS IN STEEL MANUFACTURING INTERNET OF THINGS IN STEEL MANUFACTURING Computer Applications Technology Committee Meeting, 9th Oct 2014 Presented by HCL Technologies Agenda 1 Definition 2 Significance of IoT 3 Making a Steel Plant

More information

Big Data. Fast Forward. Putting data to productive use

Big Data. Fast Forward. Putting data to productive use Big Data Putting data to productive use Fast Forward What is big data, and why should you care? Get familiar with big data terminology, technologies, and techniques. Getting started with big data to realize

More information

Integrating a Big Data Platform into Government:

Integrating a Big Data Platform into Government: Integrating a Big Data Platform into Government: Drive Better Decisions for Policy and Program Outcomes John Haddad, Senior Director Product Marketing, Informatica Digital Government Institute s Government

More information

The 5G Infrastructure Public-Private Partnership

The 5G Infrastructure Public-Private Partnership The 5G Infrastructure Public-Private Partnership NetFutures 2015 5G PPP Vision 25/03/2015 19/06/2015 1 5G new service capabilities User experience continuity in challenging situations such as high mobility

More information

IoT Analytics: Four Key Essentials and Four Target Industries

IoT Analytics: Four Key Essentials and Four Target Industries IoT Analytics: Four Key Essentials and Four Target Industries 1 Introduction Analysts and IT personnel across all industries seek technology to better engage and manage data generated by the Internet of

More information

APPROACHABLE ANALYTICS MAKING SENSE OF DATA

APPROACHABLE ANALYTICS MAKING SENSE OF DATA APPROACHABLE ANALYTICS MAKING SENSE OF DATA AGENDA SAS DELIVERS PROVEN SOLUTIONS THAT DRIVE INNOVATION AND IMPROVE PERFORMANCE. About SAS SAS Business Analytics Framework Approachable Analytics SAS for

More information

A Capability Model for Business Analytics: Part 2 Assessing Analytic Capabilities

A Capability Model for Business Analytics: Part 2 Assessing Analytic Capabilities A Capability Model for Business Analytics: Part 2 Assessing Analytic Capabilities The first article of this series presented the capability model for business analytics that is illustrated in Figure One.

More information

Database Marketing, Business Intelligence and Knowledge Discovery

Database Marketing, Business Intelligence and Knowledge Discovery Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski

More information

Advanced Visibility. Moving Beyond a Log Centric View. Matthew Gardiner, RSA & Richard Nichols, RSA

Advanced Visibility. Moving Beyond a Log Centric View. Matthew Gardiner, RSA & Richard Nichols, RSA Advanced Visibility Moving Beyond a Log Centric View Matthew Gardiner, RSA & Richard Nichols, RSA 1 Security is getting measurability worse Percent of breaches where time to compromise (red)/time to Discovery

More information

Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI

Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI Yudho Giri Sucahyo, Ph.D, CISA (yudho@cs.ui.ac.id) Faculty of Computer Science, University of Indonesia Objectives

More information

Transforming industries: energy and utilities. How the Internet of Things will transform the utilities industry

Transforming industries: energy and utilities. How the Internet of Things will transform the utilities industry Transforming industries: energy and utilities How the Internet of Things will transform the utilities industry GETTING TO KNOW UTILITIES Utility companies are responsible for managing the infrastructure

More information

Oracle Real Time Decisions

Oracle Real Time Decisions A Product Review James Taylor CEO CONTENTS Introducing Decision Management Systems Oracle Real Time Decisions Product Architecture Key Features Availability Conclusion Oracle Real Time Decisions (RTD)

More information

Customized Report- Big Data

Customized Report- Big Data GINeVRA Digital Research Hub Customized Report- Big Data 1 2014. All Rights Reserved. Agenda Context Challenges and opportunities Solutions Market Case studies Recommendations 2 2014. All Rights Reserved.

More information

IEEE 2015-2016 JAVA TITLES

IEEE 2015-2016 JAVA TITLES ECWAY ECHNOLGIES IEEE 2015-2016 JAVA TITLES BE, B.TECH, ME, M.TECH, MSC, MCA PROJECTS Abstract: Introduction: Literature Survey: System Analysis: Existing System: Disadvantages: Proposed System: Advantages:

More information

Software Engineering for Big Data. CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo

Software Engineering for Big Data. CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo Software Engineering for Big Data CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo Big Data Big data technologies describe a new generation of technologies that aim

More information

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

More information

not possible or was possible at a high cost for collecting the data.

not possible or was possible at a high cost for collecting the data. Data Mining and Knowledge Discovery Generating knowledge from data Knowledge Discovery Data Mining White Paper Organizations collect a vast amount of data in the process of carrying out their day-to-day

More information

Reference Architecture, Requirements, Gaps, Roles

Reference Architecture, Requirements, Gaps, Roles Reference Architecture, Requirements, Gaps, Roles The contents of this document are an excerpt from the brainstorming document M0014. The purpose is to show how a detailed Big Data Reference Architecture

More information

Government Technology Trends to Watch in 2014: Big Data

Government Technology Trends to Watch in 2014: Big Data Government Technology Trends to Watch in 2014: Big Data OVERVIEW The federal government manages a wide variety of civilian, defense and intelligence programs and services, which both produce and require

More information

Megaputer Intelligence

Megaputer Intelligence Megaputer Intelligence Company Profile www.megaputer.com 2012 Megaputer Intelligence Inc. Megaputer Intelligence Knowledge discovery tools for business users Easy-to-understand actionable results Data

More information

Business Analytics for Big Data

Business Analytics for Big Data IBM Software Business Analytics Big Data Business Analytics for Big Data Unlock value to fuel performance 2 Business Analytics for Big Data Contents 2 Introduction 3 Extracting insights from big data 4

More information

Scalable Processing and mining of Complex Events for Security-analytics

Scalable Processing and mining of Complex Events for Security-analytics Scalable Processing and mining of Complex Events for Security-analytics Secur IT kickoff 8 sept 2015 Security Information and Event Management Existing tools for security monitoring SIM/SEM (Near) real-time

More information

DB ACCESS GERMAN, SWISS & AUSTRIAN CONFERENCE

DB ACCESS GERMAN, SWISS & AUSTRIAN CONFERENCE DB ACCESS GERMAN, SWISS & AUSTRIAN CONFERENCE Karl-Heinz Streibich CEO, Software AG June 9, 2016 2016 Sofware AG. All rights reserved. SAFE HARBOR This presentation includes forward-looking statements

More information

Research of Postal Data mining system based on big data

Research of Postal Data mining system based on big data 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA 2015) Research of Postal Data mining system based on big data Xia Hu 1, Yanfeng Jin 1, Fan Wang 1 1 Shi Jiazhuang Post & Telecommunication

More information

The Internet of Things

The Internet of Things The Internet of Things The Power of Actionable Insight An introduction to the Internet of Things Chris Vetor Business Unit Executive, WW Programs cvetor@us.ibm.com More and more of the world s activity

More information

Center for Dynamic Data Analytics (CDDA) An NSF Supported Industry / University Cooperative Research Center (I/UCRC) Vision and Mission

Center for Dynamic Data Analytics (CDDA) An NSF Supported Industry / University Cooperative Research Center (I/UCRC) Vision and Mission Photo courtesy of Justin Reuter Center for Dynamic Data Analytics (CDDA) An NSF Supported Industry / University Cooperative Research Center (I/UCRC) Vision and Mission CDDA Mission Mission of our CDDA

More information

Mobile Operator Big Data Analytics & Actions

Mobile Operator Big Data Analytics & Actions Success Story Mobile Operator Big Data Analytics & Actions Experiences and Benefits Achieved Agenda 1 2 Company Background Focus Customer Profile 3 The Solution Decision Process 4 5 6 The Solution The

More information

From Big Data to Smart Data Thomas Hahn

From Big Data to Smart Data Thomas Hahn Siemens Future Forum @ HANNOVER MESSE 2014 From Big to Smart Hannover Messe 2014 The Evolution of Big Digital data ~ 1960 warehousing ~1986 ~1993 Big data analytics Mining ~2015 Stream processing Digital

More information

Higher Business ROI with Optimized Prediction

Higher Business ROI with Optimized Prediction Higher Business ROI with Optimized Prediction Yottamine s Unique and Powerful Solution Forward thinking businesses are starting to use predictive analytics to predict which future business events will

More information

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume

More information