Direct fuel injection

Size: px
Start display at page:

Download "Direct fuel injection"

Transcription

1 Types of Fuel Injection Schemes Direct (cylinder) injection Port injection Manifold riser injection GDI (Gasoline Direct Injection) Direct fuel injection

2 inlet port and manifold riser injection These terms include designs in which the injection nozzles are located to spray fuel into the valve port (right) or into the induction manifold adjacent to the valve port (left).

3 A Schematic diagram of the electronic fuel injection system

4 Signals and controlled variables at the ECU Q L Intake air quantity, ϑl Air temperature, n Engine speed, P Engine load range, ϑm Engine temperature, V E Injected fuel quantity, Q LZ Auxiliary air, V ES Excess fuel for starting, U B Vehicle-system voltage.

5 Mono-Jetronic schematic diagram 1 Fuel lank, 2 Electric fuel pump, 3 Fuel filter, 4 Fuel-pressure regulator, 5 Solenoid-operated fuel injector, 6 Air-temperature sensor, 7 ECU, 8 Throttle-valve actuator, 9 Throttle-valve potentiometer, 10 Canister-purge valve, 77 Carbon canister, 12 Lambda oxygen sensor, 13 Engine-temperature sensor, 14 Ignition distributor, 15 Battery, 16 Ignition-start switch, 17 Relay, 18 Diagnosis connection, 19 Central injection unit.

6 D-Jetronic schematic diagram

7 Functional schematic diagram of the K-Jetronic

8 A Schematic diagram of the K-Jetronic: Mechanical multipoint port fuel-injection system (without electronic control unit).

9 The Schematic diagram of the K-Jetronic system with closed-loop lambda control (with electronic control unit) 1 Fuel tank, 2 Electric fuel pump, 3 Fuel accumulator, 4 Fuel filter, 5 Warm-up regulator, 6 Injection valve, 7 Intake manifold, 8 Cold-start valve, 9 Fuel distributor, 10 Air-flow sensor, 11 Timing valve, 12 Lambda sensor, 13 Thermo-time switch, 14 Ignition distributor, 15 Auxiliary-air device, 16 Throttle-valve switch, 17 Electronic control unit, 18 Ignition and starting switch, 19 Battery.

10 The Schematic diagram of a KE-Jetronic system with lambda closed-loop control. 1 Fuel tank, 2 Electric fuel pump, 3 Fuel accumulator, 4 Fuel filter, 5 Primary-pressure regulator, 6 Fuel-injection valve, 7 Intake manifold. 5 Cold-start valve, 9 Fuel distributor, 10 Air-flow sensor, 11 Electro-hydraulic pressure actuator, 12 Lambda sensor, 13 Thermotime switch, 14 Engine-temperature sensor, 15 Ignition distributor, 16 Auxiliary-air device, 17 Throttle-valve switch, 18 Control unit, 19 Ignition and starting switch, 20 Battery.

11 Principle of the L-Jetronic (simplified)

12 A Schematic diagram of an L-Jetronic system with lambda closed-loop control. 1 Fuel tank, 2 Electric fuel pump, 3 Fuel filter, 4 ECU, 5 Injection valve, 6 Fuel rail and pressure regulator, 7 Intake manifold, 8 Cold-start valve, 9 Throttle-valve switch, 10 Air-flow sensor, 11 Lambda sensor, 12 Thermo-time switch, 13 Engine-temperature sensor, 14 Ignition distributor, 15 Auxiliary-air device, 16 Battery,17 Ignition and starting switch.

13 A Schematic System diagram of Motronic MS with integrated onboard diagnostics. 1 Carbon canister, 2 Shutoff valve, 3 Canister-purge valve, 4 Fuel-pressure regulator, 5 Injector, 6 Pressure actuator, 7 Ignition coil, 8 Phase sensor, 9 Secondary-air pump, 10 Secondary-air valve, 11 Air-mass meter, 12 Control unit (ECU), 13 Throttle-valve sensor, 14 Idle actuator, 15 Air-temperature sensor, 16 EGR valve, 17 Fuel filter, 18 Knock sensor, 19 Engine-speed sensor, 20 Engine-temperature sensor, 21 Lambda oxygen sensor, 22 Diagnosis interface, 23 Diagnosis lamp, 24 Pressure differential sensor, 25 Electric fuel pump.

14 Motronic block diagram

15 THE STRATIFIED-CHARGE ENGINES Effect of Mean Effective Pressure and Fuel Consumption on coefficient of air excess at constant speed SFC: Specific Fuel Consumption, MEP: Main Effective Pressure

16 Influence of air ratio on exhaust emissions

17 The Russian Gaz-52 stratified-charge spark-ignition engine The cylinders are fed with two separate carburetted mixture streams through separate inlet valves. The main inlet valve supplies a relatively weak charge, while a small quantity of rich mixture is fed through the small inlet valve into the pre-combustion chamber

18 The IFP Renault-CNRS variable fuel/air ratio process. In this stratified-charge engine, the rich mixture is fed into the inlet port through a separate tube. The encircled numbers illustrate the different sparking plug positions tested The IFP Renault-CNRS system. One method of feeding a mixture supply of two different mixture ratios A possible solution, using a special carburettor or metering device having two or more throttles. The main throttle valve would function in the usual manner, controlling the main portion of the weak-mixture charge. A smaller metering system supplies the rich-mixture tube through its own throttle valve, and a third throttle valve regulates the con-nection between the large and small metering systems

19 The Schlamann stratified-charge engine

20 Honda CVCC (compound vortex controlled combustion), pre-chamber stratified charge engines In the Honda engine a valve controls the supply of a rich carburetted mixture to the pre-chamber, while the main inlet valve controls the supply of a weak mixture to the main part of the combustion chamber. An alternative system is to use fuel injection into the pre-chamber, and admit either air or a weak carburetted mixture to the main chamber

21 Texaco controlled combustion system TCSS, single-chamber stratified charge engine

22 The GDI consists of the following four basic features 1) Upright straight intake ports, (A strong down-flow is generated along the intake cylinder liner during the intake stroke) 2) High pressure fuel injection pump, (A swash type axial plunger pump for high volumetric efficiency is used for the high pressure fuel injection which provides high pressure fuel directly injected into the cylinder) 3) High pressure swirl injector, (An electro-magnetic injec-tor was developed to achieve accurate and precise control of injection quantity and timing) 4) Curved lop piston. (The top land configuration is modi-fied to provide a cavity, right under the spark plug tip, which is aimed to strengthen the air motion generated by the Upright Straight Intake Port and also to lead a concentrated fuel spray) High pressure swirl injector Detail of curved top piston

23 GDI (Gasoline Direct Injection) Engine Stratified combustion injects fuel on the compression stroke, just prior to ignition, making for high economy but low power. Homogenous combustion injects fuel on intake as in a conventional engine. The GDI (gasoline direct injection) engine injects the fuel directly into the cylinder, and controls the injection tim-ing carefully according to the operation range to achieve combustion in the ultra-lean range.

24 Comparison of the PFI and GDI mixture preparation systems In the PFI engine, fuel is injected into the intake port of each cylinder, and there is an associated time lag between the injection event and the induction of the fuel and air into the cylinder The GDI engine offers the potential for leaner combustion, less cylinder-tocylinder variation in the air-fuel ratio and lower operating BSFC values

25 Comparison of the fuel quantity required to start GDI and PFI engines at different ambient temperatures

26 The theoretical advantages of the GDI engine over the contemporary PFI engine are summarized as follows 1) Improved fuel economy (up to 25% potential improve-ment, depending on test cycle) resulting from: -less pumping loss (unthrottled, stratified mode); -less heat losses (unthrottled, stratified mode); -higher compression ratio; -lower octane requirement; -increased volumetric efficiency; -fuel cut-off during vehicle deceleration (no manifold film). 2) Improved transient response: -less acceleration-enrichment required (no manifold film). 3) More precise air-fuel ratio control, -more rapid starting; -less cold-start over-fueling required. 4) Extended EGR tolerance limit. 5) Selective emissions advantages. -reduced cold-start UBHC emissions; -reduced CO, emissions. -Enhanced potential for system optimization.

27 Although the GDI engine provides important potential advantages, it does have a number of inherent problems 1) difficulty in controlling the stratified charge combustion over the required operating range; 2) complexity of the control and injection technologies required for seamless load changes; 3) relatively high rate of formation of injector deposits and / or ignition fouling; 4) relatively high light-load UBHC emissions; 5) relatively high heavy-load NOx emissions; 6) high local NOx - production under part-load, stratified-charge operation; 7) soot formation for high-load operation; 8) increased particulate emissions; 9) three-way catalysis cannot be utilized to full advantage; 10)increased fuel system component wear due to the combi-nation of high-pressure and low fuel lubricity; 11)increased rates of cylinder bore wear; 12)increased electrical power and voltage requirements of the injectors and drivers; 13)elevated fuel system pressure and fuel pump parasitic loss.

28 Typical GDI engine system layout. Fuel injection systems for full-feature GDI engines must have the capability to provide both late injection for stratified-charge combustion at part load, as well as injection during the intake stroke for homogeneous-charge combus-tion at full load

29 The Mitsubishi GDI Combustion System The Schematic illustration of the Mitsubishi GDI combustion system (a) fuel injection strategies, (b) piston geometry, (c) the combustion mode calibration.

30 The Mitsubishi GDI Combustion System The Mitsubishi GDI engine system layout

31 Toyota GDI Combustion System Combustion chamber configuration of the Toyota GDI engine. Zone (a) of the cavity is designed to be the mixture formation area, and is positioned upstream of the spark plug. The wider zone (b) is designed to be combustion space and is effective in promoting rapid mixing. The increased width in the swirl flow direction was reported to enhance the flame propagation after the stratified mixture is ignited. The involute shape (c) is designed to direct the vaporized fuel towards the spark plug. The intake system consists of both a helical port and a straight port, which are fully independent. An electronically activated SCV (swirl control valve) of the butterfly-type is located upstream of the straight port. When the SCV is closed, the resulting swirl ratio is reported to be 2.1. The helical intake port utilizes a vari-able-valve-timingintelligent (VVT-i) cam-phasing system on the intake camshaft. These valves are driven by a DC motor so that the desired valve opening angle can be controlled according to the engine operating conditions.

32 Toyota GDI engine system.

33 Toyota GDI engine system. Detailed SCV operating map of the Toyota GDI engine.

34 Nissan GDI Combustion System The engine can operate in both the stratified-charge mode and the homogeneous-charge mode, and a 30% reduction in cold-start UBHC (unburned hydrocarbons) emissions relative to the base-line PFI engine The engine could be operated with stable combustion using a mixture leaner than an air-fuel ratio of 40, resulting in a 20% improvement in fuel economy when compared with a baseline PFI engine that operates with a stoichiometric mixture. NEODi (Nissan Ecology Oriented performance and Direct Injection)

35 The Nissan 1.8L Inline4 GDI engine system. The homogenous charge combustion process injects the fuel in the intake stroke to gain time for evaporation and mixing before ignition. With stratified charge combustion, the fuel is injected in the compression stroke to prevent excessive diffusion of the mixture while the liquid-phase evaporates, with the aim of positioning the mixture in the vicinity of the spark plug.

36 Mercedes-Benz GDI Combustion System The Mercedes-Benz GDI combustion system has a verti-cal, centrally mounted, fuel injector. Dynamometer tests of the Mercedes-Benz GDI combustion system for a range of injection pressures from 4 to 12 MPa indicate that the fuel consumption, UBHC emissions and COV (coefficient of variation) of IMEP (indicated mean effective pressure) are minimized at 8 MPa.

37 Mazda GDI Combustion System The direct gasoline injection engine can manage both fuel economy improvement and high power output by changing stratified charge operation injected in the compression stroke and homogeneous operation injected in the induction stroke. Swirl air motion, which remains the mainstream, is effec-tive in medium load from the point of view of mixture dispersion. However, tumble air motion attenuating the mainstream at the end of the compression stroke has the advantage of keeping the mixture stratification near the spark plug in light load. A hemispherical piston cavity coincides the mixture transportation route of the fuel spray in these air motions. 1) In light load, swirl air motion enables stable and adequate mixture formation and leaner mixture operation. 2) A wider and deeper piston cavity can trap the curved fuel spray precisely, and realize the optimized mixture formation over a wide range of engine load and speed

E - THEORY/OPERATION

E - THEORY/OPERATION E - THEORY/OPERATION 1995 Volvo 850 1995 ENGINE PERFORMANCE Volvo - Theory & Operation 850 INTRODUCTION This article covers basic description and operation of engine performance-related systems and components.

More information

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1 Fault codes DM1 Industrial engines DC09, DC13, DC16 Marine engines DI09, DI13, DI16 03:10 Issue 5.0 en-gb 1 DM1...3 Abbreviations...3 Fault type identifier...3...4 03:10 Issue 5.0 en-gb 2 DM1 DM1 Fault

More information

The 2.0l FSI engine with 4-valve technology

The 2.0l FSI engine with 4-valve technology Service Training Self-study programme 322 The 2.0l FSI engine with 4-valve technology Design and function The 2.0l engine is based on the tried and tested 827/113 series. Thanks to FSI technology (Fuel

More information

BOSCH D-JETRONIC Volkswagen: Type 3 & 4

BOSCH D-JETRONIC Volkswagen: Type 3 & 4 BOSCH D-JETRONIC Volkswagen: Type 3 & 4 MANIFOLD PRESSURE CONTROL SYSTEM (MPC) DESCRIPTION The Bosch D-Jetronic electronic fuel injection system is composed of 3 major subsystems: the air intake system,

More information

INTERNAL COMBUSTION RECIPROCATING PISTON ENGINES

INTERNAL COMBUSTION RECIPROCATING PISTON ENGINES INTERNAL COMBUSTION RECIPROCATING PISTON ENGINES TYPES OF RECIPROCATING INTERNAL COMBUSTION PISTON ENGINES Depending on the ignition pattern: Otto cycle (spark-ignition - SI engines), Diesel cycle (auto-ignition

More information

ENGINE CONTROL SYSTEM

ENGINE CONTROL SYSTEM 36 ENGINE CONTROL SYSTEM DESCRIPTION The construction and functions of the new 1MZ-FE engine includes the following modifications and additions in comparison with the 1MZ-FE engine installed on the 98

More information

Chapter 19 - Common Rail High Pressure Fuel Injection Systems

Chapter 19 - Common Rail High Pressure Fuel Injection Systems Chapter 19 - Common Rail High Pressure Fuel Injection Systems Diesel Engine Technology For Automotive Technicians Understanding & Servicing Contemporary Clean Diesel Technology What is Common Rail? Common

More information

Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA

Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA Automotive Powertrain Controls: Fundamentals and Frontiers Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA Julie Buckland Research & Advanced Engineering

More information

Unit 8. Conversion Systems

Unit 8. Conversion Systems Unit 8. Conversion Systems Objectives: After completing this unit the students should be able to: 1. Describe the Basic conversion systems 2. Describe main conversion kit types. 3. Describe how the CNG

More information

Engine Heat Transfer. Engine Heat Transfer

Engine Heat Transfer. Engine Heat Transfer Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel

More information

Electronic Diesel Control EDC 16

Electronic Diesel Control EDC 16 Service. Self-Study Programme 304 Electronic Diesel Control EDC 16 Design and Function The new EDC 16 engine management system from Bosch has its debut in the V10-TDI- and R5-TDI-engines. Increasing demands

More information

Pollution by 2-Stroke Engines

Pollution by 2-Stroke Engines Pollution by 2-Stroke Engines By Engr. Aminu Jalal National Automotive Council At The Nigerian Conference on Clean Air, Clean Fuels and Vehicles, Abuja, 2-3 May 2006 Introduction to the 2-Stroke Engine

More information

CONVERGE Features, Capabilities and Applications

CONVERGE Features, Capabilities and Applications CONVERGE Features, Capabilities and Applications CONVERGE CONVERGE The industry leading CFD code for complex geometries with moving boundaries. Start using CONVERGE and never make a CFD mesh again. CONVERGE

More information

CFD Simulation of HSDI Engine Combustion Using VECTIS

CFD Simulation of HSDI Engine Combustion Using VECTIS CFD Simulation of HSDI Engine Combustion Using VECTIS G. Li, S.M. Sapsford Ricardo Consulting Engineer s Ltd., Shoreham-by-Sea, UK ABSTRACT As part of the VECTIS code validation programme, CFD simulations

More information

Signature and ISX CM870 Fuel System

Signature and ISX CM870 Fuel System Signature and ISX CM870 Fuel System Cummins Ontario Training Center HPI-TP Fuel System Heavy Duty High Pressure Injection - Time Pressure Fuel System The fuel system developed for the Signature and ISX

More information

Why and How we Use Capacity Control

Why and How we Use Capacity Control Why and How we Use Capacity Control On refrigeration and air conditioning applications where the load may vary over a wide range, due to lighting, occupancy, product loading, ambient weather variations,

More information

System Diagnosis. Proper vehicle diagnosis requires a plan before you start

System Diagnosis. Proper vehicle diagnosis requires a plan before you start System Diagnosis Proper vehicle diagnosis requires a plan before you start Following a set procedure to base your troubleshooting on will help you find the root cause of a problem and prevent unnecessary

More information

P = n M 9550 [kw] Variable Intake Manifold in VR Engines. Self-study programme 212. Principles and Description of Operation. Service.

P = n M 9550 [kw] Variable Intake Manifold in VR Engines. Self-study programme 212. Principles and Description of Operation. Service. Service. Self-study programme 212 Variable Intake Manifold in VR Engines Principles and Description of Operation P = n M 9550 [kw] M [Nm] P [kw] n [min -1 ] 212_020 The output and torque of an engine have

More information

Note: This information obtained from internet sources and not verified- use at your own risk!!!!

Note: This information obtained from internet sources and not verified- use at your own risk!!!! Cummins Engine Diagnostic Fault Codes for 2003 and later engines (generally for 2004 and later Alpines; see page 13 for earlier engine diagnostic codes): Note: This information obtained from internet sources

More information

Delphi Multec Electronic Fuel Injection

Delphi Multec Electronic Fuel Injection Delphi Multec Electronic Fuel Injection (EFI) provides a complete engine management system (EMS) for small gasoline- and flexible fuel-powered engines. It is designed to help manufacturers meet exhaust

More information

FUEL & FUEL SYSTEM PROPERTIES OF FUEL

FUEL & FUEL SYSTEM PROPERTIES OF FUEL FUEL & FUEL SYSTEM PROPERTIES OF FUEL Fuel is a substance consumed by the engine to produce energy. The common fuels for internal combustion engines are: 1. Petrol 2. Power kerosene 3. High speed diesel

More information

6. VVT-i (Variable Valve Timing-intelligent) System

6. VVT-i (Variable Valve Timing-intelligent) System 38 ENGE 1ZZ-FE ENGE 6. VVT-i (Variable Valve Timing-intelligent) System General This system controls the intake camshaft valve timing so as to obtain balance between the engine output, fuel consumption

More information

Exhaust emissions of a single cylinder diesel. engine with addition of ethanol

Exhaust emissions of a single cylinder diesel. engine with addition of ethanol www.ijaser.com 2014 by the authors Licensee IJASER- Under Creative Commons License 3.0 editorial@ijaser.com Research article ISSN 2277 9442 Exhaust emissions of a single cylinder diesel engine with addition

More information

EXPERIMENTAL VALIDATION AND COMBUSTION CHAMBER GEOMETRY OPTIMIZATION OF DIESEL ENGINE BY USING DIESEL RK

EXPERIMENTAL VALIDATION AND COMBUSTION CHAMBER GEOMETRY OPTIMIZATION OF DIESEL ENGINE BY USING DIESEL RK INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

Gasoline Fuel-Injection System K-Jetronic

Gasoline Fuel-Injection System K-Jetronic Gasoline-engine management Gasoline Fuel-Injection System K-Jetronic Technical Instruction Published by: Robert Bosch GmbH, 2000 Postfach 30 02 20, D-70442 Stuttgart. Automotive Equipment Business Sector,

More information

Vehicle Engine Management Systems

Vehicle Engine Management Systems Unit 11: Vehicle Engine Management Systems NQF level 3: Guided learning hours: 60 BTEC National Unit abstract Modern motor vehicles continue to make use of the rapid advances in electronics technology

More information

Signature and ISX CM870 Electronics

Signature and ISX CM870 Electronics Signature and ISX CM870 Electronics Cummins West Training Center System Description General Information The Signature and ISX CM870 engine control system is an electronically operated fuel control system

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Part PatE21: Last updated: 15th January 2011 Author: Patrick J. Kelly This patent describes methods for altering HHO gas so that it can be used in vehicle engines

More information

Lambda Meter Measurement of parameter λ (Lambda) air / fuel ratio (AFR)

Lambda Meter Measurement of parameter λ (Lambda) air / fuel ratio (AFR) Lambda Meter Measurement of parameter λ (Lambda) air / fuel ratio (AFR) Wide band lambda probe measures the numerical value of the ratio Air Fuel Ratio AFR or parameter of λ (Lambda) by measuring the oxygen

More information

Introduction to Electronic Signals

Introduction to Electronic Signals Introduction to Electronic Signals Oscilloscope An oscilloscope displays voltage changes over time. Use an oscilloscope to view analog and digital signals when required during circuit diagnosis. Fig. 6-01

More information

Engineering, Bharathiyar College of Engineering and Technology, Karaikal, Pondicherry 609 609, India

Engineering, Bharathiyar College of Engineering and Technology, Karaikal, Pondicherry 609 609, India 74 The Open Fuels & Energy Science Journal, 2008, 1, 74-78 Open Access Some Comparative Performance and Emission Studies on DI Diesel Engine Fumigated with Methanol and Methyl Ethyl Ketone Using Microprocessor

More information

Diagram of components 2. Reducer..3

Diagram of components 2. Reducer..3 Index Diagram of components 2 Reducer..3 Rail Filter - Rail Filter 4 - MAP Sensor.4 Injector & Nozzle - Single Injector / Rail Injector...5 - Bi-Fuel Connector...6 - Nozzle...7 ECU...8 Switch 9 Wiring

More information

Hydrogen as a fuel for internal combustion engines

Hydrogen as a fuel for internal combustion engines Hydrogen as a fuel for internal combustion engines Contents: Introduction External mixture formation for hydrogen operated engines Experimental engine for hydrogen in Stralsund Internal mixture formation

More information

Typical ECM/PCM Inputs

Typical ECM/PCM Inputs Typical ECM/PCM Inputs The computer system components fall into two categories: sensors (inputs) and controlled components (outputs). Each system has sensors. Not every system has all the ones listed,

More information

A.Pannirselvam*, M.Ramajayam, V.Gurumani, S.Arulselvan and G.Karthikeyan *(Department of Mechanical Engineering, Annamalai University)

A.Pannirselvam*, M.Ramajayam, V.Gurumani, S.Arulselvan and G.Karthikeyan *(Department of Mechanical Engineering, Annamalai University) A.Pannirselvam, M.Ramajayam, V.Gurumani, S.Arulselvan, G.Karthikeyan / International Journal of Vol. 2, Issue 2,Mar-Apr 212, pp.19-27 Experimental Studies on the Performance and Emission Characteristics

More information

NISSAN FIGARO FAULT CODES AND DIAGNOSTICS

NISSAN FIGARO FAULT CODES AND DIAGNOSTICS NISSAN FIGARO FAULT CODES AND DIAGNOSTICS The Nissan Figaro uses an engine management system with the acronym ECCS you ll see it in large letters on the plenum box when you open the bonnet. It stands for

More information

ENGINE 1ZZ-FE AND 2ZZ-GE ENGINES

ENGINE 1ZZ-FE AND 2ZZ-GE ENGINES ENGINE CONTROL SYSTEM 1. General The engine control system for the 1ZZ-FE and 2ZZ-GE engines have following system. System SFI Sequential Multiport Fuel Injection ESA Electronic Spark Advance IAC (Idle

More information

COMBUSTION PROCESS IN CI ENGINES

COMBUSTION PROCESS IN CI ENGINES COMBUSTION PROCESS IN CI ENGINES In SI engine, uniform A: : F mixture is supplied, but in CI engine A: : F mixture is not homogeneous and fuel remains in liquid particles, therefore quantity of air supplied

More information

COMMON RAIL SYSTEM (CRS) SERVICE MANUAL: Operation

COMMON RAIL SYSTEM (CRS) SERVICE MANUAL: Operation ISUZU ELF 4HK1/4JJ1 Engine COMMON RAIL SYSTEM (CRS) SERVICE MANUAL: Operation Issued : June 2007 Revised : July 2009 00400601EA 2009 DENSO CORPORATION All rights reserved. This material may not be reproduced

More information

53403500 - Injector Max Machine

53403500 - Injector Max Machine 53403500 - Injector Max Machine Operating Instructions Contents Page Introduction Operating Instructions Fuel Injection Cleaner - Petrol Operating Instructions Fuel Injection Cleaner - Diesel 3 Operating

More information

Principles of Engine Operation

Principles of Engine Operation Internal Combustion Engines ME 422 Yeditepe Üniversitesi Principles of Engine Operation Prof.Dr. Cem Soruşbay Information Prof.Dr. Cem Soruşbay İstanbul Teknik Üniversitesi Makina Fakültesi Otomotiv Laboratuvarı

More information

Internal Combustion Engines

Internal Combustion Engines Lecture-18 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Combustion in CI Engine Combustion

More information

CLASSIFICATION OF INTERNAL COMBUSTION ENGINES VARIOUS TYPES OF ENGINES

CLASSIFICATION OF INTERNAL COMBUSTION ENGINES VARIOUS TYPES OF ENGINES CLASSIFICATION OF INTERNAL COMBUSTION ENGINES VARIOUS TYPES OF ENGINES CLASSIFICATION OF INTERNAL COMBUSTION ENGINES 1. Application 2. Basic Engine Design 3. Operating Cycle 4. Working Cycle 5. Valve/Port

More information

Diesel injection, ignition, and fuel air mixing

Diesel injection, ignition, and fuel air mixing Diesel injection, ignition, and fuel air mixing 1. Fuel spray phenomena. Spontaneous ignition 3. Effects of fuel jet and charge motion on mixingcontrolled combustion 4. Fuel injection hardware 5. Challenges

More information

Diagnostic Fault Codes For Cummins Engines

Diagnostic Fault Codes For Cummins Engines Section - Diagnostic Fault Codes For Cummins Engines Applies to Engine Models T, T, QSL T, QSM, QS, QSK9, QSK, QST, QSK//8 Note: These fault codes are current at date of publication. Always refer to engine

More information

Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison

Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison Chapters 7 SI vs CI Performance Comparison Performance Comparison of CI and SI Engines The CI engine cycle can be carried out in either 2 or 4 strokes of the piston, with the 4-cycle CI engine being more

More information

Schematic Symbols Chart (Design Hydraulic and Pneumatic circits)

Schematic Symbols Chart (Design Hydraulic and Pneumatic circits) Page 1 of 6 (Home) Symbols / Visit us on: Fluid Power, Automation and Motion Control for all Industries About Us Products Services Catalogs Place an Order Training & Information Contact Us Employee Access

More information

Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions

Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions Environ. Eng. Res. Vol. 14, No. 2, pp. 95~101, 2009 Korean Society of Environmental Engineers Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions Haeng

More information

Continuous flow direct water heating for potable hot water

Continuous flow direct water heating for potable hot water Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial

More information

Lotus Service Notes Section EMR

Lotus Service Notes Section EMR ENGINE MANAGEMENT SECTION EMR Sub-Section Page Diagnostic Trouble Code List EMR.1 3 Component Function EMR.2 7 Component Location EMR.3 9 Diagnostic Guide EMR.4 11 CAN Bus Diagnostics; Lotus TechCentre

More information

Homogeneous Charge Compression Ignition the future of IC engines?

Homogeneous Charge Compression Ignition the future of IC engines? Homogeneous Charge Compression Ignition the future of IC engines? Prof. Bengt Johansson Lund Institute of Technology at Lund University ABSTRACT The Homogeneous Charge Compression Ignition Engine, HCCI,

More information

PROPERLY WORKING FUEL SYSTEM

PROPERLY WORKING FUEL SYSTEM PROPERLY WORKING FUEL SYSTEM FUEL SYSTEMS The fuel systeem is the most sophisticated, expensive and critical of all engines systems. Engine performance, economy and durability depend on proper performance

More information

LAND ROVER FUEL INJECTION SYSTEMS

LAND ROVER FUEL INJECTION SYSTEMS LAND ROVER FUEL INJECTION SYSTEMS INTRODUCTION Land Rover vehicles use one of two types of electronically controlled fuel injection systems: Multiport Fuel Injection (MFI) or Sequential Multiport Fuel

More information

Kolbenschmidt Pierburg Group

Kolbenschmidt Pierburg Group Kolbenschmidt Pierburg Group Exhaust Gas Recirculation Reducing Emissions with Exhaust Gas Recirculation Systems Pierburg exhaust gas recirculation contributing to a clean environment for more than 30

More information

Delphi E3 Diesel Electronic Unit Injector

Delphi E3 Diesel Electronic Unit Injector Delphi E3 Diesel Electronic Unit Injector The Delphi E3 Diesel Electronic Unit Injector (EUI), was introduced for the 2002 EGR equipped diesel engines onhighway heavy duty applications. A version of this

More information

The On-Board Refueling Vapor Recovery (ORVR) Evaporative Emission (EVAP) system.

The On-Board Refueling Vapor Recovery (ORVR) Evaporative Emission (EVAP) system. «1A: Description and Operation» Overview The Evaporative Emission (EVAP) system prevents fuel vapor build-up in the sealed fuel tank. Fuel vapors trapped in the sealed tank are vented through the vapor

More information

Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers

Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers -- Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers Per Tunestål, Magnus Christensen, Patrik Einewall, Tobias Andersson, Bengt Johansson Lund

More information

Questions and Answers

Questions and Answers Emissions Warranties for 1995 and Newer Light-duty Cars and Trucks under 8,500 Pounds Gross Vehicle Weight Rating (GVWR) Federally required emission control warranties protect you, the vehicle owner, from

More information

ECUs and Engine Calibration 201

ECUs and Engine Calibration 201 ECUs and Engine Calibration 201 Jeff Krummen Performance Electronics, Ltd. www.pe-ltd.com Page 1 Before we get started.. ECUs and Engine Calibration 201 The goal of this presentation is to explain the

More information

VOLKSWAGEN POWERTRAIN CONTROL SYSTEMS DIAGNOSTICS ONE

VOLKSWAGEN POWERTRAIN CONTROL SYSTEMS DIAGNOSTICS ONE LEARNING GUIDE POWERTRAIN SPECIALIST VOLKSWAGEN POWERTRAIN CONTROL SYSTEMS DIAGNOSTICS ONE COURSE NUMBER: PT310-01 Notice Due to the wide range of vehicles makes and models, the information given during

More information

INTERNAL COMBUSTION (IC) ENGINES

INTERNAL COMBUSTION (IC) ENGINES INTERNAL COMBUSTION (IC) ENGINES An IC engine is one in which the heat transfer to the working fluid occurs within the engine itself, usually by the combustion of fuel with the oxygen of air. In external

More information

Marine after-treatment from STT Emtec AB

Marine after-treatment from STT Emtec AB Marine after-treatment from STT Emtec AB For Your Vessel and the Environment 6 7 8 1 11 1 10 9 1. Pick up. Flow direction valve. Filters. Cooler. Condensate trap 6. Flow meter 7. EGR-valve 8. Secondary

More information

The 2.0L FSI Turbocharged Engine Design and Function

The 2.0L FSI Turbocharged Engine Design and Function The 2.0L FSI Turbocharged Engine Design and Function Self-Study Program Course Number 821503 Volkswagen of America, Inc. Volkswagen Academy Printed in U.S.A. Printed 08/2005 Course Number 821503 2005 Volkswagen

More information

Effect of GTL Diesel Fuels on Emissions and Engine Performance

Effect of GTL Diesel Fuels on Emissions and Engine Performance Rudolf R. Maly Research and Technology, Stuttgart Effect of GTL Diesel Fuels on Emissions and Engine Performance 10th Diesel Engine Emissions Reduction Conference August 29 - September 2, 2004 Coronado,

More information

Technical Service Information

Technical Service Information Technical Service Information COMPLAINT: CAUSE: 1996-20 DEFINITIONS When a VW/Audi vehicle is exhibiting a symptom or is in fail-safe, the technician, in many cases, is unable to communicate with the on-board

More information

Wiring diagrams 14 1. Component key for wiring diagrams 1 to 29 Note: Not all the items listed will be fitted to all models

Wiring diagrams 14 1. Component key for wiring diagrams 1 to 29 Note: Not all the items listed will be fitted to all models Wiring diagrams 14 1 Component key for wiring diagrams 1 to 29 Note: Not all the items listed will be fitted to all models No Description 00200 Alternator with built-in regulator 00500 Battery 01001 Starter

More information

The 964 Turbo engine and engine systems by Adrian Streather.

The 964 Turbo engine and engine systems by Adrian Streather. The 964 Turbo engine and engine systems by Adrian Streather. 1991 911 (964) Turbo. Photo: Aldo Vannini The following information is a brief overview of the 964 Turbo engine and related systems. Hopefully

More information

Emission Control Systems Warranties

Emission Control Systems Warranties 2004 Chevrolet TrailBlazer - 2WD Emission Control Systems Warranties This section outlines the emission warranties that General Motors provides for your vehicle in accordance with the U.S. Federal Clean

More information

THE INFLUENCE OF VARIABLE VALVE ACTUATION ON THE PART LOAD FUEL ECONOMY OF A MODERN LIGHT-DUTY DIESEL ENGINE

THE INFLUENCE OF VARIABLE VALVE ACTUATION ON THE PART LOAD FUEL ECONOMY OF A MODERN LIGHT-DUTY DIESEL ENGINE --8 THE INFLUENCE OF VARIABLE VALVE ACTUATION ON THE PART LOAD FUEL ECONOMY OF A MODERN LIGHT-DUTY DIESEL ENGINE Copyright 998 Society of Automotive Engineers, Inc. Tim Lancefield Mechadyne International

More information

DIMEG - University of L Aquila ITALY EXPERIMENTAL ACTIVITY ENGINE LABORATORY

DIMEG - University of L Aquila ITALY EXPERIMENTAL ACTIVITY ENGINE LABORATORY DIMEG - University of L Aquila ITALY EXPERIMENTAL ACTIVITY ENGINE LABORATORY Torre di Raffreddamento Bilan cia Combustibile DIMEG:ENGINE LABORATORY PLANTS Torre di Raffreddamento P C o o z l z d o P C

More information

Fuel Consumption Studies of Spark Ignition Engine Using Blends of Gasoline with Bioethanol

Fuel Consumption Studies of Spark Ignition Engine Using Blends of Gasoline with Bioethanol Fuel Consumption Studies of Spark Ignition Engine Using Blends of Gasoline with Bioethanol 208 V. Pirs, D. Berjoza, G. Birzietis, and I. Dukulis Motor Vehicle Institute, Faculty of Engineering, Latvia

More information

ON-Board Diagnostic Trouble Codes

ON-Board Diagnostic Trouble Codes ON-Board Diagnostic Trouble Codes The list below contains standard diagnostic trouble codes (DTC s) that are used by some manufacturers to identify vehicle problems. The codes provide below are generic

More information

DTC Database (OBD-II Trouble Codes)

DTC Database (OBD-II Trouble Codes) Auto Consulting S.a.s di Cofano A. & C. Attrezzature diagnostiche Elaborazioni elettroniche Formazione tecnica DTC Database (OBD-II Trouble Codes) Definitions for generic powertrain diagnostic trouble

More information

Lotus Service Notes Section EMP

Lotus Service Notes Section EMP ENGINE MANAGEMENT SECTION EMP Sub-Section Page Diagnostic Trouble Code List EMP.1 3 'Lotus Scan' Diagnostic Tool EMP.2 43 Engine Management Component Location EMP.3 45 Mechanical Throttle Setting Procedure

More information

US Heavy Duty Fleets - Fuel Economy

US Heavy Duty Fleets - Fuel Economy US Heavy Duty Fleets - Fuel Economy Feb. 22, 2006 Anthony Greszler Vice President Advanced Engineering VOLVO POWERTRAIN CORPORATION Drivers for FE in HD Diesel Pending oil shortage Rapid oil price increases

More information

The 1.2 ltr. 3-cylinder petrol engines

The 1.2 ltr. 3-cylinder petrol engines Service. Self-Study Programme 260 The 1.2 ltr. 3-cylinder petrol engines Design and Function The two 1.2 ltr. engines mark the introduction of 3-cylinder petrol engines at Volkswagen. This pair of entry-level

More information

The 2.3-ltr. V5 Engine

The 2.3-ltr. V5 Engine The 2.3-ltr. V5 Engine Design and Function Self-Study Programme No. 195 195_118 The new 2.3-ltr. V5 engine is related to the VR6 engine as regards design. For this reason this Self-Study Programme will

More information

- Service Bulletin - Pistons.

- Service Bulletin - Pistons. Normal combustion: is smooth and even from the spark plug through the top of the chamber. 1 2 3 Spark occurs Combustion moves smoothly across chamber Combustion and power completed Pre-Ignition: occurs

More information

RESEARCH PROJECTS. For more information about our research projects please contact us at: info@naisengineering.com

RESEARCH PROJECTS. For more information about our research projects please contact us at: info@naisengineering.com RESEARCH PROJECTS For more information about our research projects please contact us at: info@naisengineering.com Or visit our web site at: www.naisengineering.com 2 Setup of 1D Model for the Simulation

More information

Optimization of Operating Parameters for a 2-stroke DI Engine with KIVA 3V and a Genetic Algorithm Search Technique

Optimization of Operating Parameters for a 2-stroke DI Engine with KIVA 3V and a Genetic Algorithm Search Technique Optimization of Operating Parameters for a 2-stroke DI Engine with KIVA 3V and a Genetic Algorithm Search Technique Mark N. Subramaniam and Rolf D. Reitz Engine Research Center, University of Wisconsin-Madison

More information

Marine after-treatment from STT Emtec AB

Marine after-treatment from STT Emtec AB Marine after-treatment from STT Emtec AB For Your Vessel and the Environment SCR Technology How it works The selective catalytic reduction of nitrous oxides (NOx) by nitrogen compounds such as urea solutions

More information

M272 Engine 287 HO M272 (FAH) 10/05/04

M272 Engine 287 HO M272 (FAH) 10/05/04 M272 Engine 287 HO M272 (FAH) 10/05/04 1 Objectives Students will be able to: identify differences between M112 and M272 explain the camshaft adjusters operation identify major components of the M272 explain

More information

Service Training. The 2.0L 4V TFSI Engine with AVS. Self-Study Program 922903

Service Training. The 2.0L 4V TFSI Engine with AVS. Self-Study Program 922903 Service Training The 2.0L 4V TFSI Engine with AVS Self-Study Program 922903 Audi of America, LLC Service Training Printed in U.S.A. Printed 7/2009 Course Number 922903 2009 Audi of America, LLC All rights

More information

Carbon Tech Series GS8 GS4 GS2. GASOLINE injector equipment. The only way to test Gasoline Direct injectors. 300 Bars+

Carbon Tech Series GS8 GS4 GS2. GASOLINE injector equipment. The only way to test Gasoline Direct injectors. 300 Bars+ GASOLINE injector equipment Carbon Tech Series The only way to test Gasoline Direct injectors GD4i GD1i 300 Bars+ Gasoline direct injection requires high pressure testing to truly diagnose operation faults.

More information

Powertrain DTC (P000-P0999) for EOBD Vehicles (Directive 98/69/EC of the European Parliament)

Powertrain DTC (P000-P0999) for EOBD Vehicles (Directive 98/69/EC of the European Parliament) Powertrain DTC (P000-P0999) for EOBD Vehicles (Directive 98/69/EC of the European Parliament) 1 Trouble Fault location Probable cause code 1 P0000 No fault found - P0001 Fuel volume regulator control -

More information

1. Introduction Older cars and motorcycles must be in a good state of repair and properly tuned to get best performance.

1. Introduction Older cars and motorcycles must be in a good state of repair and properly tuned to get best performance. Fuel News Tuning Vehicles to Run on PETROL 1. Introduction Older cars and motorcycles must be in a good state of repair and properly tuned to get best performance. The following sections outline reasons

More information

Automotive Sensor Simulator. Automotive sensor simulator. Operating manual. AutoSim

Automotive Sensor Simulator. Automotive sensor simulator. Operating manual. AutoSim Automotive sensor simulator Operating manual AutoSim Contents Introduction.. page 3 Technical specifications.... page 4 Typical application of AutoSim simulator..... page 4 Device appearance... page 5

More information

Electronic Power Control

Electronic Power Control Service. Self-Study Programme 210 Electronic Power Control Design and Function With the Electronic Power Control system, the throttle valve is actuated only by an electric motor. This eliminates the need

More information

Overview. Technical Training

Overview. Technical Training Overview Diesel particulate are typically soot particles with adherent hydrocarbons, sulphate and other condensed compounds. Legally a particulate is anything in the exhaust stream that can be captured

More information

Module 21 Fuel Injectors - Dual Point Injection (DPI)

Module 21 Fuel Injectors - Dual Point Injection (DPI) Module 21 Fuel Injectors - Dual Point Injection (DPI) Author: Grant Swaim E-mail: sureseal@nr.infi.net URL: www.tech2tech.net Phone: (336) 632-9882 Fax: (336) 632-9688 Postal Address: Tech-2-Tech Website

More information

Fuel Requirements for HCCI Engine Operation. Tom Ryan Andrew Matheaus Southwest Research Institute

Fuel Requirements for HCCI Engine Operation. Tom Ryan Andrew Matheaus Southwest Research Institute Fuel Requirements for HCCI Engine Operation Tom Ryan Andrew Matheaus Southwest Research Institute 1 HCCI Fuel & Air Charge Undergoes Compression Spontaneous Reaction Throughout Cylinder Low Temperature

More information

Light Duty Natural Gas Engine Characterization THESIS

Light Duty Natural Gas Engine Characterization THESIS Light Duty Natural Gas Engine Characterization THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By David

More information

PREPARATION FOR TESTING

PREPARATION FOR TESTING Table of Contents INTRODUCTION WHAT IS OBD?... 1 YOU CAN DO IT!... 2 SAFETY PRECAUTIONS SAFETY FIRST!... 3 ABOUT THE SCAN TOOL VEHICLES COVERED... 5 BATTERY REPLACEMENT... 6 SCAN TOOL CONTROLS CONTROLS

More information

Throttle Body Fuel Injection

Throttle Body Fuel Injection Throttle Body Fuel Injection Initial Calibration of the TBI Disclaimer The author of this presentation assumes NO responsibility for information provided causing the owner to modify or alter their motorhome

More information

Marine Piston Damage By Tom Benton, Marine Surveyor

Marine Piston Damage By Tom Benton, Marine Surveyor Marine Piston Damage By Tom Benton, Marine Surveyor In the last several years I have noticed an increase in the number of outboard motors which have sustained piston damage, and several cases in V-8 inboard

More information

Adjustment Data MAZDA - 323-1.5i 16V - Z5

Adjustment Data MAZDA - 323-1.5i 16V - Z5 Adjustment Data MAZDA - 323-1.5i 16V - Z5 Engine (general) Item Engine code Capacity Idle speed Valve clearance Hydraulic Values Z5 1489 700-800 Units Compression pressure Normal 12.8 (bar) Minimum 10.1

More information

On-Board Diagnosis System II

On-Board Diagnosis System II Service. Self-Study Program 175 On-Board Diagnosis System II in the New Beetle (USA) Design and Function Far-reaching man-made atmospheric changes are looming on the horizon. They will have grave consequences

More information

Class A Foam Mixing and Application Equipment

Class A Foam Mixing and Application Equipment Class A Foam Mixing and Application Equipment Adding Phos-Chek Class A foam concentrate to water: There are many methods of adding Phos-Chek Class A foam concentrate to water. The different methods have

More information

Increasing Reliability and Availability for Automotive Embedded Devices by Enhanced Wiring Diagnosis

Increasing Reliability and Availability for Automotive Embedded Devices by Enhanced Wiring Diagnosis Increasing Reliability and Availability for Automotive Embedded Devices by Enhanced Wiring Diagnosis Overview Introduction Potential situations and their detection Deficits of previously eisting concepts

More information

AVIATION SCIENCE LESSON 6: FUEL PUMPS AND FUEL SYSTEMS. Paul Ladegard, Alan Dick

AVIATION SCIENCE LESSON 6: FUEL PUMPS AND FUEL SYSTEMS. Paul Ladegard, Alan Dick AVIATION SCIENCE LESSON 6: FUEL PUMPS AND FUEL SYSTEMS Teachers: Paul Ladegard, Alan Dick Subject: Aviation Science Grades: Secondary Duration of Lesson: 5-6 Hours Subjects: Technology, Science Learning

More information