APPLICATION NOTE. AT12405: Low Power Sensor Design with PTC. Atmel MCU Integrated Touch. Introduction

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "APPLICATION NOTE. AT12405: Low Power Sensor Design with PTC. Atmel MCU Integrated Touch. Introduction"

Transcription

1 APPLICATION NOTE AT12405: Low Power Sensor Design with PTC Atmel MCU Integrated Touch Introduction A ma saved (reduced) is a mah gained the philosophical engineer The challenges for improving battery life for wearables and remote IoT node applications require designing of components that consume very low power or use battery with higher charge capacity. Improvements in battery technology are noteworthy but they are not evolving fast enough. Although batteries are becoming energy dense, designers are adopting low capacity batteries to reduce overall physical form factor and cost. Power consumption remains an important factor in the design of any portable gadget. The Atmel capacitive touch technology using the Peripheral Touch Controller (PTC) provides features to design a Low Power Touch sensor that can wake-up on touch from standby sleep without CPU intervention. This document describes the details of designing a Low Power Touch sensor, different sensor configurations, tips and tricks to optimize the power consumption.

2 Table of Contents 1 Touch Sensing with PTC SleepWalking Low Power Mode Implementing Low Power Sensor State Machine Lumped Mode Lumped Sensor in Self Capacitance Lumped Sensor in Mutual Capacitance Sensor Configurations Power ON Key All Keys Lumped Together Some Keys Lumped Together Firmware Configuring Low Power Sensor Configuring Lumped Sensor Configuring Lumped Sensor in Self Capacitance Configuring Lumped Sensor in Mutual Capacitance Sensitivity Tuning of Low Power Sensor Optimizing Design for Low Power Active Scan Rate Awake Timeout Low Power Scan Rate Low Power Drift Rate Current Consumption References Revision History AT12405: 2 Low Power Sensor Design with PTC [APPLICATION NOTE]

3 1 Touch Sensing with PTC The Peripheral Touch Controller (PTC) has been designed to perform capacitive touch acquisition on sensors independently from the CPU. This releases the CPU to perform other processor intensive application tasks. Alternatively the CPU can be put to sleep during touch acquisition, thereby reducing power consumption. In user application, RTC/Timer interrupt wakes up the CPU periodically to initiate the PTC to perform touch measurement. This mechanism is referred to as Active Measurement Mode. In active measurement, the CPU configures the PTC and goes to sleep. The PTC performs touch acquisition sequentially on all enabled sensor channels, while the CPU is in sleep. The PTC issues an interrupt to wake up the CPU after acquisition is completed for each individual sensor channel. On wakeup, the CPU re-configures the PTC to start acquisition on next sensor channel. This cycle of CPU (PTC Configuration) PTC (Acquisition) continues until acquisition is done on all the enabled sensor channels. On completion of acquisition on the last channel, the CPU performs post processing on acquired signal data. Figure 1-1. Active Measurement AT12405: Low Power Sensor Design with PTC [APPLICATION NOTE] 3 3

4 2 SleepWalking Atmel has added intelligence to the peripherals which allows the peripherals to determine if the incoming data requires use of CPU or not. This feature is termed as SleepWalking because it allows the CPU to continue in sleep mode and wake up only on a pre-qualified event. This eliminates unnecessary CPU wakeups and helps to reduce power consumption. The CPU and RAM consume the majority of the power in active mode. SleepWalking allows the Event System to handle asynchronous events in various sleep modes by requesting a local clock module for the duration of the Event Processing. Once the event processing is done, the requested clock is disabled and the module goes back to sleep. Figure 2-1. Event System The Peripheral Event System allows for direct communication between peripherals without involving the CPU. It is a routing network independent of the traditional data path (system buses). Different triggers can be handled at the peripheral level that would result in an event; like a data transfer to another peripheral or activating some peripheral. The Event System simplifies the way of handling data or actions for a power limited application. As no interrupts are required to pass information, this avoids any CPU usage for data transfer, action, or computation. So the CPU can be put in low power mode. 4 AT12405: 4 Low Power Sensor Design with PTC [APPLICATION NOTE]

5 3 Low Power Mode Low Power mode utilizes the SleepWalking feature of the PTC to perform capacitive touch sensing autonomously on a single sensor channel that is designated as the low power sensor. This mechanism utilizes the Event System and allows the CPU to be in sleep throughout the operation, thereby minimizing power consumption. PTC issues an interrupt to wake up the CPU only when a valid touch event is detected on the low power sensor. Figure 3-1. Low Power Measurement Although PTC performs touch measurement on the configured low power sensor, it has no inbuilt mechanism to adjust the Reference value to compensate for the gradual environmental changes. To accomplish the Drift Compensation feature in low power mode, the CPU wakes up at periodic intervals to perform one active measurement. This measurement is performed by the QTouch Library to monitor the real-time Signal and adjust the Reference accordingly. AT12405: Low Power Sensor Design with PTC [APPLICATION NOTE] 5 5

6 4 Implementing Low Power Sensor In user application, the low power sensor is implemented as a wakeup source. Once a valid touch is detected on the low power sensor, an interrupt is issued that wakes up the CPU for further processing. 4.1 State Machine The firmware switches between low power mode and active measurement mode during the entire operation to achieve optimal performance with lowest power consumption. Figure 4-1. Low Power Sensor State Machine After the initialization of the sensors, the device starts with active measurement mode by default. If there is no touch activity detected for a certain interval of time, the device automatically switches to low power mode. Before switching to low power mode, the Event System is enabled and the designated sensor is configured as low power sensor. The device keeps scanning the low power sensor autonomously until it detects any activity. If the touch delta is found to be greater than the Detect Threshold on the low power sensor, the PTC issues an interrupt and wakes up the CPU. On wakeup, the CPU disables the Event System and resumes the active measurement. 6 AT12405: 6 Low Power Sensor Design with PTC [APPLICATION NOTE]

7 4.2 Lumped Mode PTC features Lumped mode configuration that allows to combine multiple Y-lines (Self Capacitance) or multiple X- and Y-lines (Mutual Capacitance) to form a single sensor. This feature allows combining multiple physical sensors and configure them as a single sensor called a lumped sensor. The use of Lumped mode improves power consumption and response time. In applications with large number of keys, the sensors can be arranged in groups to form multiple lumped sensors. Scanning can be performed only on the lumped sensors. When one of the lumped sensor shows touch detection, only the keys within that lumped sensor is individually measured to determine which key is actually touched. This improves the efficiency of the system since lesser number of measurement cycles are needed compared to scanning for all the individual keys Lumped Sensor in Self Capacitance In a self-capacitance design, the user needs to configure the Y-lines that are combined together to form a lumped sensor. In this example we consider a system with three Y-lines that are combined to create one lumped sensor. Figure 4-2. Self Capacitance Lumped Mode Lumped Sensor in Mutual Capacitance In a mutual-capacitance design, the user needs to configure the X-lines and the Y-lines that are combined together to form a lumped sensor. In this example we consider a system with three X- and three Y-lines, out of which three X- and two Y-lines are combined to create one lumped sensor. Figure 4-3. Mutual Capacitance Lumped Mode AT12405: Low Power Sensor Design with PTC [APPLICATION NOTE] 7 7

8 Capacitive load of a lumped sensor should not exceed the maximum limit of ~30pF for both self and mutual capacitance. The designer must select appropriate number of keys to form a lumped sensor ensuring this limit is not exceeded. If this limit is exceeded QTouch Library will throw a calibration error. 8 AT12405: 8 Low Power Sensor Design with PTC [APPLICATION NOTE]

9 4.3 Sensor Configurations Any sensor can be configured as a low power sensor. The following section covers the typical application scenarios for a low power sensor Power ON Key This is the most basic configuration for a low power sensor implementation. One key out of all the available keys in a touch panel is configured as the low power sensor. This acts as a Power ON key for the entire touch panel. Figure 4-4. One Button as the Low Power Sensor All Keys Lumped Together Lumped Mode configuration in the PTC allows to combine multiple sensors as one. Using this feature all the sensor electrodes can be combined together to form a big sensor. This lumped sensor can be configured as a low power sensor. Touching any key in the panel would wake up the device. Figure 4-5. All Buttons Lumped and Configured as Low Power Sensor AT12405: Low Power Sensor Design with PTC [APPLICATION NOTE] 9 9

10 4.3.3 Some Keys Lumped Together Instead of all keys configured as a one lumped sensor, only some few keys are configured as a lumped sensor. This will allow user to limit the wakeup region on touch panel to a few sensors. Figure 4-6. Partial Group of Keys Lumped and Configured as Low Power Sensor Low power sensor configuration only allows use of one X- and Y-channel. Thus in principle, a slider or a rotor cannot be configured as low power sensor since they are composed of multiple sensor channels. However all the channels of a slider or rotor can be configured as a single lumped sensor and this can be configured as a low power sensor. 10 AT12405: 1 Low Power Sensor Design with PTC [APPLICATION NOTE] 0

11 5 Firmware The QTouch Library has example projects for Low Power configuration. There are separate example projects for Self Capacitance and Mutual Capacitance. These are available in the Atmel Studio under File New Example Project Figure 5-1. Low Power Example Projects The example projects are configured to run on the SAM D20 Xplained Pro kit along with QT1 Xplained Pro extension board. Both example projects feature lumped sensor as the low power sensor. 5.1 Configuring Low Power Sensor QTouch Library and QTouch Composer or above extensions must be installed in Atmel Studio for these projects to be available. Any key or lumped sensor can be configured as a low power sensor by assigning its corresponding sensor ID to DEF_LOWPOWER_SENSOR_ID in the touch.h file. 5.2 Configuring Lumped Sensor Although the lumped sensor is created out of the existing sensors, the QTouch Library considers it to be a separate sensor. The lumped sensor is provided with its own unique Channel ID and Sensor ID. Lumped sensors are configured using the touch_selfcap_sensor_config() or touch_mutlcap_sensor_config() function and need to be defined as SENSOR_TYPE_LUMP in the function arguments. Lumped sensors are viewed as additional sensors by the library and must be added to the macro DEF_SELFCAP_NUM_SENSORS or DEF_SELFCAP_NUM_SENSORS. AT12405: Low Power Sensor Design with PTC [APPLICATION NOTE]

12 5.2.1 Configuring Lumped Sensor in Self Capacitance The Y lines for the lumped sensor should be defined as follows: #define DEF_SELFCAP_LINES Y(0), Y(1), Y(2), LUMP_Y(0,1,2) The lumped sensor has been defined as the 3 rd channel above, thus it is assigned as CHANNEL_3. The sensor configuration should be done as follows: touch_selfcap_sensor_config(sensor_type_lump, CHANNEL_3, CHANNEL_3, NO_AKS_GROUP, 40u, HYST_6_25, RES_8_BIT, &sensor_id); Configuring Lumped Sensor in Mutual Capacitance The X- and Y-lines for the lumped sensor should be defined as follows: #define DEF_MULTCAP_NODES X(0),Y(0), X(1),Y(0), X(2),Y(0), \ X(0),Y(1), X(1),Y(1), X(2),Y(1), \ X(0),Y(2), X(1),Y(2), X(2),Y(2), \ LUMP_X(0,1,2),LUMP_Y(1,2) The lumped sensor node has been defined as the 10 th channel above, thus it is assigned as CHANNEL_10. The sensor configuration should be done as follows: touch_multcap_sensor_config(sensor_type_lump, CHANNEL_10, CHANNEL_10, NO_AKS_GROUP, 40u, HYST_6_25, RES_8_BIT, &sensor_id); 5.3 Sensitivity Tuning of Low Power Sensor The sensitivity tuning performed for the sensor in active measurement mode is still valid in low power mode. The detect threshold of a sensor is passed as an argument to the touch_xxxxcap_sensor_config() function. The same detect threshold value set during the sensor configuration is used in both active as well as low power mode. Ensure that lump sensor configuration does not results in a calibration error (TOUCH_CC_CALIB_ERROR). It can be tracked using p_xxxxcap_measure_data->p_sensors[<sensor>] state variable. 12 AT12405: 1 Low Power Sensor Design with PTC [APPLICATION NOTE] 2

13 6 Optimizing Design for Low Power Following are the parameters a designer can consider to optimize for low power. 6.1 Active Scan Rate This refers to the interval between two successive acquisitions on all the enabled touch sensors when in active measurement mode. A high value for this parameter will increase the gap between two consecutive measurements, which increases the duration of sleep between the measurements. This reduces the power consumption. However, since the measurements happen at longer intervals, this will affect the touch response. DEF_TOUCH_MEASUREMENT_PERIOD_MS parameter configures the scan interval in milliseconds. 6.2 Awake Timeout This refers to the time the device will be in active measurement mode from the last sensor release state. Any subsequent sensor state change would reinitialize the timeout interval. Once the device is in active measurement mode it would continue to be in the same mode as long as the sensors remains in detect. If there is no sensor activity for a period longer than the timeout interval, the device returns to low power mode. A low value for this parameter will ensure that the device goes to low power mode quickly, thereby reducing power consumption. NO_ACTIVITY_TRIGGER_TIME parameter configures the awake timeout interval in milliseconds. 6.3 Low Power Scan Rate This configures the scan interval for the low power sensor in low power mode. This parameter accepts some pre-defined scan rate settings. A high value for this parameter will reduce power consumption but increase response time for the low power sensor. DEF_LOWPOWER_SENSOR_EVENT_PERIODICITY parameter configures the low power scan rate. Possible scan rates are 3.9, 7.8, , 31.25, 62.5, 125, 250, and 500 milliseconds. 6.4 Low Power Drift Rate This parameter configures the scan interval for a single active measurement during low power mode. This active measurement is required for reference tracking of low power sensor. A high value for this parameter will perform an active measurement less frequently, thereby decreasing current consumption. However, this will reduce the drift rate for the low power sensor to adjust its reference with changing environmental conditions. DEF_LOWPOWER_SENSOR_DRIFT_PERIODICITY_MS configures the scan interval in milliseconds. To optimize on power, it is better to disable all the sensors, expect the low power sensor, before entering Low Power mode. This will prevent drifting on all the sensors during the Low Power Mode. The sensors should be re-enabled when the device returns back to active measurement mode. Also, disabling QDebug interface ensures that the device does not spend any extra time trying to send Signal data. This will also lead to power savings. AT12405: Low Power Sensor Design with PTC [APPLICATION NOTE]

14 7 Current Consumption Table 7-1 and Table 7-2 provides current consumption values in Low Power Mode. Hardware: SAM D20 Xplained Pro Kit with QT1 Xplained Pro Sensor. Sensor Configuration: One channel configured as Low Power Sensor. GAIN = 1 FILTER LEVEL = 16 Table 7-1. Current Consumption at Different Low Power Scan Rates DEF_LOWPOWER_SENSOR_DRIFT_PERIODICITY_MS = 2000ms DEF_LOWPOWER_SENSOR _EVENT_PERIODICITY SELF CAPACITANCE [µa] MUTUAL CAPACITANCE [µa] 3.9ms ms ms ms ms ms ms ms Table 7-2. Current Consumption at Different Low Power Drift Rate DEF_LOWPOWER_SENSOR_EVENT_PERIODICITY = 500ms DEF_LOWPOWER_SENSOR _DRIFT_PERIODICITY SELF CAPACITANCE [µa] MUTUAL CAPACITANCE [µa] 1000ms ms ms ms AT12405: 1 Low Power Sensor Design with PTC [APPLICATION NOTE] 4

15 8 References [1] Atmel QTouch Library Peripheral Touch Controller User Guide Controller_User-Guide.pdf [2] AT04188: SAM D20/D21/D10 How to Achieve Power Numbers Measurements_ApplicationNote_AT04188.pdf [3] AT06549: Ultra Low Power Techniques AT12405: Low Power Sensor Design with PTC [APPLICATION NOTE]

16 9 Revision History Doc Rev. Date Comments 42441A 04/2015 Initial document release. 16 AT12405: 1 Low Power Sensor Design with PTC [APPLICATION NOTE] 6

17 Atmel Corporation 1600 Technology Drive, San Jose, CA USA T: (+1)(408) F: (+1)(408) Atmel Corporation. / Rev.:. Atmel, Atmel logo and combinations thereof, Enabling Unlimited Possibilities, QTouch, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. ARM, ARM Connected logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others. DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, b y estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LI MITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect t o the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain lif e. SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in conne ction with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ( Safety-Critical Applications ) without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation o f nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace AT12405: applications Low or Power environments Sensor unless specifically Design desi with gnated PTC by Atmel [APPLICATION as military-grade. Atmel NOTE] products are not designed nor intended for use in automotive applications unless specifically designated by as automotive-grade

APPLICATION NOTE. AT11491: Peripheral Power Consumption in Standby Mode for SAM D Devices. Atmel SAM D. Introduction

APPLICATION NOTE. AT11491: Peripheral Power Consumption in Standby Mode for SAM D Devices. Atmel SAM D. Introduction APPLICATION NOTE AT11491: Peripheral Power Consumption in Standby Mode for SAM D Devices Atmel SAM D Introduction This application note describes the usage of various peripherals in Standby Sleep mode

More information

AT11805: Capacitive Touch Long Slider Design with PTC. Introduction. Features. Touch Solutions APPLICATION NOTE

AT11805: Capacitive Touch Long Slider Design with PTC. Introduction. Features. Touch Solutions APPLICATION NOTE Touch Solutions AT11805: Capacitive Touch Long Slider Design with PTC APPLICATION NOTE Introduction Slider is a one-dimensional sensor that detects the linear movement of a finger during touch. Sliders

More information

APPLICATION NOTE. AT16268: JD Smart Cloud Based Smart Plug Getting. Started Guide ATSAMW25. Introduction. Features

APPLICATION NOTE. AT16268: JD Smart Cloud Based Smart Plug Getting. Started Guide ATSAMW25. Introduction. Features APPLICATION NOTE AT16268: JD Smart Cloud Based Smart Plug Getting Started Guide ATSAMW25 Introduction This application note aims to help readers to get started with the Atmel smart plug reference design

More information

AVR186: Best Practices for the PCB Layout of Oscillators. Introduction. Vdd. Vss. AVR 8-bit Microcontrollers APPLICATION NOTE

AVR186: Best Practices for the PCB Layout of Oscillators. Introduction. Vdd. Vss. AVR 8-bit Microcontrollers APPLICATION NOTE AVR 8-bit Microcontrollers AVR186: Best Practices for the PCB Layout of Oscillators APPLICATION NOTE Introduction The Pierce oscillator (most common case) implemented in microcontrollers is built up around

More information

APPLICATION NOTE. Secure Personalization with Transport Key Authentication. ATSHA204A, ATECC108A, and ATECC508A. Introduction.

APPLICATION NOTE. Secure Personalization with Transport Key Authentication. ATSHA204A, ATECC108A, and ATECC508A. Introduction. APPLICATION NOTE Secure Personalization with Transport Key Authentication ATSHA204A, ATECC108A, and ATECC508A Introduction The Atmel CryptoAuthentication ATSHA204A, ATECC108A, and ATECC508A devices (crypto

More information

APPLICATION NOTE. AT07175: SAM-BA Bootloader for SAM D21. Atmel SAM D21. Introduction. Features

APPLICATION NOTE. AT07175: SAM-BA Bootloader for SAM D21. Atmel SAM D21. Introduction. Features APPLICATION NOTE AT07175: SAM-BA Bootloader for SAM D21 Atmel SAM D21 Introduction Atmel SAM Boot Assistant (Atmel SAM-BA ) allows In-System Programming (ISP) from USB or UART host without any external

More information

AVR182: Zero Cross Detector. Introduction. AVR ATmega163. AVR 8-bit Microcontrollers APPLICATION NOTE V CC. Serial Input Resistor. Mains.

AVR182: Zero Cross Detector. Introduction. AVR ATmega163. AVR 8-bit Microcontrollers APPLICATION NOTE V CC. Serial Input Resistor. Mains. AVR 8-bit Microcontrollers AVR182: Zero Cross Detector APPLICATION NOTE Introduction One of the many issues with developing modern applications is to keep the spikes and EMI at a minimum, especially when

More information

QT1 Xplained Pro. Preface. Atmel QTouch USER GUIDE

QT1 Xplained Pro. Preface. Atmel QTouch USER GUIDE Atmel QTouch QT1 Xplained Pro USER GUIDE Preface Atmel QT1 Xplained Pro kit is a set of two extension boards that enables evaluation of self- and mutual capacitance mode touch using the Peripheral Touch

More information

CryptoAuth Xplained Pro

CryptoAuth Xplained Pro CryptoAuth Xplained Pro CryptoAuthentication Xplained Pro Extension Board HARDWARE USER GUIDE Atmel CryptoAuth Xplained Pro Extension Board Introduction The Atmel CryptoAuth Xplained Pro (CAXPro) Evaluation

More information

SMARTCARD XPRO. Preface. SMART ARM-based Microcontrollers USER GUIDE

SMARTCARD XPRO. Preface. SMART ARM-based Microcontrollers USER GUIDE SMART ARM-based Microcontrollers SMARTCARD XPRO USER GUIDE Preface Atmel SMARTCARD Xplained Pro is an extension board to the Atmel Xplained Pro evaluation platform. Atmel SMARTCARD Xplained Pro is designed

More information

USER GUIDE EDBG. Description

USER GUIDE EDBG. Description USER GUIDE EDBG Description The Atmel Embedded Debugger (EDBG) is an onboard debugger for integration into development kits with Atmel MCUs. In addition to programming and debugging support through Atmel

More information

AT88CK490 Evaluation Kit

AT88CK490 Evaluation Kit AT88CK490 Evaluation Kit CryptoAuthentication USB Dongle HARDWARE USER GUIDE Atmel AT88CK490 CryptoAuthentication Evaluation Kit Introduction The Atmel AT88CK490 CryptoAuthentication Evaluation Kit is

More information

APPLICATION NOTE. Authentication Counting. Atmel CryptoAuthentication. Features. Introduction

APPLICATION NOTE. Authentication Counting. Atmel CryptoAuthentication. Features. Introduction APPLICATION NOTE Authentication Counting Atmel CryptoAuthentication Features How to achieve high endurance counters in excess of 800,000 counts. How to disable the Atmel CryptoAuthentication ATSHA204A

More information

APPLICATION NOTE. Atmel RFID Kits Overview ATAN0075. RFID Kits Introduction

APPLICATION NOTE. Atmel RFID Kits Overview ATAN0075. RFID Kits Introduction APPLICATION NOTE Atmel RFID Kits Overview ATAN0075 RFID Kits Introduction Atmel offers several design and evaluation kits for a fast and easy way to test the LF-RFID technology but also developing the

More information

APPLICATION NOTE. Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer. Atmel AVR 8-bit Microcontroller. Introduction.

APPLICATION NOTE. Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer. Atmel AVR 8-bit Microcontroller. Introduction. APPLICATION NOTE Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer Introduction Atmel AVR 8-bit Microcontroller This application note describes how to implement a real time counter (RTC)

More information

AT15007: Differences between ATmega328/P and ATmega328PB. Introduction. Features. Atmel AVR 8-bit Microcontrollers APPLICATION NOTE

AT15007: Differences between ATmega328/P and ATmega328PB. Introduction. Features. Atmel AVR 8-bit Microcontrollers APPLICATION NOTE Atmel AVR 8-bit Microcontrollers AT15007: Differences between ATmega328/P and ATmega328PB APPLICATION NOTE Introduction This application note assists the users of Atmel ATmega328 variants to understand

More information

AVR151: Setup and Use of the SPI. Introduction. Features. Atmel AVR 8-bit Microcontroller APPLICATION NOTE

AVR151: Setup and Use of the SPI. Introduction. Features. Atmel AVR 8-bit Microcontroller APPLICATION NOTE Atmel AVR 8-bit Microcontroller AVR151: Setup and Use of the SPI APPLICATION NOTE Introduction This application note describes how to set up and use the on-chip Serial Peripheral Interface (SPI) of the

More information

AVR221: Discrete PID Controller on tinyavr and megaavr devices. Introduction. AVR 8-bit Microcontrollers APPLICATION NOTE

AVR221: Discrete PID Controller on tinyavr and megaavr devices. Introduction. AVR 8-bit Microcontrollers APPLICATION NOTE AVR 8-bit Microcontrollers AVR221: Discrete PID Controller on tinyavr and megaavr devices APPLICATION NOTE Introduction This application note describes a simple implementation of a discrete Proportional-

More information

Atmel AVR4903: ASF - USB Device HID Mouse Application. Atmel Microcontrollers. Application Note. Features. 1 Introduction

Atmel AVR4903: ASF - USB Device HID Mouse Application. Atmel Microcontrollers. Application Note. Features. 1 Introduction Atmel AVR4903: ASF - USB Device HID Mouse Application Features USB 2.0 compliance - Chapter 9 compliance - HID compliance - Low-speed (1.5Mb/s) and full-speed (12Mb/s) data rates Standard USB HID mouse

More information

AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE

AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE Atmel 8-bit and 32-bit Microcontrollers AVR127: Understanding ADC Parameters APPLICATION NOTE Introduction This application note explains the basic concepts of analog-to-digital converter (ADC) and the

More information

APPLICATION NOTE. Atmel AVR32848: Android Accessory Demo. 32-bit Atmel Microcontrollers. Features. Introduction

APPLICATION NOTE. Atmel AVR32848: Android Accessory Demo. 32-bit Atmel Microcontrollers. Features. Introduction APPLICATION NOTE Atmel AVR32848: Android Accessory Demo 32-bit Atmel Microcontrollers Features Control an accessory from an Android device Send data to and from an Android device to an accessory Supported

More information

AVR131: Using the AVR s High-speed PWM. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE

AVR131: Using the AVR s High-speed PWM. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE AVR 8-bit Microcontrollers AVR131: Using the AVR s High-speed PWM APPLICATION NOTE Introduction This application note is an introduction to the use of the high-speed Pulse Width Modulator (PWM) available

More information

Atmel AVR4921: ASF - USB Device Stack Differences between ASF V1 and V2. 8-bit Atmel Microcontrollers. Application Note. Features.

Atmel AVR4921: ASF - USB Device Stack Differences between ASF V1 and V2. 8-bit Atmel Microcontrollers. Application Note. Features. Atmel AVR4921: ASF - USB Device Stack Differences between ASF V1 and V2 Features Advantages Implementation differences Integration Migration from stack V1 to stack V2 8-bit Atmel Microcontrollers Application

More information

APPLICATION NOTE Atmel AT02509: In House Unit with Bluetooth Low Energy Module Hardware User Guide 8-bit Atmel Microcontroller Features Description

APPLICATION NOTE Atmel AT02509: In House Unit with Bluetooth Low Energy Module Hardware User Guide 8-bit Atmel Microcontroller Features Description APPLICATION NOTE Atmel AT259: In House Unit with Bluetooth Low Energy Module Hardware User Guide Features 8-bit Atmel Microcontroller Low power consumption Interface with BLE with UART Bi-direction wake

More information

AVR351: Runtime calibration and compensation of RC oscillators. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR351: Runtime calibration and compensation of RC oscillators. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR351: Runtime calibration and compensation of oscillators Features Use of the Oscillator Sampling Interface in calibration. Slow oscillator frequency prediction. Ultra Low Power oscillator frequency

More information

AVR1001: Getting Started With the XMEGA Event System. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR1001: Getting Started With the XMEGA Event System. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR1001: Getting Started With the XMEGA Event System Features Flexible routing of peripheral events - 8 configurable event channels - Signal filtering Ability to control peripherals independent of CPU

More information

APPLICATION NOTE. AT17284: Proximetry Cloud Based Smart Plug User Guide. SMART ARM-based Microcontrollers. Introduction. Features

APPLICATION NOTE. AT17284: Proximetry Cloud Based Smart Plug User Guide. SMART ARM-based Microcontrollers. Introduction. Features APPLICATION NOTE AT17284: Proximetry Cloud Based Smart Plug User Guide SMART ARM-based Microcontrollers Introduction This document introduces the Proximetry cloud based Atmel Smart Plug. It explains how

More information

USER GUIDE. ZigBit USB Stick User Guide. Introduction

USER GUIDE. ZigBit USB Stick User Guide. Introduction USER GUIDE ZigBit USB Stick User Guide Introduction This user guide describes how to get started with the Atmel ZigBit USB sticks. The ZigBit USB sticks is targeted for evaluating the USB features of the

More information

Capacitive Touch Technology Opens the Door to a New Generation of Automotive User Interfaces

Capacitive Touch Technology Opens the Door to a New Generation of Automotive User Interfaces Capacitive Touch Technology Opens the Door to a New Generation of Automotive User Interfaces Stephan Thaler, Thomas Wenzel When designing a modern car, the spotlight is on the driving experience, from

More information

Application Note. 8-bit Microcontrollers. AVR270: USB Mouse Demonstration

Application Note. 8-bit Microcontrollers. AVR270: USB Mouse Demonstration AVR270: USB Mouse Demonstration Features Runs with AT90USB Microcontrollers at 8MHz USB Low Power Bus Powered Device (less then 100mA) Supported by any PC running Windows (98SE or later), Linux or Mac

More information

AVR106: C Functions for Reading and Writing to Flash Memory. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE

AVR106: C Functions for Reading and Writing to Flash Memory. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE AVR 8-bit Microcontrollers AVR106: C Functions for Reading and Writing to Flash Memory APPLICATION NOTE Introduction The Atmel AVR devices have a feature called Self programming Program memory. This feature

More information

AVR32701: AVR32AP7 USB Performance. 32-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR32701: AVR32AP7 USB Performance. 32-bit Microcontrollers. Application Note. Features. 1 Introduction AVR32701: AVR32AP7 USB Performance Features Linux USB bulk transfer performance ATSTK1000 (32-bit SDRAM bus width) ATNGW100 (16-bit SDRAM bus width) GadgetFS driver and gadgetfs-test application USB performance

More information

Designing Feature-Rich User Interfaces for Home and Industrial Controllers

Designing Feature-Rich User Interfaces for Home and Industrial Controllers Designing Feature-Rich User Interfaces for Home and Industrial Controllers Author: Frédéric Gaillard, Product Marketing Manager, Atmel We have all become familiar with intuitive user interfaces on our

More information

APPLICATION NOTE. Atmel AT04389: Connecting SAMD20E to the AT86RF233 Transceiver. Atmel SAMD20. Description. Features

APPLICATION NOTE. Atmel AT04389: Connecting SAMD20E to the AT86RF233 Transceiver. Atmel SAMD20. Description. Features APPLICATION NOTE Atmel AT04389: Connecting SAMD20E to the AT86RF233 Transceiver Description Atmel SAMD20 This application note describes a method to connect an Atmel ATSAMD20E microcontroller to an Atmel

More information

APPLICATION NOTE. AT07926: Connecting Wireless Networks to the Internet using Xively Technology. Atmel ATmega256RFR2. Description.

APPLICATION NOTE. AT07926: Connecting Wireless Networks to the Internet using Xively Technology. Atmel ATmega256RFR2. Description. APPLICATION NOTE AT07926: Connecting Wireless Networks to the Internet using Xively Technology Description Atmel ATmega256RFR2 This application note exhibits techniques to connect IEEE 802.15.4 wireless

More information

Application Note. Atmel ATSHA204 Authentication Modes. Prerequisites. Overview. Introduction

Application Note. Atmel ATSHA204 Authentication Modes. Prerequisites. Overview. Introduction Application Note Atmel Authentication Modes Prerequisites Hardware Atmel AT88CK454BLACK Evaluation Board Atmel AT88CK109STK8 Kit Software Atmel Crypto Evaluation Studio (ACES) Overview Understand which

More information

Application Note. Atmel CryptoAuthentication Product Uses. Atmel ATSHA204. Abstract. Overview

Application Note. Atmel CryptoAuthentication Product Uses. Atmel ATSHA204. Abstract. Overview Application Note Atmel CryptoAuthentication Product Uses Atmel Abstract Companies are continuously searching for ways to protect property using various security implementations; however, the cost of security

More information

APPLICATION NOTE. AT11493: Waveform Generator and WAV Audio Player using DAC ATSAMD20J18. Introduction

APPLICATION NOTE. AT11493: Waveform Generator and WAV Audio Player using DAC ATSAMD20J18. Introduction APPLICATION NOTE AT11493: Waveform Generator and WAV Audio Player using DAC ATSAMD20J18 Introduction This application note explains the basics of Digital-to-Analog Converter (DAC) and their application

More information

AVR1504: Xplain training - XMEGA Event system. 8-bit Microcontrollers. Application Note. Prerequisites. 1 Introduction

AVR1504: Xplain training - XMEGA Event system. 8-bit Microcontrollers. Application Note. Prerequisites. 1 Introduction AVR1504: Xplain training - XMEGA Event system Prerequisites Required knowledge Basic knowledge of microcontrollers and the C programming language Completed AVR1500: Xplain training XMEGA Basics Recommended

More information

AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series. 32-bit Microcontrollers. Application Note.

AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series. 32-bit Microcontrollers. Application Note. AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series 1 Introduction This application note outlines the steps necessary to optimize analog to digital conversions on AT32UC3A0/1,

More information

AVR4018: Inertial Two (ATAVRSBIN2) Hardware User's Guide. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR4018: Inertial Two (ATAVRSBIN2) Hardware User's Guide. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR4018: Inertial Two (ATAVRSBIN2) Hardware User's Guide Features Compatible with all Atmel AVR Xplain MCU boards Full nine-degree-of-freedom inertial sensing InvenSense three-axis MEMS gyroscope (IMU-3000

More information

AVR922: Add a Serial Number to your USB Device. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR922: Add a Serial Number to your USB Device. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR922: Add a Serial Number to your USB Device Features 20 characters Serial Number Unique ID for your device Enabled/Disabled by software 1 Introduction Adding to the VID (Vendor ID) and the PID (Product

More information

More Secure, Less Costly IoT Edge Node Security Provisioning

More Secure, Less Costly IoT Edge Node Security Provisioning More Secure, Less Costly IoT Edge Node Security Provisioning Authors: Nicolas Schieli, Sr. Director, Secure Products Group Ron Ih, Sr. Manager, Marketing and Business Development Eustace Asanghanwa, Manager,

More information

APPLICATION NOTE. RF System Architecture Considerations ATAN0014. Description

APPLICATION NOTE. RF System Architecture Considerations ATAN0014. Description APPLICATION NOTE RF System Architecture Considerations ATAN0014 Description Highly integrated and advanced radio designs available today, such as the Atmel ATA5830 transceiver and Atmel ATA5780 receiver,

More information

Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures. Atmel Microcontrollers. Application Note. Features.

Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures. Atmel Microcontrollers. Application Note. Features. Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures Features Compliance to USB 2.0 - Chapters 8 and 9 - Classes: HID, MSC, CDC, PHDC Interoperability: OS, classes, self- and bus-powered

More information

ATtiny104 Xplained Nano. Preface. Atmel AVR 8-bit Microcontrollers USER GUIDE

ATtiny104 Xplained Nano. Preface. Atmel AVR 8-bit Microcontrollers USER GUIDE Atmel AVR 8-bit Microcontrollers ATtiny104 Xplained Nano USER GUIDE Preface The Atmel ATtiny104 Xplained Nano evaluation kit is a hardware platform to evaluate the ATtiny104 microcontroller. Supported

More information

AT91SAM ARM-based Flash MCU. Application Note

AT91SAM ARM-based Flash MCU. Application Note Modbus Slave Stack for the Atmel Family of SAM3 Microcontrollers (Free Modbus Stack from Embedded Solutions) 1. Scope This application note provides directions and instructions to application engineers

More information

AVR311: Using the TWI Module as I2C Slave. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE

AVR311: Using the TWI Module as I2C Slave. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE AVR 8-bit Microcontrollers AVR311: Using the TWI Module as I2C Slave APPLICATION NOTE Introduction The Two-wire Serial Interface (TWI) is compatible with Philips I 2 C protocol. The bus allows simple,

More information

AVR1301: Using the XMEGA DAC. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR1301: Using the XMEGA DAC. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR1301: Using the XMEGA DAC Features 12 bit resolution Up to 1 M conversions per second Continuous drive or sample-and-hold output Built-in offset and gain calibration High drive capabilities Driver source

More information

AVR315: Using the TWI Module as I2C Master. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE

AVR315: Using the TWI Module as I2C Master. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE AVR 8-bit Microcontrollers AVR315: Using the TWI Module as I2C Master APPLICATION NOTE Introduction The Two-wire Serial Interface (TWI) is compatible with Philips I 2 C protocol. The bus allows simple,

More information

32-bit AVR UC3 Microcontrollers. 32-bit AtmelAVR Application Note. AVR32769: How to Compile the standalone AVR32 Software Framework in AVR32 Studio V2

32-bit AVR UC3 Microcontrollers. 32-bit AtmelAVR Application Note. AVR32769: How to Compile the standalone AVR32 Software Framework in AVR32 Studio V2 AVR32769: How to Compile the standalone AVR32 Software Framework in AVR32 Studio V2 1. Introduction The purpose of this application note is to show how to compile any of the application and driver examples

More information

Using CryptoMemory in Full I 2 C Compliant Mode. Using CryptoMemory in Full I 2 C Compliant Mode AT88SC0104CA AT88SC0204CA AT88SC0404CA AT88SC0808CA

Using CryptoMemory in Full I 2 C Compliant Mode. Using CryptoMemory in Full I 2 C Compliant Mode AT88SC0104CA AT88SC0204CA AT88SC0404CA AT88SC0808CA Using CryptoMemory in Full I 2 C Compliant Mode 1. Introduction This application note describes how to communicate with CryptoMemory devices in full I 2 C compliant mode. Full I 2 C compliance permits

More information

What Can You Achieve Today? Explore Internship and New College Hire Opportunities at Atmel

What Can You Achieve Today? Explore Internship and New College Hire Opportunities at Atmel What Can You Achieve Today? Explore Internship and New College Hire Opportunities at Atmel PASSION ARE YOU TEAMWORK READY TO RESULTS GET A HEAD START ACCOUNTABILITY ON YOUR CAREER? INTEGRITY 2 2014 / www.atmel.com

More information

Dell InTrust 11.0. Preparing for Auditing Cisco PIX Firewall

Dell InTrust 11.0. Preparing for Auditing Cisco PIX Firewall 2014 Dell Inc. ALL RIGHTS RESERVED. This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a software license or nondisclosure agreement.

More information

AT12181: ATWINC1500 Wi-Fi Network Controller - AP Provision Mode. Introduction. Features. Atmel SmartConnect APPLICATION NOTE

AT12181: ATWINC1500 Wi-Fi Network Controller - AP Provision Mode. Introduction. Features. Atmel SmartConnect APPLICATION NOTE Atmel SmartConnect AT12181: ATWINC1500 Wi-Fi Network Controller - AP Provision Mode APPLICATION NOTE Introduction This application note explains how to build the state-of-art Internet of Things (IoT) applications

More information

Atmel AVR1017: XMEGA - USB Hardware Design Recommendations. 8-bit Atmel Microcontrollers. Application Note. Features.

Atmel AVR1017: XMEGA - USB Hardware Design Recommendations. 8-bit Atmel Microcontrollers. Application Note. Features. Atmel AVR1017: XMEGA - USB Hardware Design Recommendations Features USB 2.0 compliance - Signal integrity - Power consumption - Back driver voltage - Inrush current EMC/EMI considerations Layout considerations

More information

Spotlight Management Pack for SCOM

Spotlight Management Pack for SCOM Spotlight Management Pack for SCOM User Guide January 2015 The is used to display data from alarms raised by Spotlight on SQL Server Enterprise in SCOM (System Center Operations Manager). About System

More information

How to Create Root and Other Certificates for IoT Devices

How to Create Root and Other Certificates for IoT Devices How to Create Root and Other Certificates for IoT Devices Authors: Eustace Asanghanwa, Strategic Marketing Manager, Secure Products Group The internet of things (IoT) is spurring dramatic levels of innovation

More information

Dell Unified Communications Command Suite - Diagnostics 8.0. Data Recorder User Guide

Dell Unified Communications Command Suite - Diagnostics 8.0. Data Recorder User Guide Dell Unified Communications Command Suite - Diagnostics 8.0 2014 Dell Inc. ALL RIGHTS RESERVED. This guide contains proprietary information protected by copyright. The software described in this guide

More information

AVR32788: AVR 32 How to use the SSC in I2S mode. 32-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR32788: AVR 32 How to use the SSC in I2S mode. 32-bit Microcontrollers. Application Note. Features. 1 Introduction AVR32788: AVR 32 How to use the SSC in I2S mode Features I²S protocol overview I²S on the AVR32 I²S sample rate configurations Example of use with AT32UC3A on EVK1105 board 32-bit Microcontrollers Application

More information

AVR126: ADC of megaavr in Single Ended Mode. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE

AVR126: ADC of megaavr in Single Ended Mode. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE AVR 8-bit Microcontrollers AVR126: ADC of megaavr in Single Ended Mode APPLICATION NOTE Introduction Atmel megaavr devices have a successive approximation Analog-to- Digital Converter (ADC) capable of

More information

New Features and Enhancements

New Features and Enhancements Dell Migration Manager for SharePoint 4.7 Build number: 4.7.20141207 December 9, 2014 These release notes provide information about the Dell Migration Manager for SharePoint release. New Features and Enhancements

More information

8-bit. Application Note. Microcontrollers. AVR282: USB Firmware Upgrade for AT90USB

8-bit. Application Note. Microcontrollers. AVR282: USB Firmware Upgrade for AT90USB AVR282: USB Firmware Upgrade for AT90USB Features Supported by Atmel FLIP program on all Microsoft O/S from Windows 98SE and later FLIP 3.2.1 or greater supports Linux Default on chip USB bootloader In-System

More information

AVR287: USB Host HID and Mass Storage Demonstration. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR287: USB Host HID and Mass Storage Demonstration. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR287: USB Host HID and Mass Storage Demonstration Features Based on AVR USB OTG Reduced Host Runs on AT90USB647/1287 Support bootable/non-bootable standard USB mouse Support USB Hub feature (Mass Storage

More information

SAMA5D2. Scope. Reference Documents. Atmel SMART ARM-based MPU ERRATA

SAMA5D2. Scope. Reference Documents. Atmel SMART ARM-based MPU ERRATA SAMA5D2 Atmel SMART ARM-based MPU ERRATA Scope This document contains the known errata found on the following Atmel SMART ARM -based SAMA5D2 devices, and planned to be fixed in the next silicon version:

More information

Dell Spotlight on Active Directory 6.8.3. Server Health Wizard Configuration Guide

Dell Spotlight on Active Directory 6.8.3. Server Health Wizard Configuration Guide Dell Spotlight on Active Directory 6.8.3 Server Health Wizard Configuration Guide 2013 Dell Software Inc. ALL RIGHTS RESERVED. This guide contains proprietary information protected by copyright. The software

More information

AVR125: ADC of tinyavr in Single Ended Mode. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR125: ADC of tinyavr in Single Ended Mode. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR125: ADC of tinyavr in Single Ended Mode Features Up to 10bit resolution Up to 15kSPS Auto triggered and single conversion mode Optional left adjustment for ADC result readout Driver source code included

More information

formerly Help Desk Authority 9.1.2 Quest Free Network Tools User Manual

formerly Help Desk Authority 9.1.2 Quest Free Network Tools User Manual formerly Help Desk Authority 9.1.2 Quest Free Network Tools User Manual 2 Contacting Quest Software Email: Mail: Web site: info@quest.com Quest Software, Inc. World Headquarters 5 Polaris Way Aliso Viejo,

More information

AVR1309: Using the XMEGA SPI. 8-bit Microcontrollers. Application Note. Features. 1 Introduction SCK MOSI MISO SS

AVR1309: Using the XMEGA SPI. 8-bit Microcontrollers. Application Note. Features. 1 Introduction SCK MOSI MISO SS AVR1309: Using the XMEGA SPI Features Introduction to SPI and the XMEGA SPI module Setup and use of the XMEGA SPI module Implementation of module drivers Polled master Interrupt controlled master Polled

More information

Dell One Identity Cloud Access Manager 8.0 - How to Configure vworkspace Integration

Dell One Identity Cloud Access Manager 8.0 - How to Configure vworkspace Integration Dell One Identity Cloud Access Manager 8.0 - How to Configure vworkspace Integration February 2015 This guide describes how to configure Dell One Identity Cloud Access Manager to communicate with a Dell

More information

AVR353: Voltage Reference Calibration and Voltage ADC Usage. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR353: Voltage Reference Calibration and Voltage ADC Usage. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR353: Voltage Reference Calibration and Voltage ADC Usage Features Voltage reference calibration. - 1.100V +/-1mV (typical) and < 90ppm/ C drift from 10 C to +70 C. Interrupt controlled voltage ADC sampling.

More information

APPLICATION NOTE. Atmel AVR443: Sensor-based Control of Three Phase Brushless DC Motor. Atmel AVR 8-bit Microcontrollers. Features.

APPLICATION NOTE. Atmel AVR443: Sensor-based Control of Three Phase Brushless DC Motor. Atmel AVR 8-bit Microcontrollers. Features. APPLICATION NOTE Features Atmel AVR443: Sensor-based Control of Three Phase Brushless DC Motor Less than 5µs response time on Hall sensor output change Theoretical maximum of 1600k RPM Over-current sensing

More information

APPLICATION NOTE. AT05558: Wireless Manufacturing Test Kit. Atmel ATmega256RFR2. Description. Features

APPLICATION NOTE. AT05558: Wireless Manufacturing Test Kit. Atmel ATmega256RFR2. Description. Features APPLICATION NOTE AT05558: Wireless Manufacturing Test Kit Atmel ATmega256RFR2 Description Manufacturers need rapid test capability for mass production of wireless products. This Manufacturing Tool Kit

More information

AVR1922: Xplain Board Controller Firmware. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR1922: Xplain Board Controller Firmware. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR1922: Xplain Board Controller Firmware Features USB interface - Mass-storage to on-board DataFlash memory Atmel AVR XMEGA TM reset control 1 Introduction The Xplain board controller, an AT90USB1287,

More information

AVR1510: Xplain training - XMEGA USART. 8-bit Microcontrollers. Application Note. Prerequisites. 1 Introduction

AVR1510: Xplain training - XMEGA USART. 8-bit Microcontrollers. Application Note. Prerequisites. 1 Introduction AVR1510: Xplain training - XMEGA USART Prerequisites Required knowledge AVR1500: Xplain training XMEGA Basics AVR1502: Xplain training XMEGA Direct Memory Access Controller Software prerequisites Atmel

More information

AN3116 Application note

AN3116 Application note Application note STM32 s ADC modes and their applications Introduction STM32 microcontrollers have one of the most advanced ADCs on the microcontroller market. You could imagine a multitude of applications

More information

Security Analytics Engine 1.0. Help Desk User Guide

Security Analytics Engine 1.0. Help Desk User Guide 2015 Dell Inc. ALL RIGHTS RESERVED. This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a software license or nondisclosure agreement.

More information

APPLICATION NOTE. Atmel LF-RFID Kits Overview. Atmel LF-RFID Kit. LF-RFID Kit Introduction

APPLICATION NOTE. Atmel LF-RFID Kits Overview. Atmel LF-RFID Kit. LF-RFID Kit Introduction APPLICATION NOTE Atmel LF-RFID Kits Overview Atmel LF-RFID Kit LF-RFID Kit Introduction Atmel offers several design and evaluation kits for a fast and easy way to test the LF-RFID technology but also developing

More information

AVR1900: Getting started with ATxmega128A1 on STK600. 8-bit Microcontrollers. Application Note. 1 Introduction

AVR1900: Getting started with ATxmega128A1 on STK600. 8-bit Microcontrollers. Application Note. 1 Introduction AVR1900: Getting started with ATxmega128A1 on STK600 1 Introduction This document contains information about how to get started with the ATxmega128A1 on STK 600. The first three sections contain information

More information

Atmel AVR3000: QTouch Conducted Immunity. 8-bit Atmel Microcontrollers. Application Note. 1 Introduction

Atmel AVR3000: QTouch Conducted Immunity. 8-bit Atmel Microcontrollers. Application Note. 1 Introduction Atmel AVR3000: Q Conducted Immunity 1 Introduction EMC compliance testing requirements include a check of the susceptibility of a product to RF interference coupled through cables that may normally be

More information

Dell InTrust 11.0. Preparing for Auditing CheckPoint Firewall

Dell InTrust 11.0. Preparing for Auditing CheckPoint Firewall 2014 Dell Inc. ALL RIGHTS RESERVED. This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a software license or nondisclosure agreement.

More information

Internet Of Things Marketing or real opportunity

Internet Of Things Marketing or real opportunity Internet Of Things Marketing or real opportunity Jo Uthus Sr Director, System Applications Atmel Corporation 1 2014 Atmel Corporation About Presenter Jo Uthus Senior Director, System Applications, Atmel

More information

AVR1600: Using the XMEGA Quadrature Decoder. 8-bit Microcontrollers. Application Note. Features. 1 Introduction. Sensors

AVR1600: Using the XMEGA Quadrature Decoder. 8-bit Microcontrollers. Application Note. Features. 1 Introduction. Sensors AVR1600: Using the XMEGA Quadrature Decoder Features Quadrature Decoders 16-bit angular resolution Rotation speed and acceleration 1 Introduction Quadrature encoders are used to determine the position

More information

AVR32415: AVR32 AP7 Linux PS/2 keyboard and mouse. 32-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR32415: AVR32 AP7 Linux PS/2 keyboard and mouse. 32-bit Microcontrollers. Application Note. Features. 1 Introduction AVR32415: AVR32 AP7 Linux PS/2 keyboard and mouse Features Linux serio driver using the PSIF module. Supports PS/2 keyboard and mouse. Supports multiple devices. 1 Introduction PS/2 protocol is a very

More information

Dell One Identity Manager 7.0. Help Desk Module Administration Guide

Dell One Identity Manager 7.0. Help Desk Module Administration Guide Dell 2015 Dell Inc. ALL RIGHTS RESERVED. This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a software license or nondisclosure

More information

Dell InTrust 11.0. Preparing for Auditing Microsoft SQL Server

Dell InTrust 11.0. Preparing for Auditing Microsoft SQL Server 2014 Dell Inc. ALL RIGHTS RESERVED. This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a software license or nondisclosure agreement.

More information

AN11008 Flash based non-volatile storage

AN11008 Flash based non-volatile storage Rev. 1 5 January 2011 Application note Document information Info Content Keywords Flash, EEPROM, Non-Volatile Storage Abstract This application note describes the implementation and use of a library that

More information

AVR1318: Using the XMEGA built-in AES accelerator. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR1318: Using the XMEGA built-in AES accelerator. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR1318: Using the XMEGA built-in AES accelerator Features Full compliance with AES (FIPS Publication 197, 2002) - Both encryption and decryption procedures 128-bit Key and State memory XOR load option

More information

Dell InTrust 11.0. Preparing for Auditing and Monitoring Microsoft IIS

Dell InTrust 11.0. Preparing for Auditing and Monitoring Microsoft IIS Preparing for Auditing and Monitoring Microsoft IIS 2014 Dell Inc. ALL RIGHTS RESERVED. This guide contains proprietary information protected by copyright. The software described in this guide is furnished

More information

AVR1321: Using the Atmel AVR XMEGA 32-bit Real Time Counter and Battery Backup System. 8-bit Microcontrollers. Application Note.

AVR1321: Using the Atmel AVR XMEGA 32-bit Real Time Counter and Battery Backup System. 8-bit Microcontrollers. Application Note. AVR1321: Using the Atmel AVR XMEGA 32-bit Real Time Counter and Battery Backup System Features 32-bit Real Time Counter (RTC) - 32-bit counter - Selectable clock source 1.024kHz 1Hz - Long overflow time

More information

APPLICATION NOTE. AT09567: ISM Band PCB Antenna Reference Design. Atmel Wireless. Features. Description

APPLICATION NOTE. AT09567: ISM Band PCB Antenna Reference Design. Atmel Wireless. Features. Description APPLICATION NOTE Features AT09567: ISM Band PCB Antenna Reference Design Atmel Wireless Compact PCB antennas for 915MHz and 2.4GHz ISM bands Easy to integrate Altium design files and gerber files Return

More information

Dell One Identity Cloud Access Manager 8.0.1 - How to Configure for SSO to SAP NetWeaver using SAML 2.0

Dell One Identity Cloud Access Manager 8.0.1 - How to Configure for SSO to SAP NetWeaver using SAML 2.0 Dell One Identity Cloud Access Manager 8.0.1 - How to Configure for SSO to SAP NetWeaver using SAML 2.0 May 2015 About this guide Prerequisites and requirements NetWeaver configuration Legal notices About

More information

AVR033: Getting Started with the CodeVisionAVR C Compiler. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR033: Getting Started with the CodeVisionAVR C Compiler. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR033: Getting Started with the CodeVisionAVR C Compiler Features Installing and Configuring CodeVisionAVR to Work with the Atmel STK 500 Starter Kit and AVR Studio Debugger Creating a New Project Using

More information

USER GUIDE. ATWINC1500B Hardware Design Guidelines - IEEE 802.11 b/g/n IoT Module. Atmel SmartConnect. Introduction

USER GUIDE. ATWINC1500B Hardware Design Guidelines - IEEE 802.11 b/g/n IoT Module. Atmel SmartConnect. Introduction USER GUIDE ATWINC1500B Hardware Design Guidelines - IEEE 802.11 b/g/n IoT Module Atmel SmartConnect Introduction This document details the hardware design guidelines for a customer to design the Atmel

More information

APPLICATION NOTE. Atmel AT01095: Joystick Game Controller Reference Design. 8-/16-bit Atmel Microcontrollers. Features.

APPLICATION NOTE. Atmel AT01095: Joystick Game Controller Reference Design. 8-/16-bit Atmel Microcontrollers. Features. APPLICATION NOTE Features Atmel AT01095: Joystick Game Controller Reference Design 8-/16-bit Atmel Microcontrollers Joystick Game Controller Atmel ATxmega32A4U microcontroller In System Programming (ISP)

More information

Balancing Performance and Power Efficiency in Embedded Systems

Balancing Performance and Power Efficiency in Embedded Systems Balancing Performance and Power Efficiency in Embedded Systems Introduction Optimizing embedded systems for low power consumption requires developers to find a balance between performance and power usage.

More information

AT09333: USB Host Interface (UHI) for Communication Class Device (CDC) Introduction. Atmel Microcontrollers APPLICATION NOTE

AT09333: USB Host Interface (UHI) for Communication Class Device (CDC) Introduction. Atmel Microcontrollers APPLICATION NOTE Atmel Microcontrollers AT09333: USB Host Interface (UHI) for Communication Class Device (CDC) APPLICATION NOTE Introduction USB Host Interface (UHI) for Communication Class Device (CDC) provides an interface

More information

Dell Statistica 13.0. Statistica Enterprise Installation Instructions

Dell Statistica 13.0. Statistica Enterprise Installation Instructions Dell Statistica 13.0 2015 Dell Inc. ALL RIGHTS RESERVED. This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a software license or

More information

MODFLEX MINI GATEWAY ETHERNET USER S GUIDE

MODFLEX MINI GATEWAY ETHERNET USER S GUIDE MODFLEX MINI GATEWAY ETHERNET Last updated March 15 th, 2012 330-0076-R1.0 Copyright 2011-2012 LS Research, LLC Page 1 of 19 Table of Contents 1 Introduction... 3 1.1 Purpose & Scope... 3 1.2 Applicable

More information

Dell NetVault Backup Plug-in for Advanced Encryption 2.2. User s Guide

Dell NetVault Backup Plug-in for Advanced Encryption 2.2. User s Guide Dell Backup Plug-in for Advanced Encryption 2.2 2014 Dell Inc. ALL RIGHTS RESERVED. This guide contains proprietary information protected by copyright. The software described in this guide is furnished

More information