Spatial panel models

Size: px
Start display at page:

Download "Spatial panel models"

Transcription

1 Spatial panel models J Paul Elhorst University of Groningen, Department of Economics, Econometrics and Finance PO Box 800, 9700 AV Groningen, the Netherlands Phone: , Fax: , March 2012 Abstract This chapter provides a survey of the existing literature on spatial panel data models Both static and dynamic models will be considered The paper also demonstrates that spatial econometric models that include lags of the dependent variable and of the independent variables in both space and time provide a useful tool to quantify the magnitude of direct and indirect effects, both in the short term and long term Direct effects can be used to test the hypothesis as to whether a particular variable has a significant effect on the dependent variable in its own economy, and indirect effects to test the hypothesis whether spatial spillovers exist To illustrate these models and their effects estimates, a demand model for cigarettes is estimated based on panel data from 46 US states over the period 1963 to 1992 Keywords Spatial panels, dynamic effects, spatial spillover effects, identification, estimation methods JEL Classification C21, C23, C51 1

2 Lecture + assignment: wwwregroningennl/elhorst click on spatial econometrics at the right Open rar file Finish assignment tomorrow 2

3 3

4 Spatial econometric model Linear regression model extended to include Endogenous interaction effect (1): ρwy - Dependent variable y of unit A Dependent variable y of unit B - Y denotes an N 1 vector consisting of one observation on the dependent variable for every unit in the sample (i=1,,n) - W is an N N nonnegative matrix describing the arrangement of the units in the sample Exogenous interaction effects (K): WXθ - Independent variable x of unit A Dependent variable y of unit B - X denotes an N K matrix of exogenous explanatory variables Interaction effect among error terms (1): λwu - Error term u of unit A Error term u of unit B 4

5 5 W is an N N matrix describing the spatial arrangement of the spatial units in the sample Usually, W is row-normalized Row-normalizing gives W= /2 0 1/ This is an example of a row-normalized binary contiguity matrix for N=3

6 Spatial econometric models: from cross-section to panel data Y=ρWY+αι N +Xβ+WXθ+u, u=λwu+ε Cross-section data Y t =ρwy t +αι N +X t β+wx t θ+u t, u t =λwu t +ε t Space-time data Y t =ρwy t +X t β+wx t θ+µ+α t ι N +u t Spatial panel data µ: vector of spatial fixed or random effects α t : time period fixed or random effects (t=1,,t) Y t =τy t-1 +ρwy t +ηwy t-1 +X t β+wx t θ+µ+α t ι N +u t Dynamic spatial panel data 6

7 Fixed effects versus random effects specification Experience shows that spatial econometricians tend to work with space-time data of adjacent spatial units located in unbroken study areas, otherwise the spatial weights matrix cannot be defined Consequently, the study area often takes a form similar to all counties of a state or all regions in a country Under these circumstances the fixed effects model is more appropriate than the random effects model The idea that a limited set of regions is sampled from a larger population must be rejected and therefore the random effects models 7

8 8 Direct, indirect, and spatial spillover effects spatial panel data model Y t =ρwy t +X t β+wx t θ+µ+α t ι N +u t β θ θ θ β θ θ θ β ρ = = k k N2 k N1 k 2N k k 21 k 1N k 12 k 1 t Nk N 1k N Nk 1 1k 1 t Nk 1k w w w w w w W) (I x y x y x y x y x Y x Y Direct effect: Mean diagonal element Indirect effect: Mean row sum of non-diagonal elements Problem: Calculation of t-values of indirect effects (bootstrapping)

9 Dynamic spatial panel data model Y t =τy t-1 +ρwy t +ηwy t-1 +X t β+wx t θ+µ+α t ι N +u t Short-term (ignore τ and η) Y x 1k L Y x Nk t = (I ρw) 1 [ β k I N + θ k W] Long-term (set Y t-1 =Y t =Y* and WY t-1 =WY t =WY*) Y x 1k L Y x Nk = [(1 τ)i ( ρ + η)w] 1 [ β k I N + θ k W] 9

10 Empirical illustration: Cigarette Demand in the US Baltagi and Li (2004) estimate a demand model for cigarettes based on a panel from 46 US states log( C it ) = α +β 1 log(p it ) +β 2 log(y it ) +µ i (optional) + λ t (optional) + ε where C it is real per capita sales of cigarettes by persons of smoking age (14 years and older) This is measured in packs of cigarettes per capita P it is the average retail price of a pack of cigarettes measured in real terms Y it is real per capita disposable income Whereas Baltagi and Li (2004) use the first 25 years for estimation to reserve data for out of sample forecasts, we use the full data set covering the period Details on data sources are given in Baltagi and Levin (1986, 1992) and Baltagi et al (2000) They also give reasons to assume the state-specific effects ( µ i) and time-specific effects ( λ t) fixed, in which case one includes state dummy variables and time dummies for each year it, 10

11 Table 1 Estimation results of cigarette demand using panel data models without spatial interaction effects Determinants (1) (2) (3) (4) Log(P) (-2516) Log(Y) 0268 Pooled OLS Spatial fixed effects (1085) Intercept 3485 (3075) (-3888) (-066) Time-period fixed effects (-2266) 0565 (1866) Spatial and time-period fixed effects (-2563) 0529 (1167) R LogL LM spatial lag LM spatial error robust LM spatial lag robust LM spatial error LR test spatial fixed effects: (23157, with 46 degrees of freedom [df], p < 001) LR test time-period fixed effects: (4731, 30 df, p < 001) (robust) LM test (critical value 384): error model 11

12 Table 2 Estimation results of cigarette demand: specification with spatial and time-period specific effects Determinants (1) (2) (3) Spatial and timeperiod fixed effects Spatial and time-period fixed effects bias-corrected Random spatial effects, Fixed time-period effects W*Log(C) 0219 (667) 0264 (825) 0224 (682) Log(P) (-2502) (-2436) (-2491) Log(Y) 0601 (1051) 0603 (1027) 0593 (1071) W*Log(P) 0045 (055) 0093 (113) 0066 (081) W*Log(Y) (-373) (-393) (-355) Phi 0087 (681) σ R Corrected R LogL Wald test spatial lag 1483 (p=0001) 1796 (p=0000) 1390 (p=0001) LR test spatial lag 1575 (p=0000) 1580 (p=0000) 1448 (p=0000) Wald test spatial error 898 (p=0011) 818 (p=0017) 738 (p=0025) LR test spatial error 823 (p=0016) 828 (p=0016) 727 (p=0026) LR/Wald tests: Hausman/Phi tests: Fixed effects model 12

13 To test the hypothesis whether the can be simplified to the spatial error model, H 0 : θ+δβ=0, one may perform a Wald or LR test The results reported in the second column using the Wald test (898, with 2 degrees of freedom [df], p=0011) or using the LR test (823, 2 df, p=0016) indicate that this hypothesis must be rejected Similarly, the hypothesis that the can be simplified to the spatial lag model, H 0 : θ=0, must be rejected (Wald test: 1483, 2 df, p=0006; LR test: 1575, 2 df, p=0004) This implies that both the spatial error model and the spatial lag model must be rejected in favor of the Conclusion: Spatial Durbin model 13

14 Hausman's specification test can be used to test the random effects model against the fixed effects model The results (3061, 5 df, p<001) indicate that the random effects model must be rejected Another way to test the random effects model against the fixed effects model is to estimate the parameter "phi" ( φ 2 in Baltagi, 2005), which measures the weight attached to the cross-sectional component of the data and which can take values on the interval [0,1] If this parameter equals 0, the random effects model converges to its fixed effects counterpart; if it goes to 1, it converges to a model without any controls for spatial specific effects We find phi=0087, with t-value of 681, which just as Hausman's specification test indicates that the fixed and random effects models are significantly different from each other Conclusion: Fixed effects model 14

15 Table 1 Estimation results of cigarette demand using different model specifications Determinants (1) (2) (3) no fixed effects Intercept 2631 (1582) with fixed effects Dynamic with lag WY t-1 Log(C) (6504) W*Log(C) 0337 (1109) 0264 (825) 0076 (200) W*Log(C) (-029) Log(P) (-2180) (-2436) (-1319) Log(Y) 0554 (1496) 0603 (1027) 0100 (416) W*Log(P) 0780 (1115) 0093 (113) 0170 (366) W*Log(Y) (1109) (-393) (-087) R LogL Notes: t-values in parentheses Dynamic outperforms its non-dynamic counterpart 15

16 Table 2 Effects estimates of cigarette demand using different model specifications Determinants (1) (2) (3) Short-term direct Short-term indirect Short-term direct effect Log(Y) Short-term indirect effect Log(Y) Long-term direct Long-term indirect Long-term direct effect Log(Y) Long-term indirect effect Log(Y) Notes: t-values in parentheses no fixed effects with fixed effects Dynamic with lag WY t (-1148) 0160 (349) 0099 (336) (-045) (-2339) (-2473) (-959) 0508 (727) (-226) 0610 (098) 0530 (1548) 0594 (1045) 0770 (355) (-747) (-215) 0345 (048) 16

17 Results non-dynamic A non-dynamic cannot be used to calculate short-term effect estimates of the explanatory variables 17

18 Table 2 Effects estimates of cigarette demand using different model specifications Determinants (1) (2) (3) Long-term direct Long-term indirect Long-term direct effect Log(Y) Long-term indirect effect Log(Y) no fixed effects with fixed effects Dynamic with lag WY t (-2339) (-2473) (-959) 0508 (727) (-226) 0610 (098) 0530 (1548) 0594 (1045) 0770 (355) (-747) (-215) 0345 (048) The direct effects estimates of the two explanatory variables are significantly different from zero and have the expected signs Higher prices restrain people from smoking, while higher income levels have a positive effect on cigarette demand The price elasticity amounts to -101 and the income elasticity to

19 Table 1 Estimation results of cigarette demand using different model specifications Determinants (1) (2) (3) Dynamic no fixed effects with fixed effects with lag WY t-1 Log(P) (-2180) (-2436) (-1319) Log(Y) 0554 (1496) 0603 (1027) 0100 (416) Note that these elasticities (direct effects estimates) of -101 and the income elasticity to 0594 are different from the coefficient estimates of and 0603 due to feedback effects that arise as a result of impacts passing through neighboring states and back to the states themselves 19

20 Table 2 Effects estimates of cigarette demand using different model specifications Determinants (1) (2) (3) Long-term direct Long-term indirect Long-term direct effect Log(Y) Long-term indirect effect Log(Y) no fixed effects with fixed effects Dynamic with lag WY t (-2339) (-2473) (-959) 0508 (727) (-226) 0610 (098) 0530 (1548) 0594 (1045) 0770 (355) (-747) (-215) 0345 (048) The spatial spillover effects (indirect effects estimates) of both variables are negative and significant Own-state price increases will restrain people not only from buying cigarettes in their own state, but to a limited extent also from buying cigarettes in neighboring states (elasticity -022) By contrast, whereas an income increase has a positive effects on cigarette consumption in the own state, it has a negative effect in neighboring states 20

21 The first result is not consistent with Baltagi and Levin (1992), who found that price increases in a particular state due to tax increases meant to reduce cigarette smoking and to limit the exposure of non-smokers to cigarette smoke encourage consumers in that state to search for cheaper cigarettes in neighboring states However, whereas Baltagi and Levin s (1992) model is dynamic, it is not spatial; and whereas our model so far contains spatial interaction effects, it is not (yet) dynamic 21

22 Results: Dynamic spatial panel data model Table 2 Effects estimates of cigarette demand using different model specifications Determinants (1) (2) (3) Short-term indirect no fixed effects with fixed effects Dynamic with lag WY t (349) The short-term spatial spillover effect of a price increase turns out to be positive; the elasticity amounts to 016 and is highly significant (t-value 349) This finding is in line with the original finding of Baltagi and Levin (1992) in that a price increase in one state encourages consumers to search for cheaper cigarettes in neighboring states 22

23 Table 2 Effects estimates of cigarette demand using different model specifications Determinants (1) (2) (3) Short-term direct Short-term direct effect Log(Y) Long-term direct Long-term direct effect Log(Y) no fixed effects with fixed effects Dynamic with lag WY t (-1148) 0099 (336) (-2339) (-2473) (-959) 0530 (1548) 0594 (1045) 0770 (355) Consistent with microeconomic theory, the short-term direct effects appear to substantially smaller than the long-term direct effects; versus for the price variable and 0099 versus 0770 for the income variable 23

24 Table 2 Effects estimates of cigarette demand using different model specifications Determinants (1) (2) (3) Long-term direct Long-term direct effect Log(Y) no fixed effects with fixed effects Dynamic with lag WY t (-2339) (-2473) (-959) 0530 (1548) 0594 (1045) 0770 (355) The long-term direct effects in the dynamic, on their turn, appear to be greater (in absolute value) than their counterparts in the non-dynamic ; versus for the price variable and 0770 versus 0594 for the income variable Apparently, the non-dynamic model underestimates the long-term effects 24

25 Table 2 Effects estimates of cigarette demand using different model specifications Determinants (1) (2) (3) Long-term indirect Long-term indirect effect Log(Y) no fixed effects with fixed effects Dynamic with lag WY t (727) (-226) 0610 (098) (-747) (-215) 0345 (048) Although greater and again positive, we do NOT find empirical evidence that the long-term spatial spillover effect is also significant A similar result is found by Debarsy et al (2011) The spatial spillover effect of an income increase is not significant either A similar result is found by Debarsy et al (2011) 25

26 Table 2 Effects estimates of cigarette demand using different model specifications Determinants (1) (2) (3) Long-term indirect Long-term indirect effect Log(Y) no fixed effects with fixed effects Dynamic with lag WY t (727) (-226) 0610 (098) (-747) (-215) 0345 (048) Interestingly, the spatial spillover effect of the income variable in the non-dynamic spatial panel data model appeared to be negative and significant Apparently, the decision whether to adopt a dynamic or a non-dynamic model represents an important issue 26

27 Determinants (1) (2) (3) Dynamic no fixed effects with fixed effects with lag WY t-1 Log(C) (6504) W*Log(C) 0337 (1109) 0264 (825) 0076 (200) W*Log(C) (-029) Log(P) (-2180) (-2436) (-1319) Log(Y) 0554 (1496) 0603 (1027) 0100 (416) W*Log(P) 0780 (1115) 0093 (113) 0170 (366) W*Log(Y) (1109) (-393) (-087) LogL To investigate whether the extension of the non-dynamic model to the dynamic spatial panel data model increases the explanatory power of the model, one may test whether the coefficients of the variables Y t-1 and WY t-1 are jointly significant using an LR-test The outcome of this test (2 ( )=18638 with 2 df) evidently justifies the extension of the model with dynamic effects 27

DEPARTMENT OF ECONOMICS. Unit ECON 12122 Introduction to Econometrics. Notes 4 2. R and F tests

DEPARTMENT OF ECONOMICS. Unit ECON 12122 Introduction to Econometrics. Notes 4 2. R and F tests DEPARTMENT OF ECONOMICS Unit ECON 11 Introduction to Econometrics Notes 4 R and F tests These notes provide a summary of the lectures. They are not a complete account of the unit material. You should also

More information

Performance Related Pay and Labor Productivity

Performance Related Pay and Labor Productivity DISCUSSION PAPER SERIES IZA DP No. 2211 Performance Related Pay and Labor Productivity Anne C. Gielen Marcel J.M. Kerkhofs Jan C. van Ours July 2006 Forschungsinstitut zur Zukunft der Arbeit Institute

More information

An Introduction to Time Series Regression

An Introduction to Time Series Regression An Introduction to Time Series Regression Henry Thompson Auburn University An economic model suggests examining the effect of exogenous x t on endogenous y t with an exogenous control variable z t. In

More information

Econometric Methods fo Panel Data Part II

Econometric Methods fo Panel Data Part II Econometric Methods fo Panel Data Part II Robert M. Kunst University of Vienna April 2009 1 Tests in panel models Whereas restriction tests within a specific panel model follow the usual principles, based

More information

Chapter 10: Basic Linear Unobserved Effects Panel Data. Models:

Chapter 10: Basic Linear Unobserved Effects Panel Data. Models: Chapter 10: Basic Linear Unobserved Effects Panel Data Models: Microeconomic Econometrics I Spring 2010 10.1 Motivation: The Omitted Variables Problem We are interested in the partial effects of the observable

More information

2. What are the theoretical and practical consequences of autocorrelation?

2. What are the theoretical and practical consequences of autocorrelation? Lecture 10 Serial Correlation In this lecture, you will learn the following: 1. What is the nature of autocorrelation? 2. What are the theoretical and practical consequences of autocorrelation? 3. Since

More information

UNIVERSITY OF WAIKATO. Hamilton New Zealand

UNIVERSITY OF WAIKATO. Hamilton New Zealand UNIVERSITY OF WAIKATO Hamilton New Zealand Can We Trust Cluster-Corrected Standard Errors? An Application of Spatial Autocorrelation with Exact Locations Known John Gibson University of Waikato Bonggeun

More information

Minimum LM Unit Root Test with One Structural Break. Junsoo Lee Department of Economics University of Alabama

Minimum LM Unit Root Test with One Structural Break. Junsoo Lee Department of Economics University of Alabama Minimum LM Unit Root Test with One Structural Break Junsoo Lee Department of Economics University of Alabama Mark C. Strazicich Department of Economics Appalachian State University December 16, 2004 Abstract

More information

Chapter 4: Vector Autoregressive Models

Chapter 4: Vector Autoregressive Models Chapter 4: Vector Autoregressive Models 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie IV.1 Vector Autoregressive Models (VAR)...

More information

Economic growth in Brazilian micro-regions: a spatial panel approach

Economic growth in Brazilian micro-regions: a spatial panel approach Economic growth in Brazilian micro-regions: a spatial panel approach Ricardo Andrade Lima 1, Raul Silveira Neto 2 ABSTRACT The aim of this study is to identify the determinants of economic growth and analyze

More information

ECONOMETRIC THEORY. MODULE I Lecture - 1 Introduction to Econometrics

ECONOMETRIC THEORY. MODULE I Lecture - 1 Introduction to Econometrics ECONOMETRIC THEORY MODULE I Lecture - 1 Introduction to Econometrics Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur 2 Econometrics deals with the measurement

More information

The US dollar exchange rate and the demand for oil

The US dollar exchange rate and the demand for oil The US dollar exchange rate and the demand for oil Selien De Schryder Ghent University Gert Peersman Ghent University Norges Bank/ECB workshop on "Monetary Policy and Commodity Prices" 19-20 November 2012

More information

Problems with OLS Considering :

Problems with OLS Considering : Problems with OLS Considering : we assume Y i X i u i E u i 0 E u i or var u i E u i u j 0orcov u i,u j 0 We have seen that we have to make very specific assumptions about u i in order to get OLS estimates

More information

Tilburg University. Performance Related Pay and Labor Productivity Gielen, A.C.; Kerkhofs, M.J.M.; van Ours, Jan. Publication date: 2006

Tilburg University. Performance Related Pay and Labor Productivity Gielen, A.C.; Kerkhofs, M.J.M.; van Ours, Jan. Publication date: 2006 Tilburg University Performance Related Pay and Labor Productivity Gielen, A.C.; Kerkhofs, M.J.M.; van Ours, Jan Publication date: 2006 Link to publication Citation for published version (APA): Gielen,

More information

Internet Appendix for Money Creation and the Shadow Banking System [Not for publication]

Internet Appendix for Money Creation and the Shadow Banking System [Not for publication] Internet Appendix for Money Creation and the Shadow Banking System [Not for publication] 1 Internet Appendix: Derivation of Gross Returns Suppose households maximize E β t U (C t ) where C t = c t + θv

More information

Structural Econometric Modeling in Industrial Organization Handout 1

Structural Econometric Modeling in Industrial Organization Handout 1 Structural Econometric Modeling in Industrial Organization Handout 1 Professor Matthijs Wildenbeest 16 May 2011 1 Reading Peter C. Reiss and Frank A. Wolak A. Structural Econometric Modeling: Rationales

More information

Estimating price and income elasticity of demand

Estimating price and income elasticity of demand Estimating price and income elasticity of demand Introduction The responsiveness of tobacco consumption to price and income increases is measured by the price and income elasticity of demand respectively.

More information

Marketing Mix Modelling and Big Data P. M Cain

Marketing Mix Modelling and Big Data P. M Cain 1) Introduction Marketing Mix Modelling and Big Data P. M Cain Big data is generally defined in terms of the volume and variety of structured and unstructured information. Whereas structured data is stored

More information

Poisson Models for Count Data

Poisson Models for Count Data Chapter 4 Poisson Models for Count Data In this chapter we study log-linear models for count data under the assumption of a Poisson error structure. These models have many applications, not only to the

More information

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression Logistic Regression Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max

More information

Fixed Effects Bias in Panel Data Estimators

Fixed Effects Bias in Panel Data Estimators DISCUSSION PAPER SERIES IZA DP No. 3487 Fixed Effects Bias in Panel Data Estimators Hielke Buddelmeyer Paul H. Jensen Umut Oguzoglu Elizabeth Webster May 2008 Forschungsinstitut zur Zukunft der Arbeit

More information

CHAPTER 5. Exercise Solutions

CHAPTER 5. Exercise Solutions CHAPTER 5 Exercise Solutions 91 Chapter 5, Exercise Solutions, Principles of Econometrics, e 9 EXERCISE 5.1 (a) y = 1, x =, x = x * * i x i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 y * i (b) (c) yx = 1, x = 16, yx

More information

Module 5: Multiple Regression Analysis

Module 5: Multiple Regression Analysis Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

More information

Panel Data Analysis in Stata

Panel Data Analysis in Stata Panel Data Analysis in Stata Anton Parlow Lab session Econ710 UWM Econ Department??/??/2010 or in a S-Bahn in Berlin, you never know.. Our plan Introduction to Panel data Fixed vs. Random effects Testing

More information

Models for Count Data With Overdispersion

Models for Count Data With Overdispersion Models for Count Data With Overdispersion Germán Rodríguez November 6, 2013 Abstract This addendum to the WWS 509 notes covers extra-poisson variation and the negative binomial model, with brief appearances

More information

Standard errors of marginal effects in the heteroskedastic probit model

Standard errors of marginal effects in the heteroskedastic probit model Standard errors of marginal effects in the heteroskedastic probit model Thomas Cornelißen Discussion Paper No. 320 August 2005 ISSN: 0949 9962 Abstract In non-linear regression models, such as the heteroskedastic

More information

Intro to Data Analysis, Economic Statistics and Econometrics

Intro to Data Analysis, Economic Statistics and Econometrics Intro to Data Analysis, Economic Statistics and Econometrics Statistics deals with the techniques for collecting and analyzing data that arise in many different contexts. Econometrics involves the development

More information

The Engle-Granger representation theorem

The Engle-Granger representation theorem The Engle-Granger representation theorem Reference note to lecture 10 in ECON 5101/9101, Time Series Econometrics Ragnar Nymoen March 29 2011 1 Introduction The Granger-Engle representation theorem is

More information

Wooldridge, Introductory Econometrics, 4th ed. Multiple regression analysis:

Wooldridge, Introductory Econometrics, 4th ed. Multiple regression analysis: Wooldridge, Introductory Econometrics, 4th ed. Chapter 4: Inference Multiple regression analysis: We have discussed the conditions under which OLS estimators are unbiased, and derived the variances of

More information

Is Infrastructure Capital Productive? A Dynamic Heterogeneous Approach.

Is Infrastructure Capital Productive? A Dynamic Heterogeneous Approach. Is Infrastructure Capital Productive? A Dynamic Heterogeneous Approach. César Calderón a, Enrique Moral-Benito b, Luis Servén a a The World Bank b CEMFI International conference on Infrastructure Economics

More information

Regression III: Advanced Methods

Regression III: Advanced Methods Lecture 5: Linear least-squares Regression III: Advanced Methods William G. Jacoby Department of Political Science Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Simple Linear Regression

More information

Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur

Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 7 Multiple Linear Regression (Contd.) This is my second lecture on Multiple Linear Regression

More information

TURUN YLIOPISTO UNIVERSITY OF TURKU TALOUSTIEDE DEPARTMENT OF ECONOMICS RESEARCH REPORTS. A nonlinear moving average test as a robust test for ARCH

TURUN YLIOPISTO UNIVERSITY OF TURKU TALOUSTIEDE DEPARTMENT OF ECONOMICS RESEARCH REPORTS. A nonlinear moving average test as a robust test for ARCH TURUN YLIOPISTO UNIVERSITY OF TURKU TALOUSTIEDE DEPARTMENT OF ECONOMICS RESEARCH REPORTS ISSN 0786 656 ISBN 951 9 1450 6 A nonlinear moving average test as a robust test for ARCH Jussi Tolvi No 81 May

More information

Econometric Analysis of Cross Section and Panel Data Second Edition. Jeffrey M. Wooldridge. The MIT Press Cambridge, Massachusetts London, England

Econometric Analysis of Cross Section and Panel Data Second Edition. Jeffrey M. Wooldridge. The MIT Press Cambridge, Massachusetts London, England Econometric Analysis of Cross Section and Panel Data Second Edition Jeffrey M. Wooldridge The MIT Press Cambridge, Massachusetts London, England Preface Acknowledgments xxi xxix I INTRODUCTION AND BACKGROUND

More information

THE EFFECTS OF TRADE AND PRODUCTIVITY ON EMPLOYMENT IN THE MANUFACTURİNG INDUSTRY OF TURKEY ABSTRACT

THE EFFECTS OF TRADE AND PRODUCTIVITY ON EMPLOYMENT IN THE MANUFACTURİNG INDUSTRY OF TURKEY ABSTRACT Author : Güzin Emel AKKUŞ 1 THE EFFECTS OF TRADE AND PRODUCTIVITY ON EMPLOYMENT IN THE MANUFACTURİNG INDUSTRY OF TURKEY ABSTRACT This study empirically analyzes the effects of international trade and productivity

More information

Chapter 4: Statistical Hypothesis Testing

Chapter 4: Statistical Hypothesis Testing Chapter 4: Statistical Hypothesis Testing Christophe Hurlin November 20, 2015 Christophe Hurlin () Advanced Econometrics - Master ESA November 20, 2015 1 / 225 Section 1 Introduction Christophe Hurlin

More information

Notes 8: Hypothesis Testing

Notes 8: Hypothesis Testing Notes 8: Hypothesis Testing Julio Garín Department of Economics Statistics for Economics Spring 2012 (Stats for Econ) Hypothesis Testing Spring 2012 1 / 44 Introduction Why we conduct surveys? We want

More information

Stock prices are not open-ended: Stock trading seems to be *

Stock prices are not open-ended: Stock trading seems to be * Stock prices are not open-ended: Stock trading seems to be * Gunther CAPELLE-BLANCARD Université Paris 1 Panthéon-Sorbonne gunther.capelle-blancard@univ-paris1.fr First draft: August 2014 Current draft:

More information

Clustering in the Linear Model

Clustering in the Linear Model Short Guides to Microeconometrics Fall 2014 Kurt Schmidheiny Universität Basel Clustering in the Linear Model 2 1 Introduction Clustering in the Linear Model This handout extends the handout on The Multiple

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Appendices with Supplementary Materials for CAPM for Estimating Cost of Equity Capital: Interpreting the Empirical Evidence

Appendices with Supplementary Materials for CAPM for Estimating Cost of Equity Capital: Interpreting the Empirical Evidence Appendices with Supplementary Materials for CAPM for Estimating Cost of Equity Capital: Interpreting the Empirical Evidence This document contains supplementary material to the paper titled CAPM for estimating

More information

Durbin-Watson Significance Tables

Durbin-Watson Significance Tables Durbin-Watson Significance Tables Appendix A The Durbin-Watson test statistic tests the null hypothesis that the residuals from an ordinary least-squares regression are not autocorrelated against the alternative

More information

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population

More information

Hypothesis Testing for Two Variances

Hypothesis Testing for Two Variances Hypothesis Testing for Two Variances The standard version of the two-sample t test is used when the variances of the underlying populations are either known or assumed to be equal In other situations,

More information

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance

More information

Sports and Regional Growth in Sweden

Sports and Regional Growth in Sweden WORKING PAPER [3]/[2014] Sports and Regional Growth in Sweden Is a successful professional sports team good for regional economic growth? [Emelie Värja] [Economics] ISSN 1403-0586 http://www.oru.se/institutioner/handelshogskolan-vid-orebro-universitet/forskning/publikationer/working-papers/

More information

Department of Economics Session 2012/2013. EC352 Econometric Methods. Solutions to Exercises from Week 10 + 0.0077 (0.052)

Department of Economics Session 2012/2013. EC352 Econometric Methods. Solutions to Exercises from Week 10 + 0.0077 (0.052) Department of Economics Session 2012/2013 University of Essex Spring Term Dr Gordon Kemp EC352 Econometric Methods Solutions to Exercises from Week 10 1 Problem 13.7 This exercise refers back to Equation

More information

Chapter 11: Hypothesis Testing and the Wald Test

Chapter 11: Hypothesis Testing and the Wald Test Chapter 11: Hypothesis Testing and the Wald Test Chapter 11 Outline No Money Illusion Theory: Taking Stock No Money Illusion Theory: Calculating Prob[Results IF H 0 True] o Clever Algebraic Manipulation

More information

INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition)

INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) Abstract Indirect inference is a simulation-based method for estimating the parameters of economic models. Its

More information

Web-based Supplementary Materials for Bayesian Effect Estimation. Accounting for Adjustment Uncertainty by Chi Wang, Giovanni

Web-based Supplementary Materials for Bayesian Effect Estimation. Accounting for Adjustment Uncertainty by Chi Wang, Giovanni 1 Web-based Supplementary Materials for Bayesian Effect Estimation Accounting for Adjustment Uncertainty by Chi Wang, Giovanni Parmigiani, and Francesca Dominici In Web Appendix A, we provide detailed

More information

Chapter 8: Interval Estimates and Hypothesis Testing

Chapter 8: Interval Estimates and Hypothesis Testing Chapter 8: Interval Estimates and Hypothesis Testing Chapter 8 Outline Clint s Assignment: Taking Stock Estimate Reliability: Interval Estimate Question o Normal Distribution versus the Student t-distribution:

More information

Do Supplemental Online Recorded Lectures Help Students Learn Microeconomics?*

Do Supplemental Online Recorded Lectures Help Students Learn Microeconomics?* Do Supplemental Online Recorded Lectures Help Students Learn Microeconomics?* Jennjou Chen and Tsui-Fang Lin Abstract With the increasing popularity of information technology in higher education, it has

More information

Notes for STA 437/1005 Methods for Multivariate Data

Notes for STA 437/1005 Methods for Multivariate Data Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.

More information

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Recall areal data also known as lattice data are data Y (s), s D where D is a discrete index set. This usually corresponds to data

More information

Module 5 Hypotheses Tests: Comparing Two Groups

Module 5 Hypotheses Tests: Comparing Two Groups Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this

More information

ESTIMATING AN ECONOMIC MODEL OF CRIME USING PANEL DATA FROM NORTH CAROLINA BADI H. BALTAGI*

ESTIMATING AN ECONOMIC MODEL OF CRIME USING PANEL DATA FROM NORTH CAROLINA BADI H. BALTAGI* JOURNAL OF APPLIED ECONOMETRICS J. Appl. Econ. 21: 543 547 (2006) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jae.861 ESTIMATING AN ECONOMIC MODEL OF CRIME USING PANEL

More information

Do R&D or Capital Expenditures Impact Wage Inequality? Evidence from the IT Industry in Taiwan ROC

Do R&D or Capital Expenditures Impact Wage Inequality? Evidence from the IT Industry in Taiwan ROC Lai, Journal of International and Global Economic Studies, 6(1), June 2013, 48-53 48 Do R&D or Capital Expenditures Impact Wage Inequality? Evidence from the IT Industry in Taiwan ROC Yu-Cheng Lai * Shih

More information

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association

More information

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

More information

Analysis of Bayesian Dynamic Linear Models

Analysis of Bayesian Dynamic Linear Models Analysis of Bayesian Dynamic Linear Models Emily M. Casleton December 17, 2010 1 Introduction The main purpose of this project is to explore the Bayesian analysis of Dynamic Linear Models (DLMs). The main

More information

CEIS Tor Vergata RESEARCH PAPER SERIES. Vol. 14, Issue 7, No. 381 May 2016

CEIS Tor Vergata RESEARCH PAPER SERIES. Vol. 14, Issue 7, No. 381 May 2016 CEIS Tor Vergata RESEARCH PAPER SERIES Vol. 14, Issue 7, No. 381 May 2016 A Spatial Diffusion Model With Common Factors And An Application To Cigarette Consumption Carlo Ciccarelli and J.Paul Elhorst A

More information

AN INTRODUCTION TO ECONOMETRICS. Oxbridge Economics; Mo Tanweer

AN INTRODUCTION TO ECONOMETRICS. Oxbridge Economics; Mo Tanweer AN INTRODUCTION TO ECONOMETRICS Oxbridge Economics; Mo Tanweer Mohammed.Tanweer@cantab.net Econometrics What is econometrics? Econometrics means economic measurement Economics + Statistics = Econometrics

More information

3. Regression & Exponential Smoothing

3. Regression & Exponential Smoothing 3. Regression & Exponential Smoothing 3.1 Forecasting a Single Time Series Two main approaches are traditionally used to model a single time series z 1, z 2,..., z n 1. Models the observation z t as a

More information

Chapter 6: Multivariate Cointegration Analysis

Chapter 6: Multivariate Cointegration Analysis Chapter 6: Multivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie VI. Multivariate Cointegration

More information

Simple Linear Regression Inference

Simple Linear Regression Inference Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

More information

STUDY HABITS AND EXAMINATION PERFORMANCE IN AN ONLINE LEARNING MICROECONOMICS COURSE

STUDY HABITS AND EXAMINATION PERFORMANCE IN AN ONLINE LEARNING MICROECONOMICS COURSE STUDY HABITS AND EXAMINATION PERFORMANCE IN AN ONLINE LEARNING MICROECONOMICS COURSE Jennjou Chen, National Chengchi University Tsui-Fang Lin, National Taipei University ABSTRACT In light of the increased

More information

Panel Data: Linear Models

Panel Data: Linear Models Panel Data: Linear Models Laura Magazzini University of Verona laura.magazzini@univr.it http://dse.univr.it/magazzini Laura Magazzini (@univr.it) Panel Data: Linear Models 1 / 45 Introduction Outline What

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

A Subset-Continuous-Updating Transformation on GMM Estimators for Dynamic Panel Data Models

A Subset-Continuous-Updating Transformation on GMM Estimators for Dynamic Panel Data Models Article A Subset-Continuous-Updating Transformation on GMM Estimators for Dynamic Panel Data Models Richard A. Ashley 1, and Xiaojin Sun 2,, 1 Department of Economics, Virginia Tech, Blacksburg, VA 24060;

More information

Poor identification and estimation problems in panel data models with random effects and autocorrelated errors

Poor identification and estimation problems in panel data models with random effects and autocorrelated errors Poor identification and estimation problems in panel data models with random effects and autocorrelated errors Giorgio Calzolari Laura Magazzini January 7, 009 Submitted for presentation at the 15th Conference

More information

Null Hypothesis H 0. The null hypothesis (denoted by H 0

Null Hypothesis H 0. The null hypothesis (denoted by H 0 Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property

More information

On empirical implications of highly interest-elastic money demand: A Note

On empirical implications of highly interest-elastic money demand: A Note MPRA Munich Personal RePEc Archive On empirical implications of highly interest-elastic money demand: A Note Kiyotaka Nakashima and Makoto Saito 5 January 2008 Online at https://mpra.ub.uni-muenchen.de/71825/

More information

Econometrics Simple Linear Regression

Econometrics Simple Linear Regression Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight

More information

Econometric Methods for Panel Data

Econometric Methods for Panel Data Based on the books by Baltagi: Econometric Analysis of Panel Data and by Hsiao: Analysis of Panel Data Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies

More information

Testing for serial correlation in linear panel-data models

Testing for serial correlation in linear panel-data models The Stata Journal (2003) 3, Number 2, pp. 168 177 Testing for serial correlation in linear panel-data models David M. Drukker Stata Corporation Abstract. Because serial correlation in linear panel-data

More information

Lecture 3: Differences-in-Differences

Lecture 3: Differences-in-Differences Lecture 3: Differences-in-Differences Fabian Waldinger Waldinger () 1 / 55 Topics Covered in Lecture 1 Review of fixed effects regression models. 2 Differences-in-Differences Basics: Card & Krueger (1994).

More information

7 Hypothesis testing - one sample tests

7 Hypothesis testing - one sample tests 7 Hypothesis testing - one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X

More information

problem arises when only a non-random sample is available differs from censored regression model in that x i is also unobserved

problem arises when only a non-random sample is available differs from censored regression model in that x i is also unobserved 4 Data Issues 4.1 Truncated Regression population model y i = x i β + ε i, ε i N(0, σ 2 ) given a random sample, {y i, x i } N i=1, then OLS is consistent and efficient problem arises when only a non-random

More information

SYSTEMS OF REGRESSION EQUATIONS

SYSTEMS OF REGRESSION EQUATIONS SYSTEMS OF REGRESSION EQUATIONS 1. MULTIPLE EQUATIONS y nt = x nt n + u nt, n = 1,...,N, t = 1,...,T, x nt is 1 k, and n is k 1. This is a version of the standard regression model where the observations

More information

U.S. Consumer Demand for Cash in the Era of Low Interest Rates and Electronic Payments

U.S. Consumer Demand for Cash in the Era of Low Interest Rates and Electronic Payments U.S. Consumer Demand for Cash in the Era of Low Interest Rates and Electronic Payments Tamás Briglevics Scott Schuh January 27, 2012 Abstract U.S. consumers demand for cash is estimated using the 2008

More information

POLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model.

POLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. Polynomial Regression POLYNOMIAL AND MULTIPLE REGRESSION Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. It is a form of linear regression

More information

Centre for Central Banking Studies

Centre for Central Banking Studies Centre for Central Banking Studies Technical Handbook No. 4 Applied Bayesian econometrics for central bankers Andrew Blake and Haroon Mumtaz CCBS Technical Handbook No. 4 Applied Bayesian econometrics

More information

SHORT RUN AND LONG RUN DYNAMICS OF RESIDENTIAL ELECTRICITY CONSUMPTION: HOMOGENEOUS AND HETEROGENEOUS PANEL ESTIMATIONS FOR OECD

SHORT RUN AND LONG RUN DYNAMICS OF RESIDENTIAL ELECTRICITY CONSUMPTION: HOMOGENEOUS AND HETEROGENEOUS PANEL ESTIMATIONS FOR OECD Professor Faik BĐLGĐLĐ, PhD E-mail: fbilgili@erciyes.edu.tr Department of Economics, Faculty of Economics and Administrative Sciences, Erciyes University, Turkey Assistant Professor Yalçın PAMUK, PhD E-mail:

More information

The Loss in Efficiency from Using Grouped Data to Estimate Coefficients of Group Level Variables. Kathleen M. Lang* Boston College.

The Loss in Efficiency from Using Grouped Data to Estimate Coefficients of Group Level Variables. Kathleen M. Lang* Boston College. The Loss in Efficiency from Using Grouped Data to Estimate Coefficients of Group Level Variables Kathleen M. Lang* Boston College and Peter Gottschalk Boston College Abstract We derive the efficiency loss

More information

Multinomial and Ordinal Logistic Regression

Multinomial and Ordinal Logistic Regression Multinomial and Ordinal Logistic Regression ME104: Linear Regression Analysis Kenneth Benoit August 22, 2012 Regression with categorical dependent variables When the dependent variable is categorical,

More information

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

More information

Spatial Dependence in Commercial Real Estate

Spatial Dependence in Commercial Real Estate Spatial Dependence in Commercial Real Estate Andrea M. Chegut a, Piet M. A. Eichholtz a, Paulo Rodrigues a, Ruud Weerts a Maastricht University School of Business and Economics, P.O. Box 616, 6200 MD,

More information

1 Econometrics and economic data

1 Econometrics and economic data 1 Econometrics and economic data Ezequiel Uriel University of Valencia Version: 09-013 1 Econometrics and economic data 1 1.1 What is econometrics? 1 1. Steps in developing an econometric model 1.3 Economic

More information

Stress-testing testing in the early warning system of financial crises: application to stability analysis of Russian banking sector

Stress-testing testing in the early warning system of financial crises: application to stability analysis of Russian banking sector CENTER FOR MACROECONOMIC ANALYSIS AND SHORT-TERM TERM FORESACTING Tel.: (499)129-17-22, fax: (499)129-09-22, e-mail: mail@forecast.ru, http://www.forecast.ru Stress-testing testing in the early warning

More information

e = random error, assumed to be normally distributed with mean 0 and standard deviation σ

e = random error, assumed to be normally distributed with mean 0 and standard deviation σ 1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.

More information

Cash Holdings and Mutual Fund Performance. Online Appendix

Cash Holdings and Mutual Fund Performance. Online Appendix Cash Holdings and Mutual Fund Performance Online Appendix Mikhail Simutin Abstract This online appendix shows robustness to alternative definitions of abnormal cash holdings, studies the relation between

More information

Likelihood Approaches for Trial Designs in Early Phase Oncology

Likelihood Approaches for Trial Designs in Early Phase Oncology Likelihood Approaches for Trial Designs in Early Phase Oncology Clinical Trials Elizabeth Garrett-Mayer, PhD Cody Chiuzan, PhD Hollings Cancer Center Department of Public Health Sciences Medical University

More information

E 4101/5101 Lecture 8: Exogeneity

E 4101/5101 Lecture 8: Exogeneity E 4101/5101 Lecture 8: Exogeneity Ragnar Nymoen 17 March 2011 Introduction I Main references: Davidson and MacKinnon, Ch 8.1-8,7, since tests of (weak) exogeneity build on the theory of IV-estimation Ch

More information

VI. Introduction to Logistic Regression

VI. Introduction to Logistic Regression VI. Introduction to Logistic Regression We turn our attention now to the topic of modeling a categorical outcome as a function of (possibly) several factors. The framework of generalized linear models

More information

Questions and Answers on Hypothesis Testing and Confidence Intervals

Questions and Answers on Hypothesis Testing and Confidence Intervals Questions and Answers on Hypothesis Testing and Confidence Intervals L. Magee Fall, 2008 1. Using 25 observations and 5 regressors, including the constant term, a researcher estimates a linear regression

More information

Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

More information

Effects of Youth, Price, and Audience Size on Alcohol Advertising in Magazines

Effects of Youth, Price, and Audience Size on Alcohol Advertising in Magazines Effects of Youth, Price, and Audience Size on Alcohol Advertising in Magazines Summary We study the effects of youth readership, price of advertisements, and audience size on alcohol advertising in thirty-five

More information

Association Between Variables

Association Between Variables Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi

More information

Multiple Regression Analysis in Minitab 1

Multiple Regression Analysis in Minitab 1 Multiple Regression Analysis in Minitab 1 Suppose we are interested in how the exercise and body mass index affect the blood pressure. A random sample of 10 males 50 years of age is selected and their

More information

Is the Basis of the Stock Index Futures Markets Nonlinear?

Is the Basis of the Stock Index Futures Markets Nonlinear? University of Wollongong Research Online Applied Statistics Education and Research Collaboration (ASEARC) - Conference Papers Faculty of Engineering and Information Sciences 2011 Is the Basis of the Stock

More information