Smarter Balanced Assessment Consortium: Mathematics Item Specifications High School. Developed by Measured Progress/ETS Collaborative April 16, 2012

Save this PDF as:

Size: px
Start display at page:

Download "Smarter Balanced Assessment Consortium: Mathematics Item Specifications High School. Developed by Measured Progress/ETS Collaborative April 16, 2012"

Transcription

1 Assessment Consortium: Developed by Measured Progress/ETS Collaborative April 16, 2012

2

4 How to Complete the Item Form for Claim Appendix A: Smarter Balanced Mathematics Glossary Grades Appendix B: Cognitive Rigor Matrix/Depth of Knowledge (DOK) Smarter Balanced 2

5 Smarter Balanced Assessment Consortium: Mathematics General Specifications Introduction The SMARTER Balanced Assessment Consortium (Smarter Balanced) is committed to using evidence-centered design (ECD) in its development of its assessment system. As part of this design, the Smarter Balanced established four Claims regarding what students should know and be able to do in the domain of mathematics. The principles of ECD require that each of these four claims be accompanied by statements about the kinds of evidence that would be sufficient to support the claims. These evidence statements are articulated as assessment targets. The initial work of using ECD to establish both the four claims and the accompanying targets for mathematics has been completed by the consortium and is articulated in the document Content Specifications for the Summative Assessment of the Common Core State Standards for Mathematics (CCSSM). The content specifications document is a necessary complement to these test item and performance task specifications, and the documents should be used together to fully understand how to write the items and tasks needed to provide the evidence to support these claims and targets. What follows is a guide to help item writers develop items/tasks that meet the requirements set forth by the Smarter Balanced. This specification document will also provide useful information to other stakeholders concerning the types of items/tasks that will comprise the summative assessments beginning in Smarter Balanced 3

7 o o o Smarter Balanced use visuals that mirror and parallel the wording and expectations of the accompanying text; illustrate only necessary information in the graphics so as not to confuse and/or distract test takers; and represent important parts of the item/task in visual images if the graphics serve to increase item access for more test takers. Use contexts that are both familiar and meaningful to the mathematics being assessed, as well as appropriate to the grade level of the test takers. Keep the amount of reading to a minimum and non-mathematics vocabulary should be at least one grade level below that of the test takers. Include reliable source and verification information with the item/task when referencing factual information and using real-world data. Smarter Balanced 5

8 Selected-Response Items Traditionally, selected-response (SR) items include a stimulus and stem followed by three to five options from which a student is directed to choose only one or best answer. By redesigning some SR items, it is often possible to both increase the complexity of the item and yield more useful information regarding the level of understanding about the mathematics that a student s response demonstrates. For example, consider the following SR item in which one of the four options is the correct response (Figure 1). Figure 1. Which model below best represents the fraction 2 5? A. B. C. D. Even if a student does not truly have a deep understanding of what 2/5 means, he or she is likely to choose option B over the rest of the options because it looks to be a more traditional way of representing fractions. By a simple restructuring of this problem into a multi-part item, including a modification to option C, a clearer sense of how deeply a student understands the concept of 2/5 can be ascertained (see Figure 2). Smarter Balanced 6

9 Figure 2. For numbers 1a-1d, state whether or not each figure has 2 5 whole shaded. of its 1a. Y Yes N No 1b. Y Yes N No 1c. Y Yes N No 1d. Y Yes N No This item is more complex in that a student now has to look at each part separately and decide whether 2/5 can take different forms. By assigning two points to this problem, we can also provide feedback at the item level as to the depth of understanding a student has about simple fractions. The total number of ways to respond to this item is 16. Guessing the correct combination of responses is much less likely than for a traditional 4-option selected-response item. The correct response for this item will receive 2 points, and the points will be earned based on the level of understanding the student has demonstrated. A suggested scoring rubric for this item follows in Figure 3. Smarter Balanced 7

10 Figure 3. Scoring Rubric Responses to this item will receive 0-2 points, based upon the following: 2 points: YNYN The student has a solid understanding of 2/5 as well as an equivalent form of 2/5. 1 point: YNNN, YYNN, YYYN The student has only a basic understanding of 2/5. Either the student doesn t recognize an equivalent fraction for 2/5 or doesn t understand that all 5 parts must be equal-sized in figure 1b. 0 points: YYYY, YNNY, NNNN, NNYY, NYYN, NYNN, NYYY, NYNN, NNNN, NYNY, NNYN, NNNY The student demonstrates inconsistent understanding of 2/5 or answers Y to figure 1d, clearly showing a misunderstanding of what 2/5 means. Figure 1d is considered a disqualifier and an answer of Y to this part of the item would cancel out any other correct responses as guesses on the part of the student. Other ways to format SR items include providing options in which more than one choice is correct (e.g., 3 out of 8 options), multiple-part yes/no questions, and even multiple-part items that require students to match descriptions of a term or activity to the corresponding option. It is important to note that a writer should only consider some of these alternate SR formats when, by doing so, they serve to provide more information about a student s knowledge, skills, and ability (KSA) than a simpler 4- or 5-option SR item would demonstrate. Smarter Balanced 8

11 General Guidelines for Developing SR Items Each item should be written to focus primarily on one assessment target. Secondary targets are acceptable and should be listed in the item forms as appropriate, but it should be clear to all stakeholders which assessment target is the focal point of the item. Items should be appropriate for students in terms of grade-level difficulty, cognitive complexity, and reading level. 1 Items should not provide an advantage or disadvantage to a particular group of students. Items should not exhibit or reflect disrespect toward any segment of the population with regard to age, gender, race, ethnicity, language, religion, socioeconomic status, disability, or geographic region. 2 Items are expected to include mathematical concepts detailed in the CCSSM of lower grades. At high school, most items should be written so they can be answered without using a calculator. 3 However, some targets may require the use of an online calculator tool in order to efficiently problem solve. In these cases, the calculator tool will appear in the specification table under allowable tools. Items should provide clear and complete instructions to students. Each item should be written to clearly elicit the desired evidence of a student s KSA. Options should be arranged according to a logical order (e.g., alphabetical, least to greatest value, greatest to least value, length of options). 1 For mathematics items, the reading level should be approximately one grade level below the grade level of the test, except for specifically assessed mathematical terms or concepts. 2 This guideline is discussed in greater detail in the Bias/Sensitivity and Accessibility portions of the Specifications. 3 Graphing and scientific calculators may be used for many items in high school mathematics assessments, even if unnecessary to solve the problem. An online version will be available for most items during the CAT portion of the assessment, except when specifically turned off because of the particular content of the item being assessed. Smarter Balanced 9

15 Many PTs will require up to 120 minutes in which to administer. Additional time might be necessary for prework or group work, as required by a particular task. The table below represents the general structure of most mathematics PTs. Mathematics Performance Task Stimulus Information Processing Product/Performance graphs video clips maps photos research reports geometric figures 2-D and 3-D models spreadsheets data bases areas of math content (algebra, geometry.), etc. Tools calculators measurement devices data analysis software geometric simulation and construction tools context/scenario specific simulations equation editor tool spreadsheets, etc. Tasks comprehension questions small group discussion/notes investigation/search (group or indiv.) analyses mathematical proofs, etc. essay/report on problem solution w/mathematical justification oral presentation w/wo graphics, other media math-based design graphic displays 2-D, 3-D models mathematical proof spreadsheets, etc. Smarter Balanced 13

16 Computational Complexity of Mathematics Items and Tasks In general, items/tasks developed to assess student understanding of core concepts and procedures in mathematics will draw upon grade-level standards to ensure student mastery of this content. Grade-level standards are implicitly included in the assessment targets of Claim 1 for high school. The assessment targets for Claim 1 correspond directly to the cluster headings contained in the CCSSM, and the technical demand of these Claim 1 items can be consistent with the grade level being assessed. However, when writing more complex tasks (such as those associated with Claims 3 and 4), the computational demand should be lowered and should typically be met by content that was first taught in earlier grades. Use of Formulas For many items/tasks, students will be expected to know the formulas that are used to solve problems (e.g., formulas for area, perimeter, volume, etc.). A reference sheet of formulas will not be available to students for these items. However, for more complex problems, a search function may be available (on an item-by-item basis) that allows a student to call up a table of formulas. This table will not include names of the formulas or pictures of the figures for which the formulas are relevant, and will serve only to prompt a student s memory of the correct formula. For some TE items, it is possible that drop-down menus will be available for students to choose a relevant formula for a particular item. Smarter Balanced 14

17 Claim 1: Concepts and Procedures Claim 1 Students can explain and apply mathematical concepts and interpret and carry out mathematical procedures with precision and fluency. Rationale for Claim 1 This claim addresses procedural skills and the conceptual understanding on which developing skills depend. It is important to assess how aware students are of how concepts link together and why mathematical procedures work the way they do. Central to understanding this claim is making the connection to these elements of the mathematical practices as stated in the CCSSM: Use appropriate tools strategically. Use technological tools to explore and deepen their understanding of concepts. Attend to precision. State the meaning of the symbols they choose, including using the equal sign consistently and appropriately. Specify units of measure and label axes to clarify the correspondence with quantities in a problem. Calculate accurately and efficiently, and express numerical answers with a degree of precision appropriate for the problem context. o Look for and make use of structure. Older students should be able to examine claims and make explicit use of definitions. Look closely to discern a pattern or structure. o Young students might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. o Later, students will see 7 x 8 equals the well remembered 7 x x 3, in preparation for the distributive property. o In the expression x 2 + 9x + 14, older students can see the 14 as 2 x 7 and the 9 as They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. See complicated things, such as some algebraic expressions, as single objects or composed of several objects. Look for and express regularity in repeated reasoning. Notice if calculations are repeated. Smarter Balanced 15

18 Look for both general methods and shortcuts. o Smarter Balanced Middle school students might abstract the equation (y-2)/(x-1)=3 by paying attention to the calculation of slope as they repeatedly check whether the points are on the line through (1, 2) with a slope 3. o Noticing the regularity in the way terms cancel when expanding (x-1)(x+1)(x 2 +1) and (x-1)(x 3 +x 2 +x+1) might lead high school students to the general formula for the sum of a geometric series. Maintain oversight of the process of solving a problem while attending to the details. Continually evaluate the reasonableness of intermediate results. Essential Properties of Items/Tasks that Assess Claim 1 Items/tasks assessing this claim will include SR items, TE items/tasks, and short CR items/tasks that focus on a particular skill or concept. They will also include items that require students to translate between representations of concepts (words, diagrams, symbols) and items that require the identification of structure. It is important to note that Claim 1 specification tables are the only ones in which a direct connection to the content domains and clusters of the grade-level CCSSM is made. Items/tasks designed to elicit the evidence sought in Claims 2, 3, and 4 will necessarily rely on the content explicated in the Claim 1 specification tables. Specification tables have been developed for each assessment target associated with Claim 1. These tables are intended to provide guidance to item writers for the development of items/tasks that primarily assess Claim 1. Figure 4 provides the model used for all Claim 1 tables along with an explanation of the metadata that populates each cell of the table. Smarter Balanced 16

19 This is the Claim 1 statement, taken directly from the Content Figure 4. Sample Table Claim 1: Concepts and Procedures Students can explain and apply mathematical concepts and interpret and carry out mathematical procedures with precision and fluency. Content Domain: This cell contains the content domain associated with the specified target. For high school, eligible domains are: Number and Quantities: The Real Number System, Quantities, Algebra: Seeing Structure in Expressions, Arithmetic with Polynomials and Rational Expressions, Creating Equations, Reasoning with Equations and Inequalities, Functions: Building Functions, Geometry: Congruence, and Statistics and Probability: Interpreting Categorical and Quantitative Data. Target [ ]: Assessment Target letter and [emphasis], as defined by the Content Specifications. The emphasis designation is identified by m for major, s for supporting, and a for additional. The complete text of the target will populate the rest of this cell. Standards: Standards from the CCSSM related to the specified target. DOK Target(s): Depth-of-Knowledge level(s) assigned to the specified target. Evidence Required: Statements that define the knowledge, skills, or abilities a student must demonstrate in order to provide evidence in support of one or more aspects of the target and claim. Allowable Item Types*: The item types allowed for this target (SR, CR, or TE). Task Models: A task model describes key characteristics or features that items are to have in order to establish a context or problem that elicits the desired evidence from the student. In effect, a The Standard numbers, DOK numbers, and Item Types are all intended to be hotbutton links to the complete text of each component. task model describes what the prompt is intended to ask of the student, the content or materials (stimuli) that the student is supposed to work with when applying the targeted knowledge, skill, or ability, and any unique interactions that the item must support in order to allow the student to produce the desired response information. For every enumerated statement of evidence required, a corresponding task model will follow. If more than one type of item/task is appropriate for the same evidence statement, then the same number will be assigned. The variables will be the item type and DOK level associated with the task model. Allowable Stimulus This cell lists the kinds of stimuli that can be used. It is not to Materials: be considered a complete list, but suggests various types. Allowable Disciplinary This cell suggests mathematics-specific vocabulary that Vocabulary: students are expected know, as related to the target. Allowable Tools: This cell identifies allowable tools that students may use in working with the item/task (e.g., calculator, protractor, etc.). Target-Specific Attributes: This cell identifies specific attributes, related to the target, which could include limitations on the content or other considerations. Key Nontargeted Constructs: This cell identifies knowledge and skills the student needs in order to respond, but which are not scored for the specified target. Smarter Balanced 17

20 Accessibility Concerns: This cell identifies possible concerns for students with disabilities or those with other accessibility issues. Sample Items: This cell contains item codes that are hot-button links with access to sample items for the specified target. *SR = selected-response item; CR = constructed-response item; TE = technology-enhanced item; ER = extended-response item; PT = performance task Smarter Balanced 18

Pythagorean Theorem. Overview. Grade 8 Mathematics, Quarter 3, Unit 3.1. Number of instructional days: 15 (1 day = minutes) Essential questions

Grade 8 Mathematics, Quarter 3, Unit 3.1 Pythagorean Theorem Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Prove the Pythagorean Theorem. Given three side lengths,

For example, estimate the population of the United States as 3 times 10⁸ and the

CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

PA Common Core Standards Standards for Mathematical Practice Grade Level Emphasis*

Habits of Mind of a Productive Thinker Make sense of problems and persevere in solving them. Attend to precision. PA Common Core Standards The Pennsylvania Common Core Standards cannot be viewed and addressed

Evaluation Tool for Assessment Instrument Quality

REPRODUCIBLE Figure 4.4: Evaluation Tool for Assessment Instrument Quality Assessment indicators Description of Level 1 of the Indicator Are Not Present Limited of This Indicator Are Present Substantially

Common Core State Standards. Standards for Mathematical Practices Progression through Grade Levels

Standard for Mathematical Practice 1: Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for

Solving Equations with One Variable

Grade 8 Mathematics, Quarter 1, Unit 1.1 Solving Equations with One Variable Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Solve linear equations in one variable

SMARTER Balanced Assessment 7 th Grade Mathematics As 2015 approaches and we transition from Missouri s traditional MAP testing to the Smarter Balanced Assessments, many teachers and administrators have

Georgia Department of Education. Calculus

K-12 Mathematics Introduction Calculus The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by using manipulatives and a variety

Unit 1: Place value and operations with whole numbers and decimals

Unit 1: Place value and operations with whole numbers and decimals Content Area: Mathematics Course(s): Generic Course Time Period: 1st Marking Period Length: 10 Weeks Status: Published Unit Overview Students

Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions

Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.

High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.

Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

Standards for Mathematical Practice: Commentary and Elaborations for 6 8

Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:

Polynomial Operations and Factoring

Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

Multiplying Fractions by a Whole Number

Grade 4 Mathematics, Quarter 3, Unit 3.1 Multiplying Fractions by a Whole Number Overview Number of Instructional Days: 15 (1 day = 45 60 minutes) Content to be Learned Apply understanding of operations

High School Functions Interpreting Functions Understand the concept of a function and use function notation.

Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.

Understanding Place Value of Whole Numbers and Decimals Including Rounding

Grade 5 Mathematics, Quarter 1, Unit 1.1 Understanding Place Value of Whole Numbers and Decimals Including Rounding Overview Number of instructional days: 14 (1 day = 45 60 minutes) Content to be learned

Division with Whole Numbers and Decimals

Grade 5 Mathematics, Quarter 2, Unit 2.1 Division with Whole Numbers and Decimals Overview Number of Instructional Days: 15 (1 day = 45 60 minutes) Content to be Learned Divide multidigit whole numbers

Overview. Essential Questions. Grade 5 Mathematics, Quarter 3, Unit 3.2 Multiplying and Dividing With Decimals

Multiplying and Dividing With Decimals Overview Number of instruction days: 9 11 (1 day = 90 minutes) Content to Be Learned Multiply decimals to hundredths. Divide decimals to hundredths. Use models, drawings,

Grade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %

Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the

Grades K-6. Correlated to the Common Core State Standards

Grades K-6 Correlated to the Common Core State Standards Kindergarten Standards for Mathematical Practice Common Core State Standards Standards for Mathematical Practice Kindergarten The Standards for

Problem of the Month: Perfect Pair

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

Algebra II, Quarter 1, Unit 1.3 Quadratic Functions: Complex Numbers Overview Number of instruction days: 12-14 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Develop

Problem of the Month: On Balance

Problem of the Month: On Balance The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core

CORE Assessment Module Module Overview

CORE Assessment Module Module Overview Content Area Mathematics Title T-Shirts Grade Level Grade 7 Problem Type Performance Task Learning Goal Students will solve real-life and mathematical problems using

Problem of the Month: William s Polygons

Problem of the Month: William s Polygons The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common

Gary School Community Corporation Mathematics Department Unit Document. Unit Number: 8 Grade: 2

Gary School Community Corporation Mathematics Department Unit Document Unit Number: 8 Grade: 2 Unit Name: YOU SEE IT!!! (2D & 3D Shapes) Duration of Unit: 18 days UNIT FOCUS Students describe and analyze

Operations and Algebraic Thinking Represent and solve problems involving addition and subtraction. Add and subtract within 20. MP.

Performance Assessment Task Incredible Equations Grade 2 The task challenges a student to demonstrate understanding of concepts involved in addition and subtraction. A student must be able to understand

Overview. Essential Questions. Grade 4 Mathematics, Quarter 1, Unit 1.1 Applying Place Value Up to the 100,000s Place

to the 100,000s Place Overview Number of instruction days: 8 10 (1 day = 90 minutes) Content to Be Learned Compare whole numbers within 1,000,000 using >,

Overview. Essential Questions. Grade 7 Mathematics, Quarter 4, Unit 4.2 Probability of Compound Events. Number of instruction days: 8 10

Probability of Compound Events Number of instruction days: 8 10 Overview Content to Be Learned Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. Understand

1 J (Gr 6): Summarize and describe distributions.

MAT.07.PT.4.TRVLT.A.299 Sample Item ID: MAT.07.PT.4.TRVLT.A.299 Title: Travel Time to Work (TRVLT) Grade: 07 Primary Claim: Claim 4: Modeling and Data Analysis Students can analyze complex, real-world

Mathematics Interim Assessment Blocks Blueprint V

6-7 Blueprint V.5.7.6 The Smarter Balanced Interim Assessment Blocks (IABs) are one of two distinct types of interim assessments being made available by the Consortium; the other type is the Interim Comprehensive

4 G: Identify, analyze, and synthesize relevant external resources to pose or solve problems. 4 D: Interpret results in the context of a situation.

MAT.HS.PT.4.TUITN.A.298 Sample Item ID: MAT.HS.PT.4.TUITN.A.298 Title: College Tuition Grade: HS Primary Claim: Claim 4: Modeling and Data Analysis Students can analyze complex, real-world scenarios and

Performance Assessment Task Which Shape? Grade 3. Common Core State Standards Math - Content Standards

Performance Assessment Task Which Shape? Grade 3 This task challenges a student to use knowledge of geometrical attributes (such as angle size, number of angles, number of sides, and parallel sides) to

Measurement with Ratios

Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

High School Algebra Reasoning with Equations and Inequalities Solve systems of equations.

Performance Assessment Task Graphs (2006) Grade 9 This task challenges a student to use knowledge of graphs and their significant features to identify the linear equations for various lines. A student

Georgia Standards of Excellence 2015-2016 Mathematics

Georgia Standards of Excellence 2015-2016 Mathematics Standards GSE Coordinate Algebra K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical

Pearson Algebra 1 Common Core 2015

A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).

Common Core Standards Mission Statement

Common Core Standards Mission Statement http://www.corestandards.org/the-standards/mathematics/introduction/how-to-read-thegrade-level-standards/ The Common Core State Standards provide a consistent, clear

Problem of the Month: Game Show

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

CCSS: Mathematics. Operations & Algebraic Thinking. CCSS: Grade 5. 5.OA.A. Write and interpret numerical expressions.

CCSS: Mathematics Operations & Algebraic Thinking CCSS: Grade 5 5.OA.A. Write and interpret numerical expressions. 5.OA.A.1. Use parentheses, brackets, or braces in numerical expressions, and evaluate

G C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.

#1 Make sense of problems and persevere in solving them.

#1 Make sense of problems and persevere in solving them. 1. Make sense of problems and persevere in solving them. Interpret and make meaning of the problem looking for starting points. Analyze what is

Problem of the Month. Squirreling it Away

The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

Performance Level Descriptors Grade 6 Mathematics

Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.1-2 Grade 6 Math : Sub-Claim A The student solves problems involving the Major Content for grade/course with

Grade 4 Mathematics, Quarter 4, Unit 4.3 Using Place Value to Add and Subtract Whole Numbers to the Millions. Overview

Whole Numbers to the Millions Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Round multi-digit whole numbers using understanding of place value. Recognize that the

A REI.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

Performance Assessment Task Magic Squares Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures with algebraic

1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH

1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH Calendar The following tables show the CCSS focus of The Meeting activities, which appear at the beginning of each numbered lesson and are taught daily,

Using the Area Model to Teach Multiplying, Factoring and Division of Polynomials

visit us at www.cpm.org Using the Area Model to Teach Multiplying, Factoring and Division of Polynomials For more information about the materials presented, contact Chris Mikles mikles@cpm.org From CCA

Using Algebra Tiles from Polynomials to Factoring

Using Algebra Tiles from Polynomials to Factoring For more information about the materials you find in this packet, contact: Chris Mikles (888) 808-4276 mikles@cpm.org CPM Educational Program 203, all

Executive Summary Principles and Standards for School Mathematics

Executive Summary Principles and Standards for School Mathematics Overview We live in a time of extraordinary and accelerating change. New knowledge, tools, and ways of doing and communicating mathematics

Problem of the Month Through the Grapevine

The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

Indiana Academic Standards Mathematics: Algebra I

Indiana Academic Standards Mathematics: Algebra I 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Algebra I are the result of a process designed to identify,

INDIANA ACADEMIC STANDARDS. Mathematics: Grade 6 Draft for release: May 1, 2014

INDIANA ACADEMIC STANDARDS Mathematics: Grade 6 Draft for release: May 1, 2014 I. Introduction The Indiana Academic Standards for Mathematics are the result of a process designed to identify, evaluate,

Mathematics Connecticut Preschool Standards to Common Core State Standards Continuum. Preschool - Kindergarten

Mathematics Connecticut Preschool Standards to Common Core State Standards Continuum Preschool - Kindergarten Connecticut Preschool-Kindergarten Standards Continuum for Mathematics On July 7, 2010, with

K-12 Mathematics Framework

DRAFT IN PROCESS San Diego City Schools Institute for Learning MATHEMATICS DEPARTMENT K-12 Mathematics Framework Introduction Mathematics Content Mathematics Processes Note: The content in this document

Grade 7 Mathematics Sample PT Form

MAT.07.PT.4.CCNTR.A.272 Sample Item ID: MAT.07.PT.4.CCNTR.A.272 Title: City Centers Grade: 07 Primary Claim: Claim 4: Modeling and Data Analysis Students can analyze complex, real-world scenarios and can

Overview. Essential Questions. Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs

Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Draw a picture

Claim 1: Concepts and Procedures

Grade 7 Mathematics Sample SR Item MAT.07.SR.1.0000G.E.161 Sample Item ID: MAT.07.SR.1.0000G.E.161 Grade: 07 Claim(s): Claim 1: Concepts and Procedures Students can explain and apply mathematical concepts

New York State Testing Program Grade 3 Common Core Mathematics Test. Released Questions with Annotations

New York State Testing Program Grade 3 Common Core Mathematics Test Released Questions with Annotations August 2013 THE STATE EDUCATION DEPARTMENT / THE UNIVERSITY OF THE STATE OF NEW YORK / ALBANY, NY

CORE Assessment Module Module Overview

CORE Assessment Module Module Overview Content Area Mathematics Title Speedy Texting Grade Level Grade 7 Problem Type Performance Task Learning Goal Students will solve real-life and mathematical problems

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

Indiana Academic Standards Mathematics: Algebra II

Indiana Academic Standards Mathematics: Algebra II 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Algebra II are the result of a process designed to identify,

Indiana Academic Standards Mathematics: Probability and Statistics

Indiana Academic Standards Mathematics: Probability and Statistics 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Probability and Statistics are the result of

Problem of the Month: Double Down

Problem of the Month: Double Down The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core

SMARTER Balanced Assessment 5 th Grade Mathematics As 2015 approaches and we transition from Missouri s traditional MAP testing to the Smarter Balanced Assessments, many teachers and administrators have

Expressions and Equations Understand the connections between proportional relationships, lines, and linear equations.

Performance Assessment Task Squares and Circles Grade 8 The task challenges a student to demonstrate understanding of the concepts of linear equations. A student must understand relations and functions,

Problem of the Month: Fractured Numbers

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

GRADE 8 MATH: TALK AND TEXT PLANS

GRADE 8 MATH: TALK AND TEXT PLANS UNIT OVERVIEW This packet contains a curriculum-embedded Common Core standards aligned task and instructional supports. The task is embedded in a three week unit on systems

Smarter Balanced Assessment Consortium Claims, Targets, and Standard Alignment for Math

Smarter Balanced Assessment Consortium Claims, Targets, and Standard Alignment for Math The Smarter Balanced Assessment Consortium (SBAC) has created a hierarchy comprised of claims and targets that together

Describing and Solving for Area and Perimeter

Grade 3 Mathematics, Quarter 2,Unit 2.2 Describing and Solving for Area and Perimeter Overview Number of instruction days: 8-10 (1 day = 90 minutes) Content to Be Learned Distinguish between linear and

Alignment. Guide. to the K 8 Standards for Mathematical Practice

Alignment Guide to the K 8 Standards for Mathematical Practice The Standards for Mathematical Practice More Than a Label The Common Core State Standards are made up of two main parts: The Standards for

Overview. Essential Questions. Precalculus, Quarter 2, Unit 2.5 Proving Trigonometric Identities. Number of instruction days: 5 7 (1 day = 53 minutes)

Precalculus, Quarter, Unit.5 Proving Trigonometric Identities Overview Number of instruction days: 5 7 (1 day = 53 minutes) Content to Be Learned Verify proofs of Pythagorean identities. Apply Pythagorean,

Delaware English Language Arts

Delaware English Language Arts DOCUMENTS REVIEWED 1 English Language Arts Content Standards. August 2006. Accessed from: http://www.doe.k12.de.us/infosuites/staff/ci/content_areas/ela.shtml Overview This

History of Development of CCSS

Implications of the Common Core State Standards for Mathematics Jere Confrey Joseph D. Moore University Distinguished Professor of Mathematics Education Friday Institute for Educational Innovation, College

Overview. Essential Questions. Grade 5 Mathematics, Quarter 3, Unit 3.1 Adding and Subtracting Decimals

Adding and Subtracting Decimals Overview Number of instruction days: 12 14 (1 day = 90 minutes) Content to Be Learned Add and subtract decimals to the hundredths. Use concrete models, drawings, and strategies

Franklin Public Schools. Curriculum Map for Mathematics. Kindergarten

Curriculum Map for Mathematics Kindergarten June 2013 1 The Standards for Mathematical Practice The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all

Mathematical Models with Applications, Quarter 3, Unit 3.1 Quadratic and Linear Systems Overview Number of instruction days: 5-7 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be

Problem of the Month: Fair Games

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

Linear Systems of Inequalities

Mathematical Models with Applications, Quarter 2, Unit 2.2 Linear Systems of Inequalities Overview Number of instruction days: 5-7 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be

Overview. Essential Questions. Grade 4 Mathematics, Quarter 2, Unit 2.1 Multiplying Multi-Digit Whole Numbers

Multiplying Multi-Digit Whole Numbers Overview Number of instruction days: 5 7 (1 day = 90 minutes) Content to Be Learned Use strategies based on place value and properties of operations to multiply a

Gouvernement du Québec Ministère de l Éducation, 2004 04-00808 ISBN 2-550-43538-9

Gouvernement du Québec Ministère de l Éducation, 2004 04-00808 ISBN 2-550-43538-9 Legal deposit Bibliothèque nationale du Québec, 2004 1. INTRODUCTION This Definition of the Domain for Summative Evaluation

PowerTeaching i3: Algebra I Mathematics

PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and

Overview. Essential Questions. Grade 7 Mathematics, Quarter 3, Unit 3.3 Area and Circumference of Circles. Number of instruction days: 3 5

Area and Circumference of Circles Number of instruction days: 3 5 Overview Content to Be Learned Develop an understanding of the formulas for the area and circumference of a circle. Explore the relationship

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

NCTM NCATE Standards (2012) Secondary (Initial Preparation)

1 (Initial Preparation) Standard 1: Content Knowledge Effective teachers of secondary mathematics demonstrate and apply knowledge of major mathematics concepts, algorithms, procedures, connections, and

South Carolina College- and Career-Ready (SCCCR) Algebra 1

South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process

Geometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.

Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find

Problem of the Month: Cutting a Cube

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

Performance Assessment Task Gym Grade 6. Common Core State Standards Math - Content Standards

Performance Assessment Task Gym Grade 6 This task challenges a student to use rules to calculate and compare the costs of memberships. Students must be able to work with the idea of break-even point to

HESS COGNITIVE RIGOR MATRIX (READING CRM):

TOOL 1 HESS COGNITIVE RIGOR MATRIX (READING CRM): Applying Webb s Depth-of-Knowledge Levels to Bloom s Cognitive Process Dimensions Revised Bloom s Taxonomy Webb s DOK Level 1 Recall & Reproduction Remember

Overview. Essential Questions. Precalculus, Quarter 1, Unit 1.4 Analyzing Exponential and Logarithmic Functions

Analyzing Exponential and Logarithmic Functions Overview Number of instruction days: 5 7 (1 day = 53 minutes) Content to Be Learned Rewrite radical expressions using the properties of exponents. Rewrite

Problem of the Month: Infinite Windows

Problem of the Month: Infinite Windows The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common

Standard 1: Make sense of problems and persevere in solving them

Standards for Mathematical Practice: Standard 1: Make sense of problems and persevere in solving them The Standard: Mathematically proficient students start by explaining to themselves the meaning of a

Nancy Rubino, PhD Senior Director, Office of Academic Initiatives The College Board

Nancy Rubino, PhD Senior Director, Office of Academic Initiatives The College Board Amy Charleroy Director of Arts, Office of Academic Initiatives The College Board Two approaches to alignment: Identifying

Problem of the Month The Wheel Shop

Problem of the Month The Wheel Shop The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core

Conceptual Understanding of Operations of Integers

Grade 7 Mathematics, Quarter 2, Unit 2.1 Conceptual Understanding of Operations of Integers Overview Number of instructional days: 10 (1 day = 45 60 minutes) Content to be learned Demonstrate conceptual

Performance Assessment Task Symmetrical Patterns Grade 4. Common Core State Standards Math - Content Standards

Performance Assessment Task Symmetrical Patterns Grade 4 The task challenges a student to demonstrate understanding of the concept of symmetry. A student must be able to name a variety of two-dimensional

Problem of the Month: Once Upon a Time

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

Overview. Essential Questions. Precalculus, Quarter 3, Unit 3.4 Arithmetic Operations With Matrices

Arithmetic Operations With Matrices Overview Number of instruction days: 6 8 (1 day = 53 minutes) Content to Be Learned Use matrices to represent and manipulate data. Perform arithmetic operations with