RESEARCH STATEMENT AMANDA KNECHT

Save this PDF as:

Size: px
Start display at page:

Transcription

1 RESEARCH STATEMENT AMANDA KNECHT 1. Introduction A variety X over a field K is the vanishing set of a finite number of polynomials whose coefficients are elements of K: X := {(x 1,..., x n ) K n : f i (x 1,..., x n ) = 0 for 1 i m}. Let L be a field extension of K. The set of L-rational points X(L) is the set of n-tuples in L n who are solutions to the defining polynomials of X: X(L) := {(x 1,..., x n ) L n : f i (x 1,..., x n ) = 0 for 1 i m}. For example, let X be the variety over Q defined by the polynomial x = 0. Then X(Q) = while X(C) = {i, i}. Does a variety X defined over a field K contain K-rational points, and if so, how are these points distributed on X? This is a classical question when K is a number field. One approach to this question is to determine whether or not the Local-to-Global principle holds. If X has a point in every completion K ν of K, i.e. local points everywhere, does X contain a K-rational point, i.e. global point? For example, a variety defined over Q has local points everywhere if it has points in R = Q and in Q p for all primes p: X(Q p ) for all p prime and X(Q). A similar approach helps analyze the distribution of the K-rational points on X. We say that X satisfies weak approximation if for any finite set of places of K and points of X over these places, there exists a K-rational point of X which is arbitrarily close to each of these points. In other words, X is said to satisfy weak approximation if X(K) is dense in ν X(K ν). In my research, I study varieties defined over the function field of a curve instead of a number field. Let k be an algebraically closed field of characteristic zero, B a smooth projective curve over k with function field K = k(b). Let X be a smooth, proper variety over K and π : X B a model of X; i.e., X is an algebraic space, flat and proper over B, with generic fiber X. In this context, K-rational points of X correspond to sections of π. Weak approximation corresponds to finding sections of π which pass through prescribed points in finitely many fibers with finitely prescribed Taylor series. The Tsen-Lang theorem states that over the function field of a smooth projective curve, a homogeneous polynomial has a nontrivial solution provided the number of variables is greater than the degree of the polynomial. If X in the preceding paragraph is a hypersurface of degree d in P n k with d n, then π admits a section. In 2001 Graber, Harris, and Starr [2] proved the existence of a section for varieties 1

2 2 AMANDA KNECHT other than hypersurfaces. If π : X B is a proper morphism of complex varieties with rationally connected general fiber and B a smooth curve, then π has a section. A smooth variety X is said to be rationally connected if there is a dense open subset of X in which any two points can be connected by a proper rational curve. Kollár, Miyaoka, and Mori [8] proved that a hypersurface of degree d in P n k is rationally connected if and only if d n. A decade before the Graber, Harris, Starr result Kollár, Miyaoka, and Mori [8] showed that if π : X B is as above and admits a section, then there is a section of π which passes through a finite number of prescribed points in the smooth fibers. They proved that given a finite collection of points {b i } i I B such that each fiber X bi is smooth, and given points x i X bi, there exists a section, s : B X, such that s(b i ) = x i, for each i I. In 2004, Hassett and Tschinkel [4] extended this result to show that there exist sections with prescribed tangencies over a finite number of points of B as long as the fibers above these points are smooth. In other words, they proved that a smooth proper rationally connected variety X over k(b) satisfies weak approximation for places of good reduction. It is conjectured that the above results are true even if the fibers above the points {b i } i I B are not smooth, as long as the points x i X bi are in the smooth locus of the fibers. That is, a smooth rationally connected variety X defined over K satisfies weak approximation even at places of bad reduction. This conjecture is true if the general fiber is a smooth rationally connected curve. The conjecture is not yet known to be true for all cases where the general fiber is a smooth rationally connected surface. All geometrically rationally connected surfaces are geometrically rational surfaces, and rational surfaces defined over the function field of a curve have been classified. They fall into two categories, del Pezzo surfaces and conic bundles over P 1 k. A del Pezzo surface of degree 1 d 9 is the blow-up of the projective plane at 9 d points in general position. Hence, the geometry of the surface becomes more complicated as the degree decreases. The conjecture is know in the following cases: - conic bundles over P 1 k [1], - del Pezzo surfaces of degree d 4 [1], - degree 3 del Pezzo surfaces, i.e. cubic surfaces, provided they have squarefree discriminant [3]. My thesis proves the conjecture for generic degree 2 del Pezzo surfaces. 2. Current Research In 2005 Hassett and Tschinkel [3] showed that if the fibers of π : X B are strongly rationally connected and π has a section, then sections of π satisfy weak approximation. A smooth rationally connected variety Y is strongly rationally connected if any two points in Y can be connected by a proper rational curve. Keel and McKernan [6] proved that the smooth locus of a del Pezzo surface with rational double points is rationally connected. Hassett and Tschinkel [3] conjectured that the smooth locus of a del Pezzo with rational double points is strongly rationally connected. They proved that the conjecture is true when the degree of the del

3 RESEARCH STATEMENT 3 Pezzo surface is 3 [3]. In my thesis, I prove this conjecture for degree 2 del Pezzo surfaces. Theorem 1. The smooth locus of a degree 2 del Pezzo surface with rational double points is strongly rationally connected. Theorem 2. Let X be a smooth degree 2 del Pezzo surface over K and π : X B a model whose singular fibers are degree 2 del Pezzo surfaces with rational double points. Then sections of π : X B satisfy weak approximation. Corollary 3. A smooth degree two del Pezzo surface with square-free discriminant satisfies weak approximation. In order to prove Theorem 1, I produce rational curves in the smooth locus of the surface which connect any given point in the smooth locus to a general point. The following proposition reduces this to producing a free curve through any smooth point. (A rational curve f : P 1 Y, nonconstant, is free if f T Y O P 1(a 1 ) O P 1(a 2 ) where each a i 0.) Proposition 4. A smooth rationally connected surface Y is strongly rationally connected if and only if for each point y Y, there exists a free rational curve containing y. A degree 2 del Pezzo surface with rational double points is a double cover of the projective plane branched over a quartic plane curve Q with ADE singularities [5]: A n : x n+1 + y 2 = 0 n 1 D n : x(x n 2 + y 2 ) = 0 n 4 E 6 : x 4 + y 3 = 0 E 7 : y(x 3 + y 2 ) E 8 : x 5 + y 3. Let f : Y P 2 be the double cover of the plane branched over a quartic curve Q. Given any smooth point y Y, I find a curve C P 2 which passes through f(y) and lifts to a free rational curve C Y sm containing the point y. In order for C to be rational, C must intersect Q in a certain way, depending on the degree of C. The prescribed intersection data necessary for C to be rational has led to a detailed analysis of quartic plane curves with ADE singularities. For example, a quartic curve with six A 1 singularities is the intersection of four lines in general position. One curve C which lifts to a rational curve is a conic that is tangent to three of the lines at smooth points and intersects the other line at two distinct smooth points. 3. Future Work 3.1. Log del Pezzo Surfaces. We say that a normal projective surface X is a log del Pezzo surface if X has at worst quotient singularities and if the anticanonical divisor K X of X is ample. In my thesis, I prove the strong rational connectivity of degree 2 log del Pezzo surfaces with only rational double points. Keel and

4 4 AMANDA KNECHT McKernan [6] have shown that the smooth locus of any log del Pezzo is rationally connected. Question. Is the smooth locus of a degree 2 log del Pezzo surface strongly rationally connected? The strong rational connectivity of the smooth locus of cubic surfaces with arbitrary quotient singularities is also not known. Proving strong rational connectivity for a larger class of quotient singularities would imply that weak approximation holds for more smooth degree 2 and 3 del Pezzo surfaces Degree 1 del Pezzo Surfaces. As noted in the introduction, at least partial approximation results are know for all rational surfaces except for the degree 1 del Pezzo surfaces. A del Pezzo surface of degree 1 with rational double points can be realized as a hypersurface of degree 6 in the weighted projective space P(1, 1, 2, 3). Question. Is the smooth locus of a degree 1 log del Pezzo surface strongly rationally connected? Question. Does weak approximation hold for degree 1 del Pezzo surfaces? 3.3. Quartic Threefolds. The only rationally connected hypersurfaces in P 4 k are linear, quadric, cubic, and quartic. Weak approximation is known to hold for all hyperplanes, all quartic hypersurfaces, cubic hypersurfaces of dimension at least 5, and quartic hypersurfaces of dimension at least 83 [10]. Recently de Jong and Starr proved that weak approximation holds for hyperplanes of degree d in P n k when ( ) d n 2 + d 1 + d d In high degrees, this is sharper than the Hassett and Tschinkel bound, but in degrees 3 and 4, n 63 and 984, respectively. Thus, proving weak approximation for cubic and quartic threefolds is still an open problem. Zhang [9] has shown that such hypersurfaces having ordinary singularities are rationally connected. We say that a variety has ordinary singularities if it has a finite number of isolated singularities, each étale-locally isomorphic to a cone over a smooth quadric hypersurface. Question. Is the smooth locus of a quartic threefold with ordinary singularities strongly rationally connected? Suppose that the answer to this question is yes. Then, a smooth quartic threefold, X, with square-free discriminant satisfies weak approximation over B. The equivalent statement for cubic threefolds is true [10]. References [1] J.L. Colliot-Thélène and P. Gille. Remarques sur lápproximation faible sur un corps de fonctions dúne variable. In Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA 2002), volume 226 of Progr. Math., pages , Birkhäuser Boston, Boston, MA, 2004.

5 RESEARCH STATEMENT 5 [2] T. Graber, J. Harris, and J. Starr. Families of rationally connected varieties. J. Amer. Math. Soc., 16(1):57 67, [3] B. Hassett and Y. Tschinkel. Approximation at places of bad reduction for rationally connected varieties. available as math.ag/ [4] B. Hassett and Y. Tschinkel. Weak approximation over function fields. Invent. Math., 163(1): , [5] F. Hidaka and K. Wantanabe. Normal gorenstein surfaces with ample anti-canonical divisor. Tokyo J. Math., 4(2): , [6] S. Keel and J. McKernan. Rational curves on quasi-projective surfaces. Mem. Amer. Math. Soc., 140(669):viii 153, [7] J. Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse der Math. Springer- Verlang, Berlin, [8] J. Kollár, Y. Miyaoka, and S. Mori. Rationally connected varieties. J. Algebraic Geom., 1(3): , [9] Q. Zhang. Rational connectedness of log Q-fano varieties. J. Reine Angew. Math. 590: , [10] B. Hassett and Y. Tschinkel. Weak approximation for hypersurfaces of low degree, 2006.

THE FANO THREEFOLD X 10. This is joint work in progress with A. Iliev (Sofia) and L. Manivel (Grenoble).

THE FANO THREEFOLD X 10 OLIVIER DEBARRE This is joint work in progress with A. Iliev (Sofia) and L. Manivel (Grenoble). 1. Introduction A Fano variety is a (complex) projective manifold X with K X ample.

ON THE NUMBER OF REAL HYPERSURFACES HYPERTANGENT TO A GIVEN REAL SPACE CURVE

Illinois Journal of Mathematics Volume 46, Number 1, Spring 2002, Pages 145 153 S 0019-2082 ON THE NUMBER OF REAL HYPERSURFACES HYPERTANGENT TO A GIVEN REAL SPACE CURVE J. HUISMAN Abstract. Let C be a

GEOMETRIC PROPERTIES OF PROJECTIVE MANIFOLDS OF SMALL DEGREE

GEOMETRIC PROPERTIES OF PROJECTIVE MANIFOLDS OF SMALL DEGREE SIJONG KWAK AND JINHYUNG PARK Abstract. We study geometric structures of smooth projective varieties of small degree in birational geometric

The topology of smooth divisors and the arithmetic of abelian varieties

The topology of smooth divisors and the arithmetic of abelian varieties Burt Totaro We have three main results. First, we show that a smooth complex projective variety which contains three disjoint codimension-one

Lectures on rationally connected varieties

Lectures on rationally connected varieties by Joe Harris at the EAGER Advanced School in Algebraic Geometry in Levico Terme, Trento, September 2001. Notes by Joachim Kock. Contents 1 Definition and good

Row Ideals and Fibers of Morphisms

Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion

On The Existence Of Flips

On The Existence Of Flips Hacon and McKernan s paper, arxiv alg-geom/0507597 Brian Lehmann, February 2007 1 Introduction References: Hacon and McKernan s paper, as above. Kollár and Mori, Birational Geometry

R-equivalence on low degree complete intersections

R-equivalence on low degree complete intersections Alena Pirutka January 20, 2011 Abstract Let k be a function field in one variable over C or the field C((t)). Let X be a k-rationally simply connected

Fiber sums of genus 2 Lefschetz fibrations

Proceedings of 9 th Gökova Geometry-Topology Conference, pp, 1 10 Fiber sums of genus 2 Lefschetz fibrations Denis Auroux Abstract. Using the recent results of Siebert and Tian about the holomorphicity

Proof. The map. G n i. where d is the degree of D.

7. Divisors Definition 7.1. We say that a scheme X is regular in codimension one if every local ring of dimension one is regular, that is, the quotient m/m 2 is one dimensional, where m is the unique maximal

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction

Acta Math. Univ. Comenianae Vol. LXXXI, 1 (2012), pp. 71 77 71 CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC E. BALLICO Abstract. Here we study (in positive characteristic) integral curves

Multiplicity. Chapter 6

Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are

On the Kleiman-Mori cone

80 Proc. Japan Acad., 81, Ser. A (2005) [Vol. 81(A), On the Kleiman-Mori cone By Osamu Fujino Graduate School of Mathematics, Nagoya University Chikusa-ku, Nagoya, Aichi 464-8602 (Communicated by Shigefumi

A COUNTEREXAMPLE FOR SUBADDITIVITY OF MULTIPLIER IDEALS ON TORIC VARIETIES

Communications in Algebra, 40: 1618 1624, 2012 Copyright Taylor & Francis Group, LLC ISSN: 0092-7872 print/1532-4125 online DOI: 10.1080/00927872.2011.552084 A COUNTEREXAMPLE FOR SUBADDITIVITY OF MULTIPLIER

On Smooth Surfaces of Degree 10 in the Projective Fourspace

On Smooth Surfaces of Degree 10 in the Projective Fourspace Kristian Ranestad Contents 0. Introduction 2 1. A rational surface with π = 8 16 2. A rational surface with π = 9 24 3. A K3-surface with π =

Errata for Higher-Dimensional Algebraic Geometry by Olivier Debarre

Errata for Higher-Dimensional Algebraic Geometry by Olivier Debarre page 2 page 4 page 9 I thank A. Alzati, H. Argüz, A. Chambert-Loir, J.-L. Colliot-Thélène, D. Conduché, S. Druel, A. Höring, A. Küronya,

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

Alex, I will take congruent numbers for one million dollars please

Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 jimlb@math.ohio-state.edu One of the most alluring aspectives of number theory

The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

GAVRIL FARKAS AND MIHNEA POPA

EFFECTIVE DIVISORS ON M g AND A COUNTEREXAMPLE TO THE SLOPE CONJECTURE GAVRIL FARKAS AND MIHNEA POPA 1. Introduction The purpose of this note is to prove two statements on the slopes of effective divisors

arxiv: v1 [math.ag] 29 Dec 2016

OPEN SURFACES OF SMALL VOLUME VALERY ALEXEEV AND WENFEI LIU arxiv:.09v [math.ag] 9 Dec 0 Abstract. We construct a surface with log terminal singularities and ample canonical class that has KX = /8,98 and

The Multiple Conical Surfaces

Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 42 (2001), No. 1, 71-87. The Multiple Conical Surfaces Josef Schicho Research Institute for Symbolic Computation Johannes

Mathematics Subject Classification (2000). Primary 14E30 Keywords. Flips,

Proceedings of the International Congress of Mathematicians Hyderabad, India, 2010 Flips and Flops Christopher D. Hacon and James M c Kernan Abstract Flips and flops are elementary birational maps which

arxiv:1609.07900v1 [math.ag] 26 Sep 2016

Contour curves and isophotes on rational ruled surfaces Jan Vršek arxiv:1609.07900v1 [math.ag] 26 Sep 2016 Abstract The ruled surfaces, i.e., surfaces generated by one parametric set of lines, are widely

DIVISORS AND LINE BUNDLES

DIVISORS AND LINE BUNDLES TONY PERKINS 1. Cartier divisors An analytic hypersurface of M is a subset V M such that for each point x V there exists an open set U x M containing x and a holomorphic function

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

Approximation des courbes sur les surfaces rationnelles réelles

Approximation des courbes sur les surfaces rationnelles réelles Frédéric Mangolte (Angers) en collaboration avec János Kollár (Princeton) Poitiers, 14 novembre 2013 Frédéric Mangolte (Angers) Courbes et

ON THE EMBEDDING OF BIRKHOFF-WITT RINGS IN QUOTIENT FIELDS

ON THE EMBEDDING OF BIRKHOFF-WITT RINGS IN QUOTIENT FIELDS DOV TAMARI 1. Introduction and general idea. In this note a natural problem arising in connection with so-called Birkhoff-Witt algebras of Lie

ON THE RATIONAL REAL JACOBIAN CONJECTURE

UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA doi: FASCICULUS LI, 2013 ON THE RATIONAL REAL JACOBIAN CONJECTURE by L. Andrew Campbell Abstract. Jacobian conjectures (that nonsingular implies a global inverse)

1 Chapter I Solutions

1 Chapter I Solutions 1.1 Section 1 (TODO) 1 2 Chapter II Solutions 2.1 Section 1 1.16b. Given an exact sequence of sheaves 0 F F F 0 over a topological space X with F flasque show that for every open

CONICS ON THE PROJECTIVE PLANE

CONICS ON THE PROJECTIVE PLANE CHRIS CHAN Abstract. In this paper, we discuss a special property of conics on the projective plane and answer questions in enumerative algebraic geometry such as How many

An Insight into Division Algorithm, Remainder and Factor Theorem

An Insight into Division Algorithm, Remainder and Factor Theorem Division Algorithm Recall division of a positive integer by another positive integer For eample, 78 7, we get and remainder We confine the

1. Introduction. PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1

Publ. Mat. 45 (2001), 69 77 PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1 Bernard Coupet and Nabil Ourimi Abstract We describe the branch locus of proper holomorphic mappings between

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Flip and Flop Janos Kollâr Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA Dedicated to my teacher Teruhisa Matsusaka The study of smooth projective varieties naturally breaks

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

Algebraic Geometry. Andreas Gathmann. Notes for a class. taught at the University of Kaiserslautern 2002/2003

Algebraic Geometry Andreas Gathmann Notes for a class taught at the University of Kaiserslautern 2002/2003 CONTENTS 0. Introduction 1 0.1. What is algebraic geometry? 1 0.2. Exercises 6 1. Affine varieties

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 24

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 24 RAVI VAKIL Contents 1. Degree of a line bundle / invertible sheaf 1 1.1. Last time 1 1.2. New material 2 2. The sheaf of differentials of a nonsingular curve

by the matrix A results in a vector which is a reflection of the given

Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

Intersection Theory course notes. Valentina Kiritchenko

Intersection Theory course notes Valentina Kiritchenko 1 Introduction Goals. Let X be an algebraic variety over an algebraically closed field k, and M and N two algebraic subvarieties in X of complementary

The Factor Theorem and a corollary of the Fundamental Theorem of Algebra

Math 421 Fall 2010 The Factor Theorem and a corollary of the Fundamental Theorem of Algebra 27 August 2010 Copyright 2006 2010 by Murray Eisenberg. All rights reserved. Prerequisites Mathematica Aside

m = 4 m = 5 x x x t = 0 u = x 2 + 2t t < 0 t > 1 t = 0 u = x 3 + 6tx t > 1 t < 0

ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 21, Number 2, Spring 1991 NODAL PROPERTIES OF SOLUTIONS OF PARABOLIC EQUATIONS SIGURD ANGENENT * 1. Introduction. In this note we review the known facts about

A Grand Tour of Pedals of Conics

Forum Geometricorum Volume 4 (2004) 143 151. FORUM GEOM IN 1534-1178 A Grand Tour of Pedals of Conics Roger C. Alperin Abstract. We describe the pedal curves of conics and some of their relations to origami

7. Some irreducible polynomials

7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of

LOCAL HEIGHTS ON ELLIPTIC CURVES AND INTERSECTION MULTIPLICITIES

LOCAL HEIGHTS ON ELLIPTIC CURVES AND INTERSECTION MULTIPLICITIES VINCENZ BUSCH, JAN STEFFEN MÜLLER Abstract. In this short note we prove a formula for local heights on elliptic curves over number fields

Analytic cohomology groups in top degrees of Zariski open sets in P n

Analytic cohomology groups in top degrees of Zariski open sets in P n Gabriel Chiriacescu, Mihnea Colţoiu, Cezar Joiţa Dedicated to Professor Cabiria Andreian Cazacu on her 80 th birthday 1 Introduction

The Brauer Manin obstruction for curves having split Jacobians

Journal de Théorie des Nombres de Bordeaux 00 (XXXX), 000 000 The Brauer Manin obstruction for curves having split Jacobians par Samir SIKSEK Résumé. Soit X A un morphism (qui n est pas constant) d une

A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field.

A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field Jean-Pierre Serre Let k be a field. Let Cr(k) be the Cremona group of rank 2 over k,

The Discrete Logarithm Problem on non-hyperelliptic Curves of Genus g 4

on Curves The Discrete Logarithm Problem on non-hyperelliptic Curves of Genus g 4 Sebastian Kochinke November 20, 2014 Sebastian Kochinke The Discrete Logarithm Problem on Curves 1 / 32 on Curves 1 The

The Maximum Likelihood Degree

arxiv:math/0406533v1 [math.ag] 25 Jun 2004 The Maximum Likelihood Degree Fabrizio Catanese, Serkan Hoşten, Amit Khetan, and Bernd Sturmfels Abstract Maximum likelihood estimation in statistics leads to

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Ameya Pitale, Ralf Schmidt 2 Abstract Let µ(n), n > 0, be the sequence of Hecke eigenvalues of a cuspidal Siegel eigenform F of degree

SINTESI DELLA TESI. Enriques-Kodaira classification of Complex Algebraic Surfaces

Università degli Studi Roma Tre Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Magistrale in Matematica SINTESI DELLA TESI Enriques-Kodaira classification of Complex Algebraic Surfaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

Polynomials Classwork

Polynomials Classwork What Is a Polynomial Function? Numerical, Analytical and Graphical Approaches Anatomy of an n th -degree polynomial function Def.: A polynomial function of degree n in the vaiable

INTRODUCTION TO MORI THEORY. Cours de M2 2010/2011. Université Paris Diderot

INTRODUCTION TO MORI THEORY Cours de M2 2010/2011 Université Paris Diderot Olivier Debarre March 11, 2016 2 Contents 1 Aim of the course 7 2 Divisors and line bundles 11 2.1 Weil and Cartier divisors......................................

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

Moduli of Tropical Plane Curves

Villa 2015 Berlin Mathematical School, TU Berlin; joint work with Michael Joswig (TU Berlin), Ralph Morrison (UC Berkeley), and Bernd Sturmfels (UC Berkeley) November 17, 2015 Berlin Mathematical School,

TAME AND WILD FINITE SUBGROUPS OF THE PLANE CREMONA GROUP

TAME AND WILD FINITE SUBGROUPS OF THE PLANE CREMONA GROUP IGOR V. DOLGACHEV To the memory of Vasily Iskovskikh Abstract. We survey some old and new results about finite subgroups of the Cremona group Cr

The Australian Journal of Mathematical Analysis and Applications

The Australian Journal of Mathematical Analysis and Applications Volume 7, Issue, Article 11, pp. 1-14, 011 SOME HOMOGENEOUS CYCLIC INEQUALITIES OF THREE VARIABLES OF DEGREE THREE AND FOUR TETSUYA ANDO

Real quadratic fields with class number divisible by 5 or 7

Real quadratic fields with class number divisible by 5 or 7 Dongho Byeon Department of Mathematics, Seoul National University, Seoul 151-747, Korea E-mail: dhbyeon@math.snu.ac.kr Abstract. We shall show

THE DIMENSION OF A VECTOR SPACE

THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field

Appendix A. Appendix. A.1 Algebra. Fields and Rings

Appendix A Appendix A.1 Algebra Algebra is the foundation of algebraic geometry; here we collect some of the basic algebra on which we rely. We develop some algebraic background that is needed in the text.

Research Article On the Rank of Elliptic Curves in Elementary Cubic Extensions

Numbers Volume 2015, Article ID 501629, 4 pages http://dx.doi.org/10.1155/2015/501629 Research Article On the Rank of Elliptic Curves in Elementary Cubic Extensions Rintaro Kozuma College of International

PYTHAGOREAN TRIPLES PETE L. CLARK

PYTHAGOREAN TRIPLES PETE L. CLARK 1. Parameterization of Pythagorean Triples 1.1. Introduction to Pythagorean triples. By a Pythagorean triple we mean an ordered triple (x, y, z) Z 3 such that x + y =

A COUNTEREXAMPLE TO A GEOMETRIC HALES-JEWETT TYPE CONJECTURE

A COUNTEREXAMPLE TO A GEOMETRIC HALES-JEWETT TYPE CONJECTURE Vytautas Gruslys Abstract. Pór and Wood conjectured that for all k, l 2 there exists n 2 with the following property: whenever n points, no

RINGS WITH A POLYNOMIAL IDENTITY

RINGS WITH A POLYNOMIAL IDENTITY IRVING KAPLANSKY 1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2]* proved the following theorem: a division ring D in

On Cremona geometry of plane curves

On On geometry of plane (joint work with Alberto Calabri) University of Rome Tor Vergata Ferrara, June 2015 degree Kodaira I work over the field C of complex numbers. Definition A transformation (CT) of

HOLOMORPHIC MAPPINGS: SURVEY OF SOME RESULTS AND DISCUSSION OF OPEN PROBLEMS 1

BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 78, Number 3, May 1972 HOLOMORPHIC MAPPINGS: SURVEY OF SOME RESULTS AND DISCUSSION OF OPEN PROBLEMS 1 BY PHILLIP A. GRIFFITHS 1. Introduction. Our purpose

MATH 371 Class notes/outline September 12, 2013

MATH 371 Class notes/outline September 12, 2013 Polynomials Another source of ring theory is the study of polynomials, particularly polynomials over a field. For now, we ll restrict our attention to the

arxiv: v2 [math.ag] 10 Jul 2011

DEGREE FORMULA FOR THE EULER CHARACTERISTIC OLIVIER HAUTION arxiv:1103.4076v2 [math.ag] 10 Jul 2011 Abstract. We give a proof of the degree formula for the Euler characteristic previously obtained by Kirill

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

4. Factor polynomials over complex numbers, describe geometrically, and apply to real-world situations. 5. Determine and apply relationships among syn

I The Real and Complex Number Systems 1. Identify subsets of complex numbers, and compare their structural characteristics. 2. Compare and contrast the properties of real numbers with the properties of

Math 225A, Differential Topology: Homework 3

Math 225A, Differential Topology: Homework 3 Ian Coley October 17, 2013 Problem 1.4.7. Suppose that y is a regular value of f : X Y, where X is compact and dim X = dim Y. Show that f 1 (y) is a finite

LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO

LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO PETER MÜLLER AND MICHAEL E. ZIEVE Abstract. Planar functions over finite fields give rise to finite projective planes and other combinatorial objects.

RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES

RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES GAUTAM BHARALI AND INDRANIL BISWAS Abstract. In the study of holomorphic maps, the term rigidity refers to certain types of results that give us very specific

MCS 563 Spring 2014 Analytic Symbolic Computation Wednesday 15 January. Elimination Methods

Elimination Methods In this lecture we define projective coordinates, give another application, explain the Sylvester resultant method, illustrate how to cascade resultants to compute discriminant, and

Gröbner bases talk at the ACAGM Summer School Leuven 2011- p. 1

Gröbner bases talk at the ACAGM Summer School Leuven 2011- p. 1 Gröbner bases talk at the ACAGM Summer School Leuven 2011 - Hans Schönemann hannes@mathematik.uni-kl.de Department of Mathematics University

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM DANIEL PARKER Abstract. This paper provides a foundation for understanding Lenstra s Elliptic Curve Algorithm for factoring large numbers. We give

Algebra 2. Rings and fields. Finite fields. A.M. Cohen, H. Cuypers, H. Sterk. Algebra Interactive

2 Rings and fields A.M. Cohen, H. Cuypers, H. Sterk A.M. Cohen, H. Cuypers, H. Sterk 2 September 25, 2006 1 / 20 For p a prime number and f an irreducible polynomial of degree n in (Z/pZ)[X ], the quotient

ZERO-DIVISOR GRAPHS OF POLYNOMIALS AND POWER SERIES OVER COMMUTATIVE RINGS

ZERO-DIVISOR GRAPHS OF POLYNOMIALS AND POWER SERIES OVER COMMUTATIVE RINGS M. AXTELL, J. COYKENDALL, AND J. STICKLES Abstract. We recall several results of zero divisor graphs of commutative rings. We

THE BIRCH AND SWINNERTON-DYER CONJECTURE

THE BIRCH AND SWINNERTON-DYER CONJECTURE ANDREW WILES A polynomial relation f(x, y) = 0 in two variables defines a curve C 0. If the coefficients of the polynomial are rational numbers, then one can ask

Flops Connect Minimal Models

Publ. RIMS, Kyoto Univ. 44 (2008), 49 423 Flops Connect Minimal Models By Yujiro Kawamata Abstract A result by Birkar-Cascini-Hacon-McKernan together with the boundedness of length of extremal rays implies

1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form

1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and

Math 231b Lecture 35. G. Quick

Math 231b Lecture 35 G. Quick 35. Lecture 35: Sphere bundles and the Adams conjecture 35.1. Sphere bundles. Let X be a connected finite cell complex. We saw that the J-homomorphism could be defined by

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

Unique Factorization

Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

Chapter 1 Quadratic Equations in One Unknown (I)

Tin Ka Ping Secondary School 015-016 F. Mathematics Compulsory Part Teaching Syllabus Chapter 1 Quadratic in One Unknown (I) 1 1.1 Real Number System A Integers B nal Numbers C Irrational Numbers D Real

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

FIXED POINT SETS OF FIBER-PRESERVING MAPS

FIXED POINT SETS OF FIBER-PRESERVING MAPS Robert F. Brown Department of Mathematics University of California Los Angeles, CA 90095 e-mail: rfb@math.ucla.edu Christina L. Soderlund Department of Mathematics

Kyoto University. Note on the cohomology of finite cyclic coverings. Yasuhiro Hara and Daisuke Kishimoto

Kyoto University Kyoto-Math 2013-02 Note on the cohomology of finite cyclic coverings by Yasuhiro Hara and Daisuke Kishimoto April 2013 Department of Mathematics Faculty of Science Kyoto University Kyoto

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

Monogenic Fields and Power Bases Michael Decker 12/07/07

Monogenic Fields and Power Bases Michael Decker 12/07/07 1 Introduction Let K be a number field of degree k and O K its ring of integers Then considering O K as a Z-module, the nicest possible case is

2 Complex Functions and the Cauchy-Riemann Equations

2 Complex Functions and the Cauchy-Riemann Equations 2.1 Complex functions In one-variable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)

Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005

Polynomials Dr. philippe B. laval Kennesaw State University April 3, 2005 Abstract Handout on polynomials. The following topics are covered: Polynomial Functions End behavior Extrema Polynomial Division

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2016 47 4. Diophantine Equations A Diophantine Equation is simply an equation in one or more variables for which integer (or sometimes rational) solutions

2.5 ZEROS OF POLYNOMIAL FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions.