The Micromechanics of Colloidal Dispersions

Size: px
Start display at page:

Download "The Micromechanics of Colloidal Dispersions"

Transcription

1 The Micromechanics of Colloidal Dispersions John F. Brady Divisions of Chemistry & Chemical Engineering and Engineering & Applied Science California Institute of Technology Pasadena, CA 91125, USA Multiscale Modeling and Simulation of Complex Fluids University of Maryland 13 April 2007 Complex Fluids/Complex Flows S. Quake Page #

2 Some Examples/Applications Food stuffs & additives Personal care products Biological fluids & cells Ceramics, colored glass MR/ER fluids Resins, catalysts Paints, coatings, inks Nanowriting Biological Fluids Actin network Weitz lab., Harvard. Red blood cells Microangela EM gallery Macrophage Microangela EM gallery Liz Jones (2002) Page #

3 Swimming Eutreptiella flagellate Molecular Biology of the Cell, 4th Edition, by Alerts, Johnson, Lewis. Raff, Roberts, Walter Propelling Listeria Bacteria Propels itself by enzymatic synthesis of actin -- the comet tail Page #

4 Colloid science & microfluidics Electrophoresis E Electrophoresis of DNA U U = E J. Han and H.G. Craighead, Cornell University Nonliving -- nanomotors Catalytic nanomotor The mechanism of selfpropulsion is unknown. Some candidates: surface tension gradients caused by the catalytic reaction on the Pt surface, electrochemical flows between Pt and Au, etc. Paxton et al. (2004) 10 mm Janus Page #

5 Autonomous Motion or Science Fiction? Design or construct objects at the micro-, nano- or molecular scales that can move themselves. Have truly portable devices (e.g. sensors, drug delivery, lab-on-a-chip). Learn something about biological systems. surgeon nanobot Erik Viktor Tirumkudulu et al (1999) Shinbrot & Muzzio (2000) Pattern Formation Zoueshtiagh & Thomas (2000) Fluidized bed (Jackson 2000) Page #

6 Length and Time Scales of Complex Fluids Method Time Scale Granular Dynamics Granular Media 1hr Stokesian Dynamics Photo by Y. Monovoukas Colloids Suspensions 1s Brownian Dynamics Polymers 1ns 1nm 1 μm 1mm Size Scale Particle Size Scale 1m mm μm nm Å } } Simulation Method Granular Dynamics (St >>1) Bubble Dynamics ( u = 0) Stokesian Dynamics (Re << 1) Re = Ua Re = Ua St = p Re <1, f Pe = arbitrary D Re Molecular Dynamics N s N p N s N p ~ a p a s 3, p ~ a p s a s 3, CPU~ a p a s 6 N p Page #

7 Characteristic Scales: A Simple Example Spherical particle of 0.5μm of specific gravity 2 falling in water. a g Particle Size : a = 1 2 μm Fall Speed : U = 1 2 μm/s inertial viscous advection diffusion Re = Ua Pe = Ua D Reynolds Number : Re = Diffusivity : D = 1 ( μm 2 )2 /s Peclet Number : Pe = 1 2 Stokes - Einstein - Sutherland Relation : D = ktr 1 = kt 6a Micromechanics Continuum Approximation: a p >> a s N s ~ a p ( a s ) 3 N p a p s ~ a s 3kT m s s ~ a s 2, = p s ~ ( a p a s ) 2 Therefore, the solvent can be treated as a continuum : Re = Ua <<1 Du Dt = p 2 u, u = 0 Page #

8 Micromechanics (Re << 1) Langevin equation for particle motion: m du dt = F H F B F P Hydrodynamic: F H =R FU U =6aU Stokes drag Multiparticle: F H =R FU ( x) ( U U ) p ~ O(m /6a) 10 8 s Fluid Motion: Stokes Equations 0 = p 2 u u = 0 u = U x no slip at particle surfaces Micromechanics (Re << 1) Langevin equation: Hydrodynamic: m du dt = F H F B F P ( ) F H =R FU ( x) U U Stokes drag p ~ O(m /6a) 10 8 s Brownian: F B = 0, F B 0 ()F B ()= t 2kTR FU x ( ) t O(10 13 s) () s << p x 2 2D 1 D = ktr FU = kt 6a (D. Weitz) t Mean-square displacement Page #

9 Micromechanics (Re << 1) Particle Motion: Hydrodynamic: Brownian: Interparicle/ external: m du dt = F H F B F P ( ) F H =Rx ( ) U U Stokes drag F B = 0, F B 0 ()F B ()= t 2kTR( x)() t O(10 13 s) F P = V p g, electrostatic, etc. p ~ O(m /6a) 10 8 s Fluid Motion: Stokes Equations 0 = p 2 u u = 0 u = U x no slip at particle surfaces Micromechanics (Re << 1) Particle Motion: Hydrodynamic: Brownian: Displacement in momentum relaxation time m du dt = F H F B F P ( ) F H =Rx ( ) U U Stokes drag F B = 0, F B 0 ()F B ()= t 2kTR( x)() t O(10 13 s) x a = Re <<1 0 = F H F B F P p ~ O(m /6a) 10 8 s Only configurational degrees of freedom!! Page #

10 Interparticle forces Steric Stabilization V/kT b a b a hydrodynamic hard core excluded annulus interparticle hard core Electrostatic Stabilization 2a 2b r Nature of Hydrodynamic Forces: F H =-R(x) U Near Field Lubrication F/6a Total Far Field Many Body Interactions decay as 1 r (r-2)/a Page #

11 Stokesian Dynamics Method: O(N ln N) Split the hydrodynamic interactions into nearand far-field parts: F H = R U = R nf U R ff U F H = R U = R nf UR ff U F/6a Near Field Lubrication 2 Total 3 (r-2)/a 4 Far Field Many Body 5 6 Near field: Lubrication interactions are two-body effects and can be added pairwise. Calculations can be done in O(N) operations R nf = R nf R nf 2 =R 2B B nf Far field: Many-body effects are computed by representing the particles as force densities on a grid and using Fast Fourier Transforms (FFT) to compute the velocity field. The force is then computed via Faxen laws and determined iteratively (convergence is rapid after the initial time step). F ff H = R ff U F H ff = R ff U Hydrodynamic Interactions Lubrication: closely spaced particles move as a single (rigid) rod, whether you push or pull. Push Pull Many-body: point particles falling due to gravity have a negative fall speed at high concentrations. U/U Many-body/ multipole Point force Page #

12 Short-time self-diffusivity D s o /D o Sierou & Brady JFM (2001) ASD infinite limit Ladd (1990) infinite limit Segre et al. (1995) Van Megen & Underwood (1989) Vanveluwen & Lekkerkerker (1988) Ottewill & Williams (1987) Vanveluwen et al. (1987) Van Megen et al. (1986) Van Megen et al. (1985) Pusey & Van Megen (1983) = D s 0 ( ) = kt M eq Batchelor (ca. 1995) Dilute limit : 0 D s 0 ( ) ~ D 0 ( 11.83) Close packing : =1 rcp 0 ( ) ~ D 0 ln( 1 ) D 0 s Near Equilibrium Behavior: () Stokesian Dynamics (N=27-64) Phillips, et al (1989) Ladd (1990) Phung (1994) Accelerated Stokesian Dynamics N=125 N=343 N=512 N=1000 N=2000 Experimental Results van der Werff, et. al. (1989) Shikata & Pearson (1994) Asymptotic Form 6.5ln(1/) 0.17/ = (1 / rcp ) rcp = ª ! ~ as 0 ~ ln(1 m ) 1 as m 0 1 ª (1 = m ) 1 as! m Page #

13 High-frequency dynamic viscosity & short-time self-diffusivity () s () and 1/D High-frequency dynamic viscosity Phillips, Brady & Bossis (1989) Ladd (1990) Phung (1993) van der Werff, et. al. (1989) Shikata & Pearson (1994) Curve Fit Short-time self-diffusivity Phillips, Brady & Bossis (1988) Ladd(1990) Phung (1993) Pusey & van Megen (1983) van Megen et al. (1985) van Megen, Underwood & Snook (1985) Ottewill & Williams (1987) van Veluwen et al. (1987) van Veluwen & Lekkerkerker (1988) van Megen & Underwood (1989) Brownian Self-Diffusivity (long-time) D 0 = kt 6a D( ) D 0 Brady JFM (1994) g The selfdiffusivity decreases with increasing concentration as the diffusing particle must push past its neighbors to move. Fuchs et al (1992) ( ) 2.62 s Mode Coupling : D ( ) ~ D s 0 g Page #

14 Zero-shear Brownian viscosity (Pe =0) Banchio & Brady (2002) High Frequency Elastic Modulus G' a 3 /kt Stokesian Dynamics N=27 Shikata & Pearson (1994) ST1 ST3 ST5 = m Page #

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Basic Principles in Microfluidics

Basic Principles in Microfluidics Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

More information

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

More information

ZETA POTENTIAL ANALYSIS OF NANOPARTICLES

ZETA POTENTIAL ANALYSIS OF NANOPARTICLES ZETA POTENTIAL ANALYSIS OF NANOPARTICLES SEPTEMBER 2012, V 1.1 4878 RONSON CT STE K SAN DIEGO, CA 92111 858-565 - 4227 NANOCOMPOSIX.COM Note to the Reader: We at nanocomposix have published this document

More information

Dynamics in nanoworlds

Dynamics in nanoworlds Dynamics in nanoworlds Interplay of energy, diffusion and friction in (sub)cellular world 1 NB Queste diapositive sono state preparate per il corso di Biofisica tenuto dal Dr. Attilio V. Vargiu presso

More information

SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT

SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT Experiment 8, page 1 Version of April 25, 216 Experiment 446.8 SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT Theory Viscous Flow. Fluids attempt to minimize flow gradients by exerting a frictional force,

More information

Diffusion and Fluid Flow

Diffusion and Fluid Flow Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

More information

Universitätsstrasse 1, D-40225 Düsseldorf, Germany 3 Current address: Institut für Festkörperforschung,

Universitätsstrasse 1, D-40225 Düsseldorf, Germany 3 Current address: Institut für Festkörperforschung, Lane formation in oppositely charged colloidal mixtures - supplementary information Teun Vissers 1, Adam Wysocki 2,3, Martin Rex 2, Hartmut Löwen 2, C. Patrick Royall 1,4, Arnout Imhof 1, and Alfons van

More information

Chemical Engineering - CHEN

Chemical Engineering - CHEN Auburn University 1 Chemical Engineering - CHEN Courses CHEN 2100 PRINCIPLES OF CHEMICAL ENGINEERING (4) LEC. 3. LAB. 3. Pr. (CHEM 1110 or CHEM 1117 or CHEM 1030) and (MATH 1610 or MATH 1613 or MATH 1617

More information

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2) Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

More information

Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline

Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline Introduction to Microfluidics Date: 2013/04/26 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics Microfluidics

More information

Collision of a small bubble with a large falling particle

Collision of a small bubble with a large falling particle EPJ Web of Conferences 67, 212 (214) DOI: 1.11/ epjconf/ 21467212 C Owned by the authors, published by EDP Sciences, 214 Collision of a small bubble with a large falling particle Jiri Vejrazka 1,a, Martin

More information

Mixing in the process industry: Chemicals Food Pharmaceuticals Paper Polymers Minerals Environmental. Chemical Industry:

Mixing in the process industry: Chemicals Food Pharmaceuticals Paper Polymers Minerals Environmental. Chemical Industry: Mixing Notes: Chapter 19 Robert P. Hesketh Mixing in the process industry: Chemicals Food Pharmaceuticals Paper Polymers Minerals Environmental Chemical Industry: Paints and Coatings Synthetic Rubbers

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

LECTURE 11 : GLASSY DYNAMICS - Intermediate scattering function - Mean square displacement and beyond - Dynamic heterogeneities - Isoconfigurational

LECTURE 11 : GLASSY DYNAMICS - Intermediate scattering function - Mean square displacement and beyond - Dynamic heterogeneities - Isoconfigurational LECTURE 11 : GLASSY DYNAMICS - Intermediate scattering function - Mean square displacement and beyond - Dynamic heterogeneities - Isoconfigurational Ensemble - Energy landscapes A) INTERMEDIATE SCATTERING

More information

4 Microscopic dynamics

4 Microscopic dynamics 4 Microscopic dynamics In this section we will look at the first model that people came up with when they started to model polymers from the microscopic level. It s called the Oldroyd B model. We will

More information

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary

More information

1 The basic equations of fluid dynamics

1 The basic equations of fluid dynamics 1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which

More information

A. Ricci, E. Giuri. Materials and Microsystems Laboratory

A. Ricci, E. Giuri. Materials and Microsystems Laboratory Presented at the COMSOL Conference 2009 Milan FSI Analysis of Microcantilevers Vibrating in Fluid Environment Materials and Microsystems Laboratory Politecnico di Torino Outline Brief Presentation of Materials

More information

Transport and collective dynamics in suspensions of swimming microorganisms

Transport and collective dynamics in suspensions of swimming microorganisms Transport and collective dynamics in suspensions of swimming microorganisms M. D. Graham Patrick Underhill, Juan Hernandez-Ortiz, Chris Stoltz Dept. of Chemical and Biological Engineering Univ. of Wisconsin-Madison

More information

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired

More information

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering

High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering Power spectrum development with heterodyne technology advances biotechnology and nanotechnology measurements. M. N. Trainer

More information

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00-006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow

More information

Multiple Electrokinetic Actuators for Feedback Control of Colloidal Crystal Size

Multiple Electrokinetic Actuators for Feedback Control of Colloidal Crystal Size Multiple Electrokinetic Actuators for Feedback Control of Colloidal Crystal Size Jaime J. Juárez a*, ramod. Mathai b, c, J. Alexander Liddle c, and Michael A. Bevan a a Chemical and Biomolecular Engineering,

More information

Numerical analysis of size reduction of municipal solid waste particles on the traveling grate of a waste-to-energy combustion chamber

Numerical analysis of size reduction of municipal solid waste particles on the traveling grate of a waste-to-energy combustion chamber Numerical analysis of size reduction of municipal solid waste particles on the traveling grate of a waste-to-energy combustion chamber Masato Nakamura, Marco J. Castaldi, and Nickolas J. Themelis Earth

More information

Dimensional Analysis

Dimensional Analysis Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

More information

Nonlinear evolution of unstable fluid interface

Nonlinear evolution of unstable fluid interface Nonlinear evolution of unstable fluid interface S.I. Abarzhi Department of Applied Mathematics and Statistics State University of New-York at Stony Brook LIGHT FLUID ACCELERATES HEAVY FLUID misalignment

More information

Stokes flow. Chapter 7

Stokes flow. Chapter 7 Chapter 7 Stokes flow We have seen in section 6.3 that the dimensionless form of the Navier-Stokes equations for a Newtonian viscous fluid of constant density and constant viscosity is, now dropping the

More information

Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar)

Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vatten(byggnad) Vätskors egenskaper (1) Hydrostatik (3) Grundläggande ekvationer (5) Rörströmning (4) 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vätska som kontinuerligt medium

More information

Part B: Full Proposal. Simulating Multi-component Aerosol Filters via Geometrical Modeling and Volumetric Imaging

Part B: Full Proposal. Simulating Multi-component Aerosol Filters via Geometrical Modeling and Volumetric Imaging Part B: Full Proposal Simulating Multi-component Aerosol Filters via Geometrical Modeling and Volumetric Imaging H. V. Tafreshi (PI), B. Maze (Co-PI) and B. Pourdeyhimi (Co-PI) NC State University Proposal

More information

Micellar structures and Whisky

Micellar structures and Whisky Micellar structures and Whisky Table of content 1 Table of content Table of content...1 Introduction...2 Micellar structures in Whisky...4 Methods...4 Results...5 Discussion... 10 Disclaimer... 11 Introduction

More information

Topic 2: Energy in Biological Systems

Topic 2: Energy in Biological Systems Topic 2: Energy in Biological Systems Outline: Types of energy inside cells Heat & Free Energy Energy and Equilibrium An Introduction to Entropy Types of energy in cells and the cost to build the parts

More information

Ion Beam Sputtering: Practical Applications to Electron Microscopy

Ion Beam Sputtering: Practical Applications to Electron Microscopy Ion Beam Sputtering: Practical Applications to Electron Microscopy Applications Laboratory Report Introduction Electron microscope specimens, both scanning (SEM) and transmission (TEM), often require a

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

Plastics and Polymer Business. Properties enhancement for Plastics

Plastics and Polymer Business. Properties enhancement for Plastics News Letter Vol. 18, issue October-December, 2012 Hyperdispersants and Coupling Agents for Thermoplastics and Thermosets Solplus, Ircolplus and Solsperse hyperdispersants and coupling agents have been

More information

Colloidal Materials: Part I

Colloidal Materials: Part I NPTEL Chemical Engineering Interfacial Engineering Module 1: Lecture 2 Colloidal Materials: Part I Dr. Pallab Ghosh Associate Professor Department of Chemical Engineering IIT Guwahati, Guwahati 781039

More information

Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack

Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack Kinetic Theory of Gas Assistant Professor Department of Materials Science and Engineering University of Tennessee 603 Dougherty Engineering Building Knoxville, TN 3793-00 Phone: (865) 974-5344 Fax (865)

More information

LECTURE 2: Stress Conditions at a Fluid-fluid Interface

LECTURE 2: Stress Conditions at a Fluid-fluid Interface LETURE 2: tress onditions at a Fluid-fluid Interface We proceed by deriving the normal and tangential stress boundary conditions appropriate at a fluid-fluid interface characterized by an interfacial tension

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function. 7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated

More information

Shake gels based on Laponite PEO mixtures: effect of polymer molecular weight

Shake gels based on Laponite PEO mixtures: effect of polymer molecular weight Designed Monomers and Polymers, Vol. 8, No. 5, pp. 453 462 (2005) VSP 2005. Also available online - www.vsppub.com Shake gels based on Laponite PEO mixtures: effect of polymer molecular weight VOLKAN CAN

More information

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer

More information

Differential Balance Equations (DBE)

Differential Balance Equations (DBE) Differential Balance Equations (DBE) Differential Balance Equations Differential balances, although more complex to solve, can yield a tremendous wealth of information about ChE processes. General balance

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

walberla: A software framework for CFD applications on 300.000 Compute Cores

walberla: A software framework for CFD applications on 300.000 Compute Cores walberla: A software framework for CFD applications on 300.000 Compute Cores J. Götz (LSS Erlangen, jan.goetz@cs.fau.de), K. Iglberger, S. Donath, C. Feichtinger, U. Rüde Lehrstuhl für Informatik 10 (Systemsimulation)

More information

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1 COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Removal of Liquid Water Droplets in Gas Channels of Proton Exchange Membrane Fuel Cell

Removal of Liquid Water Droplets in Gas Channels of Proton Exchange Membrane Fuel Cell 第 五 届 全 球 华 人 航 空 科 技 研 讨 会 Removal of Liquid Water Droplets in Gas Channels of Proton Exchange Membrane Fuel Cell Chin-Hsiang Cheng 1,*, Wei-Shan Han 1, Chun-I Lee 2, Huan-Ruei Shiu 2 1 Department of

More information

I. Cloud Physics Application Open Questions. II. Algorithm Open Issues. III. Computer Science / Engineering Open issues

I. Cloud Physics Application Open Questions. II. Algorithm Open Issues. III. Computer Science / Engineering Open issues I. Cloud Physics Application Open Questions II. Algorithm Open Issues III. Computer Science / Engineering Open issues 1 Part I. Cloud Physics Application Open Questions 2 Open mul)scale problems relevant

More information

Lab-on-a-Chip Design + Foundry Service

Lab-on-a-Chip Design + Foundry Service Lab-on-a-Chip Design + Foundry Service Visions to Products Assay Integration Automation and miniaturization of biochemical assays The Lab-on-a-Chip Design + Foundry-Service offers a shortcut to lab-on-a-chip

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Kinetic Theory of Gases. Chapter 33. Kinetic Theory of Gases

Kinetic Theory of Gases. Chapter 33. Kinetic Theory of Gases Kinetic Theory of Gases Kinetic Theory of Gases Chapter 33 Kinetic theory of gases envisions gases as a collection of atoms or molecules. Atoms or molecules are considered as particles. This is based on

More information

rja rja Use of Stabilized Nano Particles in Jnk Jet Printing Ronald R. Adkins, Ph. D. IMI 2013 dispersions,llc dispersions,llc

rja rja Use of Stabilized Nano Particles in Jnk Jet Printing Ronald R. Adkins, Ph. D. IMI 2013 dispersions,llc dispersions,llc Use of Stabilized Nano Particles in Jnk Jet Printing Ronald R. Adkins, Ph. D. IMI 2013 RJA Background Founded in 2002 by Reva J. Adkins. Initially, was developing dispersions for powder and other coatings.

More information

Chapter 1. Introduction of Electrochemical Concepts

Chapter 1. Introduction of Electrochemical Concepts Chapter 1. Introduction of Electrochemical Concepts Electrochemistry concerned with the interrelation of electrical and chemical effects. Reactions involving the reactant the electron. Chemical changes

More information

Interpolation error in DNS simulations of turbulence: consequences for particle tracking

Interpolation error in DNS simulations of turbulence: consequences for particle tracking Interpolation error in DNS simulations of turbulence: consequences for particle tracking Michel van Hinsberg Department of Physics, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The

More information

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

More information

Rheology of polymer systems/ Reologia dos sistemas poliméricos

Rheology of polymer systems/ Reologia dos sistemas poliméricos Rheology of polymer systems/ Reologia dos sistemas poliméricos 1. Viscosity/Viscosidade Jorge Morgado, IST Polymers Molecular materials in nature COMPLEX behaviour Viscosity of concentrated solu1ons and

More information

Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER

Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER 1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.

More information

Fundamentals and Applications of Microfluidics

Fundamentals and Applications of Microfluidics Fundamentals and Applications of Microfluidics Second Edition Nam-Trung Nguyen Steven T. Wereley ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface Acknowledgments xi xiii Chapter 1 Introduction

More information

Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che

Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che Fluid Dynamics Viscosity Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che che.rochester.eduedu 1 Chemical Engineering What do Chemical Engineers Do? Manufacturing

More information

Viscoelasticity of Polymer Fluids.

Viscoelasticity of Polymer Fluids. Viscoelasticity of Polymer Fluids. Main Properties of Polymer Fluids. Entangled polymer fluids are polymer melts and concentrated or semidilute (above the concentration c) solutions. In these systems polymer

More information

Viscous flow in pipe

Viscous flow in pipe Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

More information

Zeta Potential: A Complete Course in 5 Minutes

Zeta Potential: A Complete Course in 5 Minutes : A Complete Course in 5 Minutes The Interaction of Colloids Electrokinetics and Colloid Behavior potential can help you understand and control colloidal suspensions. Examples include complex biological

More information

Chemical Waves in the Belousov-Zhabotinsky Reaction: Determining a Rate Constant with a Ruler

Chemical Waves in the Belousov-Zhabotinsky Reaction: Determining a Rate Constant with a Ruler Chemical Waves in the Belousov-Zhabotinsky Reaction: Determining a Rate Constant with a Ruler John A. Pojman Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg,

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

ENS 07 Paris, France, 3-4 December 2007

ENS 07 Paris, France, 3-4 December 2007 ENS 7 Paris, France, 3-4 December 7 FRICTION DRIVE SIMULATION OF A SURFACE ACOUSTIC WAVE MOTOR BY NANO VIBRATION Minoru Kuribayashi Kurosawa, Takashi Shigematsu Tokyou Institute of Technology, Yokohama

More information

Lecture 14 - Multiphase Flows. Applied Computational Fluid Dynamics

Lecture 14 - Multiphase Flows. Applied Computational Fluid Dynamics Lecture 14 - Multiphase Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Definitions Multiphase flow is simultaneous

More information

Teaching Physics for Pre-Medical Students at UCLA.

Teaching Physics for Pre-Medical Students at UCLA. Teaching Physics for Pre-Medical Students at UCLA. Undergraduate Curriculum General science requirements: Math with calculus: three quarters (freshman) Physics with calculus: same (sophomore) General Chemistry:

More information

Bruce B. Weiner, Walther W. Tscharnuter, David Fairhurst Brookhaven Instruments Corporation Holtsville, NY 11742 US

Bruce B. Weiner, Walther W. Tscharnuter, David Fairhurst Brookhaven Instruments Corporation Holtsville, NY 11742 US Zeta Potential: A New Approach by Bruce B. Weiner, Walther W. Tscharnuter, David Fairhurst Brookhaven Instruments Corporation Holtsville, NY 11742 US A paper presented at the Canadian Mineral Analysts

More information

A Preliminary Proposal for a Pharmaceutical Engineering Graduate Program

A Preliminary Proposal for a Pharmaceutical Engineering Graduate Program A Preliminary Proposal for a Pharmaceutical Engineering Graduate Program Planning Committee: Prabir Basu Steve Byrn Ken Morris Rex Reklaitis Paul Sojka Venkat Venkatasubramanian Carl Wassgren National

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

PHYS 101 Lecture 10 - Work and kinetic energy 10-1

PHYS 101 Lecture 10 - Work and kinetic energy 10-1 PHYS 101 Lecture 10 - Work and kinetic energy 10-1 Lecture 10 - Work and Kinetic Energy What s important: impulse, work, kinetic energy, potential energy Demonstrations: block on plane balloon with propellor

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

CFD Based Air Flow and Contamination Modeling of Subway Stations

CFD Based Air Flow and Contamination Modeling of Subway Stations CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George

More information

Colloidal Suspensions in Temperature Gradients with Mesoscopic Simulations

Colloidal Suspensions in Temperature Gradients with Mesoscopic Simulations Colloidal Suspensions in Temperature Gradients with Mesoscopic Simulations I n a u g u r a l - D i s s e r t a t i o n zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der

More information

Protein Dynamics Intro

Protein Dynamics Intro Protein Dynamics Intro From rigid structures to motions on energy landscapes Do you all remember Anfinsen? What concept now associated with his name made Anfinsen famous? Right, it is the concept that

More information

VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy

VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy 30 VAPORIZATION IN MORE DETAIL GAS Energy needed to escape into gas phase LIQUID Kinetic energy Average kinetic energy - For a molecule to move from the liquid phase to the gas phase, it must acquire enough

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Microfluidic Principles Part 1

Microfluidic Principles Part 1 Introduction to BioMEMS & Medical Microdevices Microfluidic Principles Part 1 Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Dr. Steven S. Saliterman www.tc.umn.edu/~drsteve

More information

Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves

Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves Bennie Buys Department of Mechanical and Aeronautical Engineering University of Pretoria Introduction Rock Bolts and their associated problems

More information

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004 Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1

Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1 Common Equations Used in Chemistry Equation for density: d= m v Converting F to C: C = ( F - 32) x 5 9 Converting C to F: F = C x 9 5 + 32 Converting C to K: K = ( C + 273.15) n x molar mass of element

More information

Dynamic Light Scattering (aka QLS, PCS)

Dynamic Light Scattering (aka QLS, PCS) Dynamic Light Scattering (aka QLS, PCS) Oriented particles create interference patterns, each bright spot being a speckle. The speckle pattern moves as the particle move, creating flickering. All the motions

More information

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Chapter 5: Diffusion. 5.1 Steady-State Diffusion : Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

More information

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

More information

Introduction to COMSOL. The Navier-Stokes Equations

Introduction to COMSOL. The Navier-Stokes Equations Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

More information

Stability of Evaporating Polymer Films. For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M)

Stability of Evaporating Polymer Films. For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M) Stability of Evaporating Polymer Films For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M) Submitted by: Ted Moore 4 May 2000 Motivation This problem was selected because the writer observed a dependence

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

240EQ014 - Transportation Science

240EQ014 - Transportation Science Coordinating unit: 240 - ETSEIB - Barcelona School of Industrial Engineering Teaching unit: 713 - EQ - Department of Chemical Engineering Academic year: Degree: 2015 MASTER'S DEGREE IN CHEMICAL ENGINEERING

More information

Lipid membrane physics

Lipid membrane physics Lipid membrane physics Bert Nickel, 26.04.2012 lecture 2 (out of 9 + 3 guest lectures) guest lectures: Joachim Rädler Erich Sackmann liposomes, cationic phases (31. May, 05. July) cell adhesion (towards

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information