Medical Device Regulations for Process Validation: Review of FDA, GHTF, and GAMP Requirements

Size: px
Start display at page:

Download "Medical Device Regulations for Process Validation: Review of FDA, GHTF, and GAMP Requirements"

Transcription

1 P e e r - R e v i e w e d : M e d i c a l D e v i c e s Medical Device Regulations for Process Validation: Review of FDA, GHTF, and GAMP Requirements Vladimir Veselov, Helen Roytman, and Lori Alquier ABSTRACT Process validation is a key part of the quality system for medical device manufacturers. Complying with regulatory requirements is important to obtain premarket approvals and premarket notifications for new and modified medical devices. Simple, but essential, roadmaps assist in making decisions about which processes require validation, how and why to revalidate, when validation is necessary, and what US Food and Drug Administration guidelines to follow during validation. An overview of the overall environmental impact on validation is discussed, along with a process validation map of proper documentation required and FDA guidance to follow for control and monitoring of a quality system. Examples of FDA Warning Letters provide insight into FDA s remarks and contribute to preventing and overcoming the liabilities encountered therein. INTRODUCTION Process validation is a key element of the quality system regulation, which supports the main goal of a quality system: to consistently produce products suitable for their intended use (1). Process validation is required by 21 CFR part 820, section (a), which states, Where the results of a process cannot be fully verified by subsequent inspection and test, the process shall be validated with a high degree of assurance and approved according to established procedures (1). The requirement for process validation for the European (EU) market is stated in ISO 13485: 2003, section , The organization shall validate any processes for production and service condition where the resulting output cannot be verified by subsequent monitoring or measurement. This includes any processes where deficiencies become apparent only after the product is in use or the service has been delivered (2). There are additional reasons for process validation: customer satisfaction: non-conforming product can lead to lost customers customer mandated: provision for securing new business Product liability: conformance to product specifications must be maintained reduced production cost: process validation leads to reduced inspections, testing, scrap and rework; shifts cost from production to prevention supports improvements: testing data can be used to support improvements in the process or the development of the next generation of the process environment control: control and reduce wastes compliance to regulatory requirements: successful submissions, inspection, avoid 483s, warning letters, penalties, etc. (3). WHAT PROCESSES SHOULD BE VALIDATED? The GHTF process validation guidance outlines the processes that should be validated and states that if the process output is verifiable; and the verification is sufficient and cost effective; then the process doesn t need to be validated. [ For more Author information, go to gxpandjvt.com/bios ABOUT THE AUTHORS Lori Alquier is director of analytical research & development at Johnson & Johnson. Vladimir Veselov, Ph.D., is a principal scientist at Johnson & Johnson. Helen Roytman is a validation engineer at Johnson & Johnson. Helen can be reached at hroytman@its.jnj.com. 82 Journal of Validation Technology [SPRING 2012] ivthome.com

2 V l a d i m i r V e s e l o v, H e l e n R o y t m a n, a n d L o r i A l q u i e r Otherwise, the process must be redesigned or validated (4). The Medical Device Quality Systems Manual provides a more detailed explanation for the processes that are required to be validated: routine end-product tests have insufficient sensitivity to verify the desired safety and efficacy of the finished devices clinical or destructive testing would be required to show that the manufacturing process has produced the desired result or product routine end-product tests do not reveal all variations in safety and efficacy that may occur in the finished devices The process capability is unknown, or it is suspected that the process is barely capable of meeting the device specifications (5). Examples of the processes are as follows: Processes that should be validated sterilization processes cleanroom ambient conditions aseptic-filling processes sterile packaging sealing processes lyophilization process Heat treating processes Plating processes Plastic injection molding processes Processes that may be satisfactorily covered by verification Manual cutting processes Testing for color, turbidity, total ph for solutions visual inspection of printed circuit boards Manufacturing and testing of wiring harnesses (4). When to Validate There are two types of validation depending on when the process is validated in relation to product design, transfer to production, and release for distribution: prospective validation and retrospective validation (5). Prospective validation is conducted before a new product is released for distribution or when the process is modified. Retrospective validation is based on historical information that is accumulated during product production, testing, control, and review of customer complaints, and can typically be retrieved from batch records, production log books, lot records, control charts, test and inspection results, customer feedback, field failure reports, service reports, and audit reports. Statistical process control is a valuable tool for generating the type of data needed for retrospective analysis to revalidate a process and show that it continues to operate in a state of control. PRINCIPLES FOR PROCESS VALIDATION The basic principles for validation are stated as follows in the GHTF guidance: establish that the process equipment has the capability of operating within required parameters demonstrate that controlling, monitoring, or measuring equipment and instrumentation are capable of operating within the parameters prescribed for this process equipment Perform replicate cycles (runs) representing the required operational range of the equipment to demonstrate that the processes have been operated within the prescribed parameters for the process and that the output or product consistently meets predetermined specifications for quality and function Monitor the validated process during routine operation. As needed, requalify and recertify the equipment (4). GUIDANCES AND STANDARDS The GHTF guidance provides harmonized requirements for process validation, which conforms to the FDA quality system regulation (QSR), and ISO (4, 1, 2). Despite the fact that FDA has issued a guidance document for process validation (6), the agency refers to the GHTF guidance in Warning Letters that contain observations for inappropriate process validation. An additional reference is the Medical Device Quality Systems Manual, which provides useful information for understanding the GHTF guidance recommendations (5). Most modern processes are automated and may use electronic records with electronic signatures, which are regulated by 21 CFR Part 11 (7). The current Part 11 guidance refers to General Principals of Software Validation (8) and GAMP 4, which has been revised to GAMP 5 (9). FDA s Guide to Inspections of Medical Device Manufacturers provides a practical roadmap for internal audits and also helps identify some specific requirements for process validation (10). ICH Q8 and ASTM E2500 standards should be taken into consideration for combination product manufacturing (11, 12). Process development and validation should take into account the ISO for waste management systems requirements (13). ANSI/ASQ Z1.9, ANSI/ASQ Z1.4, and ANSI/ASQ S2 provide instructions, examples, and tables for sampling plans to assist in defining appropriate sample quantities that should be tested for a typical process validation (14-16). gxpandjv t. com Journal of Validation Technology [SPRING 2012] 83

3 P e e r - R e v i e w e d : M e d i c a l D e v i c e s Figure 1: Process map. PROCESS MAP A typical process map is presented in Figure 1. The main aspects of the process are: facilities, environment, equipment, utilities, people, and documentation. Each process has inputs and outputs. All aspects should be taken into consideration for process validation. Ignoring one aspect can minimize or eliminate efforts to establish and control other components of the process map. For example, if appropriate security access control is not established, someone can perform actions intentionally or unintentionally that may cause a product non-conformance or product adulteration. Figure 2 demonstrates how quality system regulations control the process from Figure 1. The requirements for process validation specified in section (1) are closely integrated with almost all sections of QSR. Process Validation Map Typically, process validation contains the following phases: 1. Process design and development. This phase is completed during design control and documented in the design history file. 2. validation plan. This step defines the process to be validation, the validation team and responsibilities, validation deliverables, and plan. 3. requirements and risk analysis. 4. write and approve protocols. Train protocol executors on the protocols and create a documented training record. 5. execute protocols and collect data. 6. analyze data. 7. Prepare, review, and approve reports. 8. control and monitoring. 9. Process validation review and summary report. 84 Journal of Validation Technology [SPRING 2012] ivthome.com

4 V l a d i m i r V e s e l o v, H e l e n R o y t m a n, a n d L o r i A l q u i e r Figure 2: 21 CFR part 820 controls for process. The GHTF guidance provides the following checklist to review validation activities: Form multi-functional team for validation Plan the approach and define the requirements identify and describe the processes specify process parameters and desired output decide on verification or validation create a master validation plan select methods and tools for validation create validation protocols Perform installation qualification (IQ), operational qualification (OQ), performance qualification (PQ) and document results determine continuous process controls control the process continuously (4). This checklist requires several additions. First, the IQ, OQ, and PQ activities refer to the equipment qualification. To validate the process, the equipment should be validated first. If the equipment is automated or computerized, the software has to be validated as well. One of the important QSR requirements, which has to be met in this step, is to establish a schedule for calibration, inspection, and preventive maintenance. Such a schedule can be implemented in software, which would then need to be validated. Prior to that, the equipment validation can be started and the utilities must be qualified. Second, the test methods must be validated. After that, the process performance qualification protocol can be executed (5). Finally, the process validation activites should be summarized. The Medical Device Quality Systems Manual provides specific information about the details to be covered in the validation plan: identification of the process to be validated identification of device(s) to be manufactured using this process criteria for a successful study length and duration of the study assumptions (shifts, operators, equipment, components) identification of equipment to be used in the process [820.75(b)(2)] identification of utilities for the process equipment and quality of the utilities identification of operators and required operator qualifications [820.75(b)(2)] complete description of the process (may reference the DMR [ (b)]) gxpandjv t. com Journal of Validation Technology [SPRING 2012] 85

5 P e e r - R e v i e w e d : M e d i c a l D e v i c e s Figure 3: Process validation documentation. relevant specifications including those for the product, components, manufacturing materials, the environment, etc. (may reference the DMR and quality system files { (a) and (b); }) any special controls or conditions to be placed on preceding processes during the validation Process parameters to be controlled and monitored, and methods for controlling and monitoring [820.70(a); (b)(2)] Product characteristics to be monitored and method for monitoring [820.70(a)(2); (b)(2); (c)] any subjective criteria used to evaluate the product definition of what constitutes nonconformance for both measurable and subjective criteria statistical methods for data collection and analysis [ ] consideration of maintenance and repairs [820.72(a)] conditions that may indicate that the process should be revalidated [820.75(c)] stages of the study where design review is required approval(s) of the protocol (5). As we can see from the referenced guidance, there are no unified approaches for process validation, and each company should develop their own procedures and documentation pertaining to process validation. PROCESS VALIDATION DOCUMENTATION FDA regulations don t provide specific requirements for which documents have to be delivered during the validation process. The required documentation should be defined in the procedures for process validation required by 21 CFR part (b), Where the results of the process cannot be fully verified by subsequent inspection and test, the process shall be validated with a high degree of assurance and approved according to established procedures (1). Section (a) refers to process and equipment validation and states, The validation activities and results, including the date and signature of the individual(s) approving the validation and where appropriate the major equipment validated, shall be documented (1). The definition of process validation is defined in section 820.3(z)(1), as follows: Process validation means establishing by objective evidence that a process consistently produces a result or product meeting its predetermined specifications (1). However, equipment validation is defined by 820.3(g) and (z), as follows: Equipment. Each manufacturer shall ensure that all equipment used in the manufacturing process meets specified requirements and is appropriately designed, con- 86 Journal of Validation Technology [SPRING 2012] ivthome.com

6 V l a d i m i r V e s e l o v, H e l e n R o y t m a n, a n d L o r i A l q u i e r structed, placed, and installed to facilitate maintenance, adjustment, cleaning, and use. Validation means confirmation by examination and provision of objective evidence that the particular requirements for a specific intended use can be consistently fulfilled (1). Therefore, equipment validation is one of the most important components of process validation. Unfortunately, the QSR doesn t define which equipment is considered to be major. It means that companies should have procedures to define which equipment should be validated, and which should not be validated. GAMP 5, system classification can be used for equipment categorization and defining which validation deliverables are required (9). An example of process validation documentation is presented in Figure 3. Software validation and test method validation are two widely separate topics that cannot be covered in this paper. INSTALLATION QUALIFICATION Installation qualification is establishing by objective evidence that all key aspects of the process equipment and ancillary system installation adhere to the manufacturer s approved specification and that the recommendations of the supplier of the equipment are suitably considered (4). Important IQ considerations are as follows: equipment design features (i.e., materials of construction cleanability) installation conditions (i.e., wiring, utilities, functionality) calibration, preventative maintenance, cleaning schedules Safety features supplier documentation, prints, drawings and manuals Software documentation Spare parts list environmental conditions (e.g., cleanroom requirements, temperature, humidity) (5). OPERATIONAL QUALIFICATION Operational qualification is establishing, by objective evidence, process control limits and action levels that result in product that meets all predetermined requirements (4). OQ considerations include the following: Process control limits (e.g., time, temperature, pressure, line speed, setup conditions) software parameters raw material specifications Process operating procedures Material handling requirements Process change control Training short term stability and capability of the process (latitude studies or control charts) Potential failure modes, action levels and worst-case conditions (failure mode and effects analysis [FMEA], fault tree analysis) (4). Frank defines OQ as studies which are designed to challenge the process and process equipment, and establish objective evidence that the process meets predetermined requirements throughout all anticipated operating ranges (3). The following are examples of OQ elements: verification of all systems and subsystem functions confirmation of all safety devices and systems software qualification evaluate impact of key parameters on the process (i.e., DOE, worst-case testing) Measurement system suitability Bias or repeatability and reproducibility of measurement systems Operator training and qualification (3). PERFORMANCE QUALIFICATION Equipment performance qualification is establishing by objective evidence that the equipment, under anticipated conditions, consistently performs within the specified limits. The equipment PQ shall contain evidence that the equipment is suitable for the process, for which it is used. Process PQ is establishing by objective evidence that the process, under anticipated conditions, consistently produces a product that meets all predetermined requirements (4). The medical device guidance provides definitions for process PQ and product PQ, as follows: Process performance qualification: establishing documented evidence that the process is effective and reproducible. Product performance qualification: establishing documented evidence through appropriate testing that the finished product produced by the specified process(es) meets all release requirements for functionality and safety (5). PQ considerations include the following: actual product and process parameters and procedures established in OQ Acceptability of the product assurance of process capability as established in OQ (4). gxpandjv t. com Journal of Validation Technology [SPRING 2012] 87

7 P e e r - R e v i e w e d : M e d i c a l D e v i c e s Examples of PQ elements are as follows: Verification of released process documentation (e.g., manufacturing procedures, inspection procedures, product specifications, engineering drawings, tool drawings, material specifications, related forms) dimensional verification (e.g., first article, layout inspection) Process stability (x-bar & R charts) Process capability (Cp, Cpk) Fault seeding Product performance evaluation (i.e., impact of the process on follow-on operations, product functionality, material and physical properties) cleanliness tests (e.g., extraction tests, ESCA) Biological tests (e.g., bioburden, cytotoxicity, hemolysis) Product sterility Manned and unmanned testing of controlled environments (3). PROCESS CONTROL AND MONITORING After the process is validated, it is important to control the validated state of the process. GHTF states, Trends in the process should be monitored to ensure the process remains within the established parameters. When monitoring data on quality characteristics demonstrates a negative trend, the cause should be investigated, corrective action may be taken and revalidation considered (4). Process monitoring and control should not be limited to the review of quality charts and data. Possible process variations may be caused by personnel deviations from work instructions; changes in environmental conditions, or equipment failure. GHTF states, Various changes may occur in raw materials and/or processes which are undetected, or considered at the time to be inconsequential. (An example of this type of process is sterilization.) These changes may cumulatively affect the validation status of the process. Periodic revalidation should be considered for these types of processes (4). The process map (Figure 1) can be used to evaluate the changes, which can impact the process. REVALIDATION According to the FDA medical device manual, the process revalidation is necessary in the following cases: When process changed When process deviations occur On a periodic basis. In all cases, the process must be reviewed and evaluated; and activities for review, evaluation, and revalidation must be documented (5). To document that the process is not changed and operating in a state of control, day-to-day in process control data and finished product testing data should be analyzed for conformance with specifications and for variability. WARNING LETTERS FDA Warning Letters are published on the FDA website ( These letters contain valuable information about issues related to process validation. Table I contains examples of Warning Letters related to observations pertaining to process validation activities. STATISTICAL TECHNIQUES AND SAMPLE SIZE The QSR doesn t provide specific requirements for statistical techniques and sampling plans. However, FDA requires that the rationale for the statistical techniques and sampling plans should be documented, as follows: Sec Statistical techniques][1] (a) Where appropriate, each manufacturer shall establish and maintain procedures for identifying valid statistical techniques required for establishing, controlling, and verifying the acceptability of process capability and product characteristics. (b) Sampling plans, when used, shall be written and based on a valid statistical rationale. Each manufacturer shall establish and maintain procedures to ensure that sampling methods are adequate for their intended use and to ensure that when changes occur the sampling plans are reviewed. These activities shall be documented (1). Standards for acceptance sampling (14, 15, 16) and publication (17) refer to acceptance sampling for lots. The GHTF guidance provides an explanation of how these techniques can be used for process validation: Acceptance sampling plans are commonly used in manufacturing to decide whether to accept (release) or to reject (hold) lots of product. However, they can also be used during validation to accept (pass) or to reject (fail) the process. Following the acceptance by a sampling plan, one can make a confidence statement such as: With 95% confidence, the defect rate is below 1% defective (4). The final decision on how many samples to test cannot be made until process test results are available. The following approach can be used: 1. Using preliminary assumptions about the process, define the number of samples 2. execute the sample plan 88 Journal of Validation Technology [SPRING 2012] ivthome.com

8 V l a d i m i r V e s e l o v, H e l e n R o y t m a n, a n d L o r i A l q u i e r Table I: FDA Warning Letters. Date Company Link Observation September 18, 2009 April 11, 2008 April 26, 2007 June 1, 2006 September 28, 2007 December 2, 2005 Advanced Medical Optics Uppsala Ab VIBE Technologies, LLC Medical Wire & Equipment Co (Bath), Ltd. Potley Road Corsham, Wiltshire, England SN13 9RT Visionary Contact Lens, Inc E. Miraloma Ave. Anaheim, CA Healthway Home Products, Inc N. Jefferson St. Pulaski, New York Restorative Products, Inc Wright Cir Tampa, FL fda.gov/iceci/ EnforcementActions/ WarningLetters/ ucm htm foi/warning_letters/ s6745c.htm foi/warning_letters/ s6345c.htm com/warning1.pdf foi/warning_letters/ s6543c.pdf casewatch.org/ fdawarning/ prod/2005/ restorative.shtml Failure to adequately ensure that when the results of a process cannot be fully verified by subsequent inspection and test that the process shall be validated with a high degree of assurance and approved according to established procedure, as required by 21 C.F.R (a). For example, your firm failed to perform and document equipment-cleaning validation for the production of Healon D ophthalmic viscoelastic devices. 5. Failure to establish and maintain procedures to ensure that equipment is routinely calibrated, inspected, checked, and maintained, as required by 21 CFR (a). 4. Failure to ensure all inspection, measuring, and test equipment, is suitable for its intended purposes and is capable of producing valid results as required by 21 CFR (a); and failure to document equipment identification, calibration date, the individual performing the calibration, and the next calibration date as required by 21 CFR (b)(2). For example, there is no documented calibration history for the [redacted] which is used to test the conductivity of the process water. 9. You have not completely established procedures to ensure that equipment is routinely calibrated. Specifically, the daily check of manufacturing equipment is not described or referenced [21 CFR (a)]. 8. Failure to establish and maintain procedures to ensure that inspection, measuring and test equipment is routinely calibrated, inspected, checked and maintained, as required by 21 CFR (a). For example, written procedures have not been established for acceptance testing equipment (i.e. digital high voltage meter and particle counter) utilized on Air Cleaners prior to distribution to assure the testing equipment are routinely calibrated and properly maintained. Your firm failed to establish and maintain procedures to ensure that equipment is routinely calibrated, inspected, checked, and maintained as required by 21 CFR (a). In particular, your firm did not establish and maintain procedures for calibrating temperature and speed controls on wave soldering equipment and an oven. (FDA 483, Item #7). Your firm failed to establish and maintain procedures to control environmental conditions that could reasonably be expected to have an adverse effect on product quality as required by 21 CFR (c). Your firm s soldering work instructions require that sensitive components and circuit boards, when not being worked on, must be enclosed in shielding bags or boxes. The investigator observed a minimum of 10 antistatic bags containing sensitive components and p.c. boards in open bags in the storage area (FDA 483, Item #8). gxpandjv t. com Journal of Validation Technology [SPRING 2012] 89

9 P e e r - R e v i e w e d : M e d i c a l D e v i c e s 3. estimate the confidence level and evaluate the sample plan. In most cases, if the p-value (the probability to accept null hypothesis, i.e. reject the process) is less then 5% at 95% confidence level, then the sampling plan is adequate 4. correct the sample plan and repeat the testing if needed. The following are considerations that need to be taken into account: evaluate the measuring system. Is your testing method and equipment adequate for the purpose of testing? sampling procedure. Different lots, different raw materials lot, different equipment, different locations? random sampling. Random testing may be something along the lines of testing the 5th sample in every 9th row. check the distribution. Most statistical test methods are valid for the normal distribution only. Perform the normality test, if applicable. The following spreadsheet analysis tools can be used: Tables (14, 15), Microsoft Excel, Minitab, SAS. Frank provides another practical consideration for sample size determination: The sample size for each test should be established in the test plan, and should be based on the criticality of the process. Sample size is normally based on the level of confidence desired to ensure a certain portion of the population is within the sample range. This may be calculated by the Wilks equation: npn-1 (n-1)pn = 1 - alpha where: n = sample size p = proportion of population contained within the sample range alpha = confidence level Typically, a sample size of 30 is adequate for most testing, which covers 90% of the population with 80% confidence. Occasionally, a sample size as low as 3 may be used in development activities, where 50% of the population is covered with 50% confidence (3). To provide a practical recommendation for the sample size calculation, definitions for the main terms need to be provided: Null Hypothesis the probability that the statistical result is false. For example, when a process is changed, we need to prove that the changes don t impact process outputs. In case of a non-parametric output, where the output is a variable, the appropriate tool to provide statistical evidence that the process outputs have not changed is the analysis of means. In this case, two sample sets need to be collected outputs from the original process and outputs from the modified process. The null hypothesis is that there is no difference in means between the two sample sets. statistical Power the probability to reject the null hypothesis when the null hypothesis is true. The more samples that are collected, the greater the value of the power. Usually, the power depends on the criticality of the process, and the value can be 0.8 or 0.9. confidence level the level of confidence in the statistical results. The confidence level usually is selected at 0.95 or 0.99 for critical parameters. If the standard deviation of the process is not know, then an assumption of its value can be made based on the results of process monitoring and development activities. After process data are collected, this assumption can be tested. Another assumption that has to be made is the acceptable difference in means that indicates that the process has not changed. That assumption can be based on the specification limits, or accuracy of the test method. Usually, 5-10% of the specification can be considered as a reasonable difference. Suppose in our case the allowable difference is two standard deviations. Figure 4 was calculated with Minitab, version 15. Alpha is selected 0.05, which means that the confidence level is The result shows that the sample size of 7 can be selected for the planned study. Also, the sample size depends on power and allowable difference in means. CONCLUSION Process validation is one of the key components of a quality system. The main constituents of the process are environment, buildings, equipment, personnel, and documentation. The existing guidances and standards cover different aspects of process validation, which requires one to take into consideration multiple sources for establishing a specific process validation methodology for each company. FDA, as a government organization, strives to maintain the public safety by providing guidances and regulations to follow in order to produce safe products in qualified facilities. Individual companies establish validation processes to conform to FDA s guidelines. Public complaints and FDA inspections of manufacturing and research facilities allow the government to control quality operations and development activities in the pharmaceutical industry. Failure to follow FDA guidances and regulations may lead to observations and possible consent decrees, which are aimed at outlining corrective action procedures for companies to return to a compliant good manufacturing practice environment. 90 Journal of Validation Technology [SPRING 2012] ivthome.com

10 V l a d i m i r V e s e l o v, H e l e n R o y t m a n, a n d L o r i A l q u i e r Figure 4: Sample size calculation. REFERENCES 1. FDA, Quality System Regulation, Title 21 Part 820 of the Code of Federal Regulations ( cdrh/cfdocs/cfcfr/cfrsearch.cfm? CFRPart=820, Apr 2003). 2. ISO, ISO 13485:2003 Medical devices, Quality management Systems detail?csnumber= Doug Frank, Process Validation for a Regulated Environment, presentation Process-Validation-Presentation-Final-Version 4. GHTF SG3/N99-10 Quality Management Systems Process Validation Guidance, Jan FDA, Medical Device Quality Systems Manual: A Small Entity Compliance Guide ( DeviceRegulationandGuidance/PostmarketRequirements/ QualitySystemsRegulations/MedicalDeviceQualitySystems- Manual/default.htm, Dec 1996). 6. FDA, Guidance for Industry: Process Validation: General Principles and Practices ( GuidanceComplianceRegulatoryInformation/Guidances/ UCM pdf, January 2011). 7. FDA, Guidance for Industry Part 11, Electronic Records; Electronic Signatures Scope and Application ( gov/regulatoryinformation/guidances/ucm htm. 8. FDA, General Principles of Software Validation; Final Guidance for Industry and FDA Staff ( Jan 2002). 9. ISPE, GAMP 5 Good Automated Manufacturing Practices. 10. FDA, Guide to Inspections of Medical Device Manufacturers ( ucm htm, Dec 1997). 11. ICH, Q8 Pharmaceutical Development, August ASTM, E Standard Guide for Specification, Design, and Verification of Pharmaceutical and Biopharmaceutical Manufacturing Systems and Equipment. 13. ISO, 14001:2004 Environmental Management Systems. 14. ANSI/ASQ Z Sampling Procedures and Tables for Inspection by Variables for Percent Nonconforming. 15. ANSI/ASQ Z1.4 Sampling Procedures and Tables for Inspection by Attributes. 16. ANSI/ASQ S Introduction to Attribute Sampling. 17. Dr. Wayne A. Taylor, Guide to Acceptance Sampling, Taylor Enterprises, Inc., Lake Villa, Illinois, JVT gxpandjv t. com Journal of Validation Technology [SPRING 2012] 91

Process Validation for Medical Devices

Process Validation for Medical Devices Process Validation for Medical Devices Dan O Leary CBA, CQE, CRE, CSSBB, CIRM, LLC 603-209-0600 OmbuEnterprises@msn.com Copyright 2010 by, LLC Process Validation for Medical Devices 1 Instructor Introduction

More information

Working Party on Control of Medicines and Inspections. Final Version of Annex 15 to the EU Guide to Good Manufacturing Practice

Working Party on Control of Medicines and Inspections. Final Version of Annex 15 to the EU Guide to Good Manufacturing Practice EUROPEAN COMMISSION ENTERPRISE DIRECTORATE-GENERAL Single market, regulatory environment, industries under vertical legislation Pharmaceuticals and cosmetics Brussels, July 2001 Working Party on Control

More information

ORACLE CONSULTING GROUP

ORACLE CONSULTING GROUP ORACLE CONSULTING GROUP 9 Golder Ranch Rd., Ste. 1 Tucson, Arizona 9 Web Site: E-mail: 20-2-0 20-2-0 (FAX) CONSULTING MEMORANDUM QUALITY SYSTEM INSPECTION TECHNIQUE

More information

FINAL DOCUMENT. Quality Management Systems - Process Validation Guidance. The Global Harmonization Task Force

FINAL DOCUMENT. Quality Management Systems - Process Validation Guidance. The Global Harmonization Task Force GHTF/SG3/N99-10:2004 (Edition 2) FINAL DOCUMENT Title: Quality Management Systems - Process Validation Guidance Authoring Group: Endorsed by: SG3 The Global Harmonization Task Force Date: Edition 2 - January

More information

Revision Date Author Description of change. 10 07Jun13 Mark Benton Removed Admin. Manager from approval

Revision Date Author Description of change. 10 07Jun13 Mark Benton Removed Admin. Manager from approval Page 2 of 15 Document Revision History Revision Date Author Description of change 10 07Jun13 Mark Benton Removed Admin. Manager from approval 12Feb13 Mark Benton 08 01Oct12 Mark Benton 07 8/30/2012 Refer

More information

OPERATIONAL STANDARD

OPERATIONAL STANDARD 1 of 11 1. Introduction The International Safe Transit Association (ISTA), a non-profit association whose objective is to prevent product damage and excess packaging usage within the distribution environment.

More information

Overview of Medical Device Design Controls in the US. By Nandini Murthy, MS, RAC

Overview of Medical Device Design Controls in the US. By Nandini Murthy, MS, RAC Overview of Medical Device Controls in the US By Nandini Murthy, MS, RAC 18 controls are a regulatory requirement for medical devices. In the US, compliance with the design controls section of 21 Code

More information

International GMP Requirements for Quality Control Laboratories and Recomendations for Implementation

International GMP Requirements for Quality Control Laboratories and Recomendations for Implementation International GMP Requirements for Quality Control Laboratories and Recomendations for Implementation Ludwig Huber, Ph.D. ludwig_huber@labcompliance.com Overview GMP requirements for Quality Control laboratories

More information

Guidance on Qualification of existing facilities, systems, equipment and utilities

Guidance on Qualification of existing facilities, systems, equipment and utilities QUALIFICATION_EXISTING_EQUIPMENT_FINAL page 1 / 16 1. Acknowledgement...3 2. Introduction...3 3. Scope...4 4. Regulatory requirements...4 5. Guidance...4 5.1 Risk Assessment... 4 5.2 Procedure... 7 5.3

More information

Quality Agreement Template

Quality Agreement Template Quality Agreement Template Prepared by Dan O Leary Ombu Enterprises, LLC 3 Forest Ave. Swanzey, NH 03446 603-209-0600 This document is intended to form the basis for a Supplier Agreement. The document

More information

IVD Regulation Overview. Requirements to Assure Quality & Effectiveness

IVD Regulation Overview. Requirements to Assure Quality & Effectiveness IVD Regulation Overview Requirements to Assure Quality & Effectiveness CLIAC Jan. 2002 Statutory and Regulatory Requirements Statute: Food, Drug, and Cosmetic Act Food and Drugs Act of 1906 Food and Drug

More information

The purpose of this Supplier Quality Standard is to communicate the expectations and requirements of Baxter Healthcare Corporation to its suppliers.

The purpose of this Supplier Quality Standard is to communicate the expectations and requirements of Baxter Healthcare Corporation to its suppliers. Supplier Quality Standard 1.0 Purpose The purpose of this Supplier Quality Standard is to communicate the expectations and requirements of Baxter Healthcare Corporation to its suppliers. These expectations

More information

Computer System Validation - It s More Than Just Testing

Computer System Validation - It s More Than Just Testing Computer System Validation - It s More Than Just Testing Introduction Computer System Validation is the technical discipline that Life Science companies use to ensure that each Information Technology application

More information

SUPPLIER QUALITY MANAGEMENT SYSTEM QUESTIONNAIRE

SUPPLIER QUALITY MANAGEMENT SYSTEM QUESTIONNAIRE Company Name Street Address City, State, Zip code Phone Number Fax Company Website Email Address ORGANIZATION NAME PHONE NUMBER EMAIL ADDRESS President/CEO General Manager Engineering Manager Production

More information

How to Use the Design Process to Manage Risk: Elements of Design Controls and Why It Matters

How to Use the Design Process to Manage Risk: Elements of Design Controls and Why It Matters environmental failure analysis & prevention health technology development How to Use the Design Process to Manage Risk: Elements of Design Controls and Why It Matters Kevin L. Ong, Ph.D., P.E. Managing

More information

White paper: FDA Guidance for Industry Update Process Validation

White paper: FDA Guidance for Industry Update Process Validation White paper: FDA Guidance for Industry Update Process Validation In January 2011, the FDA released the final version of its long-awaited update to its Process Validation Guidance for Industry. Since then,

More information

FDA Guidance for Industry Update - Process Validation

FDA Guidance for Industry Update - Process Validation FDA Guidance Update: Process Validation: General Principles and Practices White Paper FDA Guidance for Industry Update - Process Validation The changing face of Validation; are IQ, OQ and PQ really dead

More information

Process Validation: Practical Aspects of the New FDA Guidance

Process Validation: Practical Aspects of the New FDA Guidance Process Validation: Practical Aspects of the New FDA Guidance ISPE Boston Chapter Meeting April 18, 2013 Rusty Morrison Commissioning Agents, Inc. Objectives / Summary What is Process Validation? Regulatory

More information

CORPORATE QUALITY MANUAL

CORPORATE QUALITY MANUAL Corporate Quality Manual Preface The following Corporate Quality Manual is written within the framework of ISO 9001:2008 Quality System by the employees of CyberOptics. CyberOptics recognizes the importance

More information

Corrective and Preventive Action Background & Examples Presented by:

Corrective and Preventive Action Background & Examples Presented by: Corrective and Preventive Action Background & Examples Presented by: Kimberly Lewandowski-Walker Food and Drug Administration Division of Domestic Field Investigations Office of Regulatory Affairs Overview

More information

Testing Automated Manufacturing Processes

Testing Automated Manufacturing Processes Testing Automated Manufacturing Processes (PLC based architecture) 1 ❶ Introduction. ❷ Regulations. ❸ CSV Automated Manufacturing Systems. ❹ PLCs Validation Methodology / Approach. ❺ Testing. ❻ Controls

More information

Medical Device Training Program 2015

Medical Device Training Program 2015 Medical Device Training Introduction Supplementary training and education is often overlooked by medical device professionals until it is triggered by an upcoming FDA or Notified Body and/or ISO 13485

More information

INTRODUCTION. This book offers a systematic, ten-step approach, from the decision to validate to

INTRODUCTION. This book offers a systematic, ten-step approach, from the decision to validate to INTRODUCTION This book offers a systematic, ten-step approach, from the decision to validate to the assessment of the validation outcome, for validating configurable off-the-shelf (COTS) computer software

More information

Cartel Electronics. AS 9100 Quality Systems Manual

Cartel Electronics. AS 9100 Quality Systems Manual Cartel Electronics AS 9100 Quality Systems Manual 1900 C Petra Lane Placentia, California 92870 Introduction Cartel Electronics, as a global supplier to the aviation, space, and space industries, has developed

More information

Considerations When Validating Your Analyst Software Per GAMP 5

Considerations When Validating Your Analyst Software Per GAMP 5 WHITE PAPER Analyst Software Validation Service Considerations When Validating Your Analyst Software Per GAMP 5 Blair C. James, Stacy D. Nelson Introduction The purpose of this white paper is to assist

More information

Comparison between FDA QSR and ISO 13485

Comparison between FDA QSR and ISO 13485 Comparison between FDA QSR and ISO 13485 Most countries in the world including the Europe, for the conformity assessment of medical devices to be used by their countrymen, assess not only whether the product

More information

ISO 9001 Quality Systems Manual

ISO 9001 Quality Systems Manual ISO 9001 Quality Systems Manual Revision: D Issue Date: March 10, 2004 Introduction Micro Memory Bank, Inc. developed and implemented a Quality Management System in order to document the company s best

More information

UNCONTROLLED COPY FOR REFERENCE ONLY

UNCONTROLLED COPY FOR REFERENCE ONLY CLOVER MACHINE AND MFG. 800 MATHEW ST. #101 SANTA CLARA, CA 95050 727-3380 727-7015 fax REVISION: DATE: PAGE 1 OF 45 QUALITY POLICY MANUAL DISTRIBUTION LIST: President Purchasing Manager Vice President

More information

[ABOUT THE AUTHOR. FDA Lifecycle Approach to Process Validation What, Why, and How? PQ Forum. Paul L. Pluta]

[ABOUT THE AUTHOR. FDA Lifecycle Approach to Process Validation What, Why, and How? PQ Forum. Paul L. Pluta] Paul L. Pluta] FDA Lifecycle Approach to Process Validation What, Why, and How? Paul L. Pluta PQ Forum provides a mechanism for validation practitioners to share information about Stage 2 process qualification

More information

Library Guide: Pharmaceutical GMPs

Library Guide: Pharmaceutical GMPs Library Guide: Pharmaceutical GMPs Table of Contents Overview...3 Courses Listed by Functional Area... 4 Course Descriptions: A Step-by-Step Approach to Process Validation (PHDV79)... 7 A Tour of the FDA

More information

AS9100 Quality Manual

AS9100 Quality Manual Origination Date: August 14, 2009 Document Identifier: Quality Manual Revision Date: 8/5/2015 Revision Level: Q AS 9100 UNCONTROLLED IF PRINTED Page 1 of 17 1 Scope Advanced Companies (Advanced) has established

More information

Conducting a Gap Analysis on your Change Control System. Presented By Miguel Montalvo, President, Expert Validation Consulting, Inc.

Conducting a Gap Analysis on your Change Control System. Presented By Miguel Montalvo, President, Expert Validation Consulting, Inc. Conducting a Gap Analysis on your Change Control System Presented By Miguel Montalvo, President, Expert Validation Consulting, Inc. Standards, Regulations, Guidelines related to Change Control Management

More information

Table of Contents. Preface 1.0 Introduction 2.0 Scope 3.0 Purpose 4.0 Rationale 5.0 References 6.0 Definitions

Table of Contents. Preface 1.0 Introduction 2.0 Scope 3.0 Purpose 4.0 Rationale 5.0 References 6.0 Definitions Table of Contents Preface 1.0 Introduction 2.0 Scope 3.0 Purpose 4.0 Rationale 5.0 References 6.0 Definitions 7.0 Objectives and User Needs of a Regulatory Audit Report 7.1 Audit report objectives 7.2

More information

Monitoring the autoclaving process in the pharmaceutical industry

Monitoring the autoclaving process in the pharmaceutical industry Application Description AD/RandC/006-EN Monitoring the autoclaving process in the pharmaceutical industry - Provides independent verification and validation monitoring of the autoclaving process - Enables

More information

Quality Management Systems Manual

Quality Management Systems Manual Washington Division Quality Management Systems Manual ISO 13485:2003 DOCUMENT NUMBER 01-QM-MED REVISION LEVEL 01 PAGE 1 of 40 This manual describes the quality management systems structure at GM Nameplate

More information

Particle Monitoring Requirements in Pharmaceutical Cleanrooms

Particle Monitoring Requirements in Pharmaceutical Cleanrooms Particle Monitoring Requirements in Pharmaceutical Cleanrooms All drugs must be manufactured in accordance with the current Good Manufacturing Practice (cgmp) regulations. Pharmaceutical manufacturers

More information

RTP s NUCLEAR QUALITY ASSURANCE PROGRAM

RTP s NUCLEAR QUALITY ASSURANCE PROGRAM RTP s NUCLEAR QUALITY ASSURANCE PROGRAM RTP operates under one quality program, whether you purchase products that are commercial grade, nuclear safety-related or industrial safety compliant (IEC 61508).

More information

Quality System: Design Control Procedure - Appendix

Quality System: Design Control Procedure - Appendix Quality System: Design Control Procedure - Appendix Page 1 of 10 Quality System: Design Control Procedure - Appendix CORP Medical Products Various details have been removed, indicated by [ ] 1. Overview

More information

ISO 13485:201x What is in the new standard?

ISO 13485:201x What is in the new standard? ISO 13485:201x What is in the new standard? Eric Finegan, Quality Mgr, BTE Technologies, Inc. 2015-09-10 1 Presentation Slides This slide deck is the presentation performed on 2015-09-10. A more detailed

More information

Row Manufacturing Inc. Quality Manual ISO 9001:2008

Row Manufacturing Inc. Quality Manual ISO 9001:2008 Row Manufacturing Inc. Quality Manual ISO 9001:2008 Row Manufacturing 210 Durham Drive Athens, Alabama 35611 Phone:256.232.4151 Fax:256.232.4133 Page 2 of 33 This Page intentionally left Blank Page 3 of

More information

Micro Plastics, Inc. Quality Manual

Micro Plastics, Inc. Quality Manual ISO 9001:2008 11 Industry Lane Flippin, Arkansas 72634 QM-001-2008-F Page 2 of 39 Introduction Micro Plastics, Inc. developed and implemented a Quality Management System in order to document the company

More information

Software. For the 21 CFR Part 11 Environment. The Science and Technology of Small Particles

Software. For the 21 CFR Part 11 Environment. The Science and Technology of Small Particles Software For the 21 CFR Part 11 Environment The Science and Technology of Small Particles 21 CFR Part 11 Solution confirm Software The Code of Federal Regulations Title 21, Part 11, was implemented by

More information

Process Performance Qualification. Demonstrating a High Degree of Assurance in Stage 2 of the Process Validation Lifecycle

Process Performance Qualification. Demonstrating a High Degree of Assurance in Stage 2 of the Process Validation Lifecycle Process Performance Qualification Demonstrating a High Degree of Assurance in Stage 2 of the Process Validation Lifecycle A LIFECYCLE Approach to Process Validation? Lifecycle [ICH Q8(R2)]: All phases

More information

PERFORMANCE EXCELLENCE Procurement Standards

PERFORMANCE EXCELLENCE Procurement Standards PERFORMANCE EXCELLENCE Procurement Standards AEROSPACE PRODUCTS Agile Revision: D Sparton Quality Policy: It is the goal of Sparton Corporation and it subsidiaries ( Sparton ) to deliver value through

More information

State of Control Over the Lifecycle and Process Validation (New and Legacy Products)

State of Control Over the Lifecycle and Process Validation (New and Legacy Products) State of Control Over the Lifecycle and Process Validation (New and Legacy Products) Grace McNally Branch Chief (acting), Regulatory Policy and Collaboration Branch FDA/CDER/Office of Compliance ICH Q10,

More information

Risk Assessment for Medical Devices. Linda Braddon, Ph.D. Bring your medical device to market faster 1

Risk Assessment for Medical Devices. Linda Braddon, Ph.D. Bring your medical device to market faster 1 Risk Assessment for Medical Devices Linda Braddon, Ph.D. Bring your medical device to market faster 1 My Perspective Work with start up medical device companies Goal: Making great ideas into profitable

More information

Regulatory Requirements for Medical Device Calibration Programs

Regulatory Requirements for Medical Device Calibration Programs Regulatory Requirements for Medical Device Calibration Programs Dan O Leary CBA, CQA, CQE, CRE, SSBB, CIRM President Ombu Enterprises, LLC Dan@OmbuEnterprises.com www.ombuenterprises.com 603-209-0600 1

More information

NORTH AMERICA OPERATIONS. (Fairmont and Montreal Facilities) QUALITY MANUAL. Prepared to comply with the requirements of ISO 9001:2008

NORTH AMERICA OPERATIONS. (Fairmont and Montreal Facilities) QUALITY MANUAL. Prepared to comply with the requirements of ISO 9001:2008 WEIGH-TRONIX CANADA ULC NORTH AMERICA OPERATIONS (Fairmont and Montreal Facilities) QUALITY MANUAL Prepared to comply with the requirements of ISO 9001:2008 Meets or exceeds the requirements for design,

More information

GLP vs GMP vs GCP Dominique Pifat, Ph.D., MBA The Biologics Consulting Group dpifat@bcg-usa.com

GLP vs GMP vs GCP Dominique Pifat, Ph.D., MBA The Biologics Consulting Group dpifat@bcg-usa.com GLP vs GMP vs GCP Dominique Pifat, Ph.D., MBA The Biologics Consulting Group dpifat@bcg-usa.com Common Misconception Good Laboratory Practices 1) A quality system concerned with the organizational process

More information

Quality Manual TABLE OF CONTENTS APPROVAL SIGNATURE PAGE 1.1 1 AMENDMENT RECORD 1.2 2 SCOPE 2.0 3 EXCLUSIONS 2.1 3

Quality Manual TABLE OF CONTENTS APPROVAL SIGNATURE PAGE 1.1 1 AMENDMENT RECORD 1.2 2 SCOPE 2.0 3 EXCLUSIONS 2.1 3 TABLE OF CONTENTS DESCRIPTION SECTION PAGE INTRODUCTION 1.0 1 APPROVAL SIGNATURE PAGE 1.1 1 AMENDMENT RECORD 1.2 2 SCOPE 2.0 3 EXCLUSIONS 2.1 3 CORPORATE POLICY 3.0 3 QUALITY MANAGEMENT SYSTEM 4.0 4 GENERAL

More information

Calibration & Preventative Maintenance. Sally Wolfgang Manager, Quality Operations Merck & Co., Inc.

Calibration & Preventative Maintenance. Sally Wolfgang Manager, Quality Operations Merck & Co., Inc. Calibration & Preventative Maintenance Sally Wolfgang Manager, Quality Operations Merck & Co., Inc. Calibration: A comparison of two instruments or measuring devices one of which is a standard of known

More information

ED FAGAN INC. QUALITY SYSTEM MANUAL

ED FAGAN INC. QUALITY SYSTEM MANUAL ED FAGAN INC. QUALITY SYSTEM MANUAL APPROVED BY: Ed Fagan President ED FAGAN INC. January 13, 2010 TABLE OF CONTENTS 1. PURPOSE AND SCOPE 2 2. PRODUCTS, SERVICES AND CAPABILITIES 2 3. REVISION HISTORY

More information

Design Verification The Case for Verification, Not Validation

Design Verification The Case for Verification, Not Validation Overview: The FDA requires medical device companies to verify that all the design outputs meet the design inputs. The FDA also requires that the final medical device must be validated to the user needs.

More information

ISO 9001:2000 AUDIT CHECKLIST

ISO 9001:2000 AUDIT CHECKLIST ISO 9001:2000 AUDIT CHECKLIST No. Question Proc. Ref. Comments 4 Quality Management System 4.1 General Requirements 1 Has the organization established, documented, implemented and maintained a quality

More information

QUALITY ASSURANCE MANUAL JPM OF MISSISSIPPI, INC.

QUALITY ASSURANCE MANUAL JPM OF MISSISSIPPI, INC. QUALITY ASSURANCE MANUAL JPM OF MISSISSIPPI, INC. Hattiesburg, MS Revision E 01/19/11 Revised to ISO 9001:2008 on July 9, 2009 JPM OF MISSISSIPPI, INC. MANAGEMENT QUALITY POLICY It is the goal of JPM of

More information

PPG SUPPLIER DEVELOPMENT ASSESSMENT

PPG SUPPLIER DEVELOPMENT ASSESSMENT Supplier: Address: Products: Assessment Date: Assessment Team: Certification: Supplier Contacts Position E-mail Phone General Comments: Assessment Results Summary Sections Non-conformity Action Point Quality

More information

CAPA - the importance of data analysis

CAPA - the importance of data analysis CAPA - the importance of data analysis Presented by: Sue Jacobs QMS Consulting, Inc. 1 847 359 4456 sue@qmsconsultant.com QMS Consulting, Inc. 2007 1 Topics Regulatory Requirements Design Controls and

More information

ISO 13485 Audit Report. * Example Report *

ISO 13485 Audit Report. * Example Report * SO 13485 Audit Report * Example Report * North America +1-813-5-4770 Latin America +5-1-333-01071 Europe & Middle-East +49-81-55 9590 Asia & Asia Pacific +886--83-990 Email info@proqc.com www.proqc.com

More information

MINIMUM AUTOMOTIVE QUALITY MANAGEMENT SYSTEM REQUIREMENTS FOR SUB-TIER SUPPLIERS

MINIMUM AUTOMOTIVE QUALITY MANAGEMENT SYSTEM REQUIREMENTS FOR SUB-TIER SUPPLIERS MINIMUM AUTOMOTIVE QUALITY MANAGEMENT SYSTEM REQUIREMENTS FOR SUB-TIER SUPPLIERS CONTENTS 1. CONTROL PLANS 2. PROCESS APPROACH 3. PERFORMANCE 4. INTERNAL AUDITING 5. CONTROL OF NON-CONFORMING PRODUCT 6.

More information

Installation and Operational Qualification Protocol (Reference: SOP )

Installation and Operational Qualification Protocol (Reference: SOP ) Project Name Equipment Process Line/Location Project Number Serial Number Model Number Protocol number WRITTEN BY: REVIEWED BY: Position APPROVAL TO EXECUTE: Position: PROTOCOL COMPLETION APPROVAL: Position:

More information

Quality Management System Manual

Quality Management System Manual Quality Management System Manual Assurance ISO / AS Manual Quality Management System EXCEEDING ALL EXPECTATIONS Since our inception in 1965, Swiss-Tech has supplied the medical, aerospace, hydraulic, electronic

More information

Comparison ISO/TS 16949 (1999) to VDA 6.1 (1998)

Comparison ISO/TS 16949 (1999) to VDA 6.1 (1998) 1 APPLICABILITY VDA 6.1: Section: 3.1; 7 new: In addition to the applicability for supplier sites for production, services and their subcontractors for: products and production materials, or services like

More information

CENTRIS CONSULTING. Quality Control Manual

CENTRIS CONSULTING. Quality Control Manual CENTRIS CONSULTING Quality Control Manual ISO 9001:2008 Introduction Centris Consulting developed and implemented a Quality Management System in order to document the company s best business practices,

More information

Combination Products. Presented by: Karen S. Ginsbury For: IFF March 2014. PCI Pharma

Combination Products. Presented by: Karen S. Ginsbury For: IFF March 2014. PCI Pharma Combination Products Presented by: Karen S. Ginsbury For: IFF March 2014 Types of products Biological and medical device (freeze dried + syringe dual volume) Medical device and plasma devised product (syringe)

More information

GAMP5 - a lifecycle management framework for customized bioprocess solutions

GAMP5 - a lifecycle management framework for customized bioprocess solutions GE Healthcare Life Sciences GAMP5 - a lifecycle management framework for customized bioprocess solutions imagination at work GE Healthcare s engineering department, Customized Bioprocess Solutions (CBS),

More information

Validation and Calibration. Definitions and Terminology

Validation and Calibration. Definitions and Terminology Validation and Calibration Definitions and Terminology ACCEPTANCE CRITERIA: The specifications and acceptance/rejection criteria, such as acceptable quality level and unacceptable quality level, with an

More information

QUALITY MANUAL REVISION RECORD

QUALITY MANUAL REVISION RECORD Page 2 of 31 REVISION RECORD Date Rev Description Jun 18, 2007 N/C Original Issue Sep 16, 2009 A Update to ISO 9001:2008 Standard. Feb 04, 2010 B Revised exclusions, removed (Except 7.3.7 from the exclusion

More information

Checklist. Standard for Medical Laboratory

Checklist. Standard for Medical Laboratory Checklist Standard for Medical Laboratory Name of hospital..name of Laboratory..... Name. Position / Title...... DD/MM/YY.Revision... 1. Organization and Management 1. Laboratory shall have the organizational

More information

Quality Agreement. by and between. Supplier Name. Address: and. Client Name: Address:

Quality Agreement. by and between. Supplier Name. Address: and. Client Name: Address: NOTE TO USERS This Quality Agreement template was developed by the Bulk Pharmaceutical Task Force (BPTF), an affiliate organization of the Society of Chemical Manufacturers and Affiliates (SOCMA), as a

More information

Guidance for Industry

Guidance for Industry Guidance for Industry Process Validation: General Principles and Practices U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center

More information

FINE LOGISTICS. Quality Manual. Document No.: 20008. Revision: A

FINE LOGISTICS. Quality Manual. Document No.: 20008. Revision: A FINE LOGISTICS Quality Manual Document No.: 20008 Revision: A 20008 Rev. A FINE LOGISTICS, Quality Manual Page 1 of 24 Quality Manual: Table of contents Number Section Page 1. GENERAL 3 1.1 Index and revision

More information

Quality Management System Manual Revision L

Quality Management System Manual Revision L This Page 1 of 35 of the Quality Management System Manual If issued as a controlled copy, the serial number of this copy is Quality Management System Manual Certified to AS9100 Revision C Printed copies

More information

Quality Management System MANUAL. SDIX, LLC Headquarters: 111 Pencader Drive Newark, Delaware 19702

Quality Management System MANUAL. SDIX, LLC Headquarters: 111 Pencader Drive Newark, Delaware 19702 Quality Management System MANUAL SDIX, LLC Headquarters: 111 Pencader Drive Newark, Delaware 19702 Doc. No. G5500 Rev. 9.1 Status : APPROVED Effective: 12/11/2014 Page 2 of 23 Quality Manual Table of Contents

More information

Quality Management System MANUAL. SDIX, LLC Headquarters: 111 Pencader Drive Newark, Delaware 19702

Quality Management System MANUAL. SDIX, LLC Headquarters: 111 Pencader Drive Newark, Delaware 19702 Quality Management System MANUAL SDIX, LLC Headquarters: 111 Pencader Drive Newark, Delaware 19702 Doc. No. G5500 Rev. 9.2 Status : APPROVED Effective: 9/25/2015 Page 2 of 23 Quality Manual Table of Contents

More information

FINAL DOCUMENT. Guidelines for Regulatory Auditing of Quality Management Systems of Medical Device Manufacturers Part 1: General Requirements

FINAL DOCUMENT. Guidelines for Regulatory Auditing of Quality Management Systems of Medical Device Manufacturers Part 1: General Requirements GHTF/SG4/N28R4:2008 FINAL DOCUMENT Title: Guidelines for Regulatory Auditing of Quality Management Systems of Medical Device Manufacturers Authoring Group: GHTF Study Group 4 Endorsed by: The Global Harmonization

More information

Monitoring manufacturing, production and storage environments in the pharmaceutical industry

Monitoring manufacturing, production and storage environments in the pharmaceutical industry Application Description AD/RandC/005-EN Monitoring manufacturing, production and storage environments in the pharmaceutical industry - Provides independent verification and validation of the manufacture,

More information

ONTIC UK SUPPLIER QUALITY SURVEY

ONTIC UK SUPPLIER QUALITY SURVEY MAIL-IN / ONSITE This report is intended to furnish data relative to the Suppliers capability to control the quality of supplies and services furnished to Ontic UK. Please complete this Survey and return

More information

Supplier Quality Agreements

Supplier Quality Agreements Supplier Quality Agreements Dan O Leary CBA, CQA, CQE, CRE, SSBB, CIRM President Ombu Enterprises, LLC Dan@OmbuEnterprises.com www.ombuenterprises.com 603-209-0600 1 Speaker Biography Dan O Leary Dan O

More information

ISO/IEC 17025 QUALITY MANUAL

ISO/IEC 17025 QUALITY MANUAL 1800 NW 169 th Pl, Beaverton, OR 97006 Revision F Date: 9/18/06 PAGE 1 OF 18 TABLE OF CONTENTS Quality Manual Section Applicable ISO/IEC 17025:2005 clause(s) Page Quality Policy 4.2.2 3 Introduction 4

More information

Control No: QQM-02 Title: Quality Management Systems Manual Revision 10 07/08/2010 ISO 9001:2008 Page: 1 of 22

Control No: QQM-02 Title: Quality Management Systems Manual Revision 10 07/08/2010 ISO 9001:2008 Page: 1 of 22 ISO 9001:2008 Page: 1 of 22 Central Technologies has developed a Quality Management System, and the associated procedures and work instructions, to be compliant to ISO 9001:2008. Utilizing this Quality

More information

Documents, Records and Change Control

Documents, Records and Change Control Documents, Records and Change Control Lori S. Lawless Medical Device Specialist Food and Drug Administration Baltimore District Office Lori.Lawless@fda.hhs.gov (410) 779-5442 May 13-14, 2008 Baltimore

More information

ORACLE CONSULTING GROUP

ORACLE CONSULTING GROUP ORACLE CONSULTING GROUP An Official United States Agent Firm for Foreign Establishments CONSULTING MEMORANDUM: DEALING WITH A MEDICAL DEVICE IN THE U.S. 5398 Golder Ranch Rd., Ste. 1 Tucson, Arizona 85739

More information

ISO 9001:2008 Audit Checklist

ISO 9001:2008 Audit Checklist g GE Power & Water ISO 9001:2008 Audit Checklist Organization Auditor Date Page 1 Std. 4.1 General s a. Are processes identified b. Sequence & interaction of processes determined? c. Criteria for operation

More information

14620 Henry Road Houston, Texas 77060 PH: 281-447-3980 FX: 281-447-3988. WEB: www.texasinternational.com QUALITY MANUAL

14620 Henry Road Houston, Texas 77060 PH: 281-447-3980 FX: 281-447-3988. WEB: www.texasinternational.com QUALITY MANUAL 14620 Henry Road Houston, Texas 77060 PH: 281-447-3980 FX: 281-447-3988 WEB: www.texasinternational.com QUALITY MANUAL ISO 9001:2008 API Spec Q1, 9th Edition API Spec 8C 5 Th Edition MANUAL NUMBER: Electronic

More information

Camar Aircraft Products Co. QUALITY MANUAL Revision D

Camar Aircraft Products Co. QUALITY MANUAL Revision D QUALITY MANUAL Revision D Gujll'y Manual Introduction The purpose of this manual is to describe the Quality Assurance Program implemented by Camar Aircraft Products Co. (hereafter referred to as C.A.P.C.)

More information

ISO 9001:2000 Gap Analysis Checklist

ISO 9001:2000 Gap Analysis Checklist ISO 9001:2000 Gap Analysis Checklist Type: Assessor: ISO 9001 REQUIREMENTS STATUS ACTION/COMMENTS 4 Quality Management System 4.1 General Requirements Processes needed for the quality management system

More information

Application of Quality Risk Management to Pharmaceutical Operations. Eldon Henson, Vice President, Quality Operations

Application of Quality Risk Management to Pharmaceutical Operations. Eldon Henson, Vice President, Quality Operations Application of Quality Risk Management to Pharmaceutical Operations Eldon Henson, Vice President, Quality Operations Key Topics of Discussion Definition of Quality Risk Management (QRM) Overview of PDA

More information

Quality Management System Manual

Quality Management System Manual Effective Date: 03/08/2011 Page: 1 of 17 Quality Management System Manual Thomas C. West Eric Weagle Stephen Oliver President ISO Management General Manager Representative Effective Date: 03/08/2011 Page:

More information

Quality Assurance QUALITY ASSURANCE PLAN

Quality Assurance QUALITY ASSURANCE PLAN Revision 2 Page 1 of 40 QUALITY ASSURANCE PLAN PLAN APPROVALS: Jeff Shouse Signature on File DIRECTOR OF QUALITY ASSURANCE DIRECTOR OF QUALITY ASSURANCE (signature) DATE Rodney Baltzer Signature on File

More information

Quality Management System Manual ISO9001:2008

Quality Management System Manual ISO9001:2008 Quality Management System Manual ISO9001:2008 Controlled Copy Rev. 3 Page 1 of 21 7/1/13 Table of Contents Company Profile...5 Past...5 Present...5 Mission...5 Vision...5 Locations...6 1 Scope...6 1.1

More information

ICH guideline Q10 on pharmaceutical quality system

ICH guideline Q10 on pharmaceutical quality system September 2015 EMA/CHMP/ICH/214732/2007 Committee for Human Medicinal Products Step 5 Transmission to CHMP May 2007 Transmission to interested parties May 2007 Deadline for comments November 2007 Final

More information

ALL PRODUCTS MFG & SUPPLY

ALL PRODUCTS MFG & SUPPLY ALL PRODUCTS MFG & SUPPLY 618 ANDERSON DRIVE ROMEOVILLE, IL 60446 PHONE: 877-255-8700 FAX: 877-255-8701 WWW. APGASKET.COM QUALITY MANAGEMENT SYSTEM MANUAL DATE: 11/20/12 REVISION 9.1 UNCONTROLLED COPY

More information

Effective Software Verification for Medical Devices

Effective Software Verification for Medical Devices STERLINGTECH AND KLOCWORK WHITE PAPER NOVEMBER 2009 Effective Software Verification for Medical Devices Achieving compliance and meeting productivity goals with static analysis In addition to producing

More information

Quality Manual ALABAMA RESEARCH & DEVELOPMENT. This Quality Manual complies with the Requirements of ISO 9001:2008.

Quality Manual ALABAMA RESEARCH & DEVELOPMENT. This Quality Manual complies with the Requirements of ISO 9001:2008. ALABAMA RESEARCH & DEVELOPMENT This complies with the Requirements of ISO 9001:2008. Prepared By: Phyllis Olsen Release Date: 03/19/09 Quality Policy & Objectives s quality policy is to achieve sustained,

More information

QUALITY MANAGEMENT SYSTEM REQUIREMENTS General Requirements. Documentation Requirements. General. Quality Manual. Control of Documents

QUALITY MANAGEMENT SYSTEM REQUIREMENTS General Requirements. Documentation Requirements. General. Quality Manual. Control of Documents Chapter j 38 Self Assessment 729 QUALITY MANAGEMENT SYSTEM REQUIREMENTS General Requirements 1. Establishing and implementing a documented quality management system 2. Implementing a documented quality

More information

In 2001, ISPE issued Baseline Guide Volume

In 2001, ISPE issued Baseline Guide Volume In today s biopharma and pharmaceutical industries, three related, but distinct terms are in common use: commissioning, qualification, and verification. Inconsistent interpretation and application of these

More information

Karas Engineering AS9100 QUALITY MANAGEMENT SYSTEM MANUAL

Karas Engineering AS9100 QUALITY MANAGEMENT SYSTEM MANUAL Karas Engineering AS9100 QUALITY MANAGEMENT SYSTEM MANUAL Revision D October 27, 2015 Statement of Commitment and Authority Commitment This Quality Management System Manual (QMSM) delineates the processes,

More information

COMPLIANCE BY DESIGN FOR PHARMACEUTICAL QUALITY CONTROL LABORATORIES INSIGHT FROM FDA WARNING LETTERS

COMPLIANCE BY DESIGN FOR PHARMACEUTICAL QUALITY CONTROL LABORATORIES INSIGHT FROM FDA WARNING LETTERS COMPLIANCE BY DESIGN FOR PHARMACEUTICAL QUALITY CONTROL LABORATORIES INSIGHT FROM FDA WARNING LETTERS Primer CONTENTS INTRODUCTION...3 QUALITY AND COMPLIANCE IN QUALITY CONTROL LABORATORIES...5 Compliance

More information

PROPOSED DOCUMENT. Quality management system Medical devices Nonconformity Grading System for Regulatory Purposes and Information Ex-change

PROPOSED DOCUMENT. Quality management system Medical devices Nonconformity Grading System for Regulatory Purposes and Information Ex-change AHWP/WG3/P001:2013 PROPOSED DOCUMENT Title: Quality management system Medical devices Nonconformity Grading System for Regulatory Purposes and Information Ex-change Author: AHWP Work Group 3 Date: 13 November

More information

Building an Effective Supplier Control Program: A review of key program elements & their implementation.

Building an Effective Supplier Control Program: A review of key program elements & their implementation. Building an Effective Supplier Control Program: A review of key program elements & their implementation. Jonathan Lee VP RQCS Medtronic Surgical Technologies Building an Effective Supplier Control Program

More information